FLO_Twitter/app/web/app.js
2019-08-09 15:40:09 +05:30

1314 lines
53 KiB
JavaScript

window.indexedDB = window.indexedDB || window.mozIndexedDB || window.webkitIndexedDB || window.msIndexedDB;
window.IDBTransaction = window.IDBTransaction || window.webkitIDBTransaction || window.msIDBTransaction;
window.IDBKeyRange = window.IDBKeyRange || window.webkitIDBKeyRange || window.msIDBKeyRange;
if (!window.indexedDB) {
window.alert("Your browser doesn't support a stable version of IndexedDB.")
}
const adminID = "FMabh7gTSyKPAb2Wi9sK5CBhV8nVFk783i";
if(blockchain == "FLO")
var api_url = `https://flosight.duckdns.org/`;
else if(blockchain == "FLO_TEST")
var api_url = `https://testnet-flosight.duckdns.org/`;
var supernodeKBucket;
var superNodeList;
var months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'];
var encrypt = {
p: BigInteger("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16),
exponent1: function () {
return this.p.add(BigInteger.ONE).divide(BigInteger("4"))
},
calculateY: function (x) {
let p = this.p;
let exp = this.exponent1();
// x is x value of public key in BigInteger format without 02 or 03 or 04 prefix
return x.modPow(BigInteger("3"), p).add(BigInteger("7")).mod(p).modPow(exp, p)
},
// Insert a compressed public key
getUncompressedPublicKey: function (compressedPublicKey) {
const p = this.p;
// Fetch x from compressedPublicKey
let pubKeyBytes = Crypto.util.hexToBytes(compressedPublicKey);
const prefix = pubKeyBytes.shift() // remove prefix
let prefix_modulus = prefix % 2;
pubKeyBytes.unshift(0) // add prefix 0
let x = new BigInteger(pubKeyBytes)
let xDecimalValue = x.toString()
// Fetch y
let y = this.calculateY(x);
let yDecimalValue = y.toString();
// verify y value
let resultBigInt = y.mod(BigInteger("2"));
let check = resultBigInt.toString() % 2;
if (prefix_modulus !== check) {
yDecimalValue = y.negate().mod(p).toString();
}
return {
x: xDecimalValue,
y: yDecimalValue
};
},
getSenderPublicKeyString: function () {
privateKey = ellipticCurveEncryption.senderRandom();
senderPublicKeyString = ellipticCurveEncryption.senderPublicString(privateKey);
return {
privateKey: privateKey,
senderPublicKeyString: senderPublicKeyString
}
},
deriveSharedKeySender: function (receiverCompressedPublicKey, senderPrivateKey) {
try {
let receiverPublicKeyString = this.getUncompressedPublicKey(
receiverCompressedPublicKey);
var senderDerivedKey = {
XValue: "",
YValue: ""
};
senderDerivedKey = ellipticCurveEncryption.senderSharedKeyDerivation(
receiverPublicKeyString.x,
receiverPublicKeyString.y, senderPrivateKey);
return senderDerivedKey;
} catch (error) {
return new Error(error);
}
},
deriveReceiverSharedKey: function (senderPublicKeyString, receiverPrivateKey) {
return ellipticCurveEncryption.receiverSharedKeyDerivation(
senderPublicKeyString.XValuePublicString, senderPublicKeyString.YValuePublicString,
receiverPrivateKey);
},
getReceiverPublicKeyString: function (privateKey) {
return ellipticCurveEncryption.receiverPublicString(privateKey);
},
deriveSharedKeyReceiver: function (senderPublicKeyString, receiverPrivateKey) {
try {
return ellipticCurveEncryption.receiverSharedKeyDerivation(senderPublicKeyString.XValuePublicString,
senderPublicKeyString.YValuePublicString, receiverPrivateKey);
} catch (error) {
return new Error(error);
}
},
encryptMessage: function (data, receiverCompressedPublicKey) {
var senderECKeyData = this.getSenderPublicKeyString();
var senderDerivedKey = {
XValue: "",
YValue: ""
};
var senderPublicKeyString = {};
senderDerivedKey = this.deriveSharedKeySender(
receiverCompressedPublicKey, senderECKeyData.privateKey);
//console.log("senderDerivedKey", senderDerivedKey);
let senderKey = senderDerivedKey.XValue + senderDerivedKey.YValue;
let secret = Crypto.AES.encrypt(data, senderKey);
return {
secret: secret,
senderPublicKeyString: senderECKeyData.senderPublicKeyString
};
},
decryptMessage: function (secret, senderPublicKeyString) {
var receiverDerivedKey = {
XValue: "",
YValue: ""
};
var receiverECKeyData = {};
var myPrivateKey = privKey;
if (typeof myPrivateKey !== "string") throw new Error("No private key found.");
let privateKey = this.wifToDecimal(myPrivateKey, true);
if (typeof privateKey.privateKeyDecimal !== "string") throw new Error(
"Failed to detremine your private key.");
receiverECKeyData.privateKey = privateKey.privateKeyDecimal;
receiverDerivedKey = this.deriveReceiverSharedKey(senderPublicKeyString,
receiverECKeyData.privateKey);
//console.log("receiverDerivedKey", receiverDerivedKey);
let receiverKey = receiverDerivedKey.XValue + receiverDerivedKey.YValue;
let decryptMsg = Crypto.AES.decrypt(secret, receiverKey);
return decryptMsg;
},
ecparams: EllipticCurve.getSECCurveByName("secp256k1"),
getPubKeyHex: function(privateKeyHex){
var key = new Bitcoin.ECKey(privateKeyHex);
if(key.priv == null){
console.log("Invalid Private key");
return;
}
key.setCompressed(true);
var pubkeyHex = key.getPubKeyHex();
return pubkeyHex;
},
getFLOIDfromPubkeyHex: function(pubkeyHex){
var key = new Bitcoin.ECKey().setPub(pubkeyHex);
var floID = key.getBitcoinAddress();
return floID;
},
validateAddr: function (value) {
try{
var addr = new Bitcoin.Address(value);
if (addr == value)
return true;
else
return false;
}catch(error){
return false;
}
},
verifyWIF: function (wif,addr){
try {
var key = new Bitcoin.ECKey(wif);
if(key.priv == null){
return false;
}
key.setCompressed(true);
var bitcoinAddress = key.getBitcoinAddress();
if (addr == bitcoinAddress)
return true;
else
return false;
}
catch (error) {
console.log(error);
}
},
sign: function (msg, privateKeyHex) {
var key = new Bitcoin.ECKey(privateKeyHex);
key.setCompressed(true);
var privateKeyArr = key.getBitcoinPrivateKeyByteArray();
privateKey = BigInteger.fromByteArrayUnsigned(privateKeyArr);
var messageHash = Crypto.SHA256(msg);
var messageHashBigInteger = new BigInteger(messageHash);
var messageSign = Bitcoin.ECDSA.sign(messageHashBigInteger, key.priv);
var sighex = Crypto.util.bytesToHex(messageSign);
return sighex;
},
verify: function (msg, signatureHex, publicKeyHex) {
var msgHash = Crypto.SHA256(msg);
var messageHashBigInteger = new BigInteger(msgHash);
var sigBytes = Crypto.util.hexToBytes(signatureHex);
var signature = Bitcoin.ECDSA.parseSig(sigBytes);
var publicKeyPoint = this.ecparams.getCurve().decodePointHex(publicKeyHex);
var verify = Bitcoin.ECDSA.verifyRaw(messageHashBigInteger, signature.r, signature.s,
publicKeyPoint);
return verify;
},
wifToDecimal: function(pk_wif, isPubKeyCompressed = false) {
let pk = Bitcoin.Base58.decode(pk_wif)
pk.shift()
pk.splice(-4, 4)
//If the private key corresponded to a compressed public key, also drop the last byte (it should be 0x01).
if (isPubKeyCompressed == true) pk.pop()
pk.unshift(0)
privateKeyDecimal = BigInteger(pk).toString()
privateKeyHex = Crypto.util.bytesToHex(pk)
return {
privateKeyDecimal: privateKeyDecimal,
privateKeyHex: privateKeyHex
}
},
createShamirsSecretShares: function (str, total_shares, threshold_limit) {
if (str.length > 0) {
// convert the text into a hex string
var strHex = shamirSecretShare.str2hex(str);
// split into total_shares shares, with a threshold of threshold_limit
var shares = shamirSecretShare.share(strHex, total_shares, threshold_limit);
return shares;
}
return false;
},
verifyShamirsSecret: function (sharesArray, str) {
// combine sharesArray:
var comb = shamirSecretShare.combine(sharesArray);
//convert back to UTF string:
comb = shamirSecretShare.hex2str(comb);
return comb === str;
},
retrieveShamirSecret: function (sharesArray) {
if (sharesArray.length > 0) {
// combine sharesArray:
var comb = shamirSecretShare.combine(sharesArray.slice(0, sharesArray.length));
//convert back to UTF string:
comb = shamirSecretShare.hex2str(comb);
return comb;
}
return false;
}
}
function convertStringToInt(string){
return parseInt(string,10);
}
function arrayToObject(array){
obj = {};
array.forEach(element => {
obj[element.floID] = {onionAddr : element.onionAddr, name : element.name, pubKey : element.pubKey};
});
return obj;
}
function getTime(time){
var t = new Date(time);
var fn = function(n){
if(n<10)
return '0'+n;
else
return n;
};
var tmp = `${months[t.getMonth()]} ${fn(t.getDate())} ${t.getFullYear()} ${fn(t.getHours())}:${fn(t.getMinutes())}`;
return tmp;
}
function logout(){
sessionStorage.clear();
window.location.href = "index.html";
}
/*Refresh profile and superNode data from API */
function ajax(method, uri){
var request = new XMLHttpRequest();
var url = `${api_url}/${uri}`
console.log(url)
var result;
request.open(method,url , false);
request.onload = function () {
if (request.readyState == 4 && request.status == 200)
result = this.response;
else {
console.log('error');
result = false;
}
};
request.send();
console.log(result);
return result;
}
function reloadInitData(){
refreshAPIdata().then(result => {
console.log(result);
sessionStorage.profiles = JSON.stringify(profiles);
sessionStorage.superNodeList = JSON.stringify(Array.from(superNodeList));
kBucketObj.launchKBucket().then(result => {
console.log(result)
}).catch(error => {
console.log(error);
});
}).catch(error => {
console.log(error);
});
}
function refreshAPIdata(){
return new Promise((resolve,reject) => {
var addr = adminID;
var idb = indexedDB.open("FLO_Tweet");
idb.onerror = (event) => { reject("Error in opening IndexedDB!") };
idb.onsuccess = (event) => {
var db = event.target.result;
var lastTx = db.transaction('lastTx', "readwrite").objectStore('lastTx');
console.log(addr);
new Promise((res,rej) => {
var lastTxReq = lastTx.get(addr);
lastTxReq.onsuccess = (event) => {
var lasttx = event.target.result;
if(lasttx === undefined){
lasttx = 0;
}
res(lasttx);
}
}).then(lasttx => {
var response = ajax("GET",`api/addrs/${addr}/txs`);
var nRequired = JSON.parse(response).totalItems - lasttx;
console.log(nRequired);
while(true && nRequired){
var response = ajax("GET",`api/addrs/${addr}/txs?from=0&to=${nRequired}`);
response = JSON.parse(response);
if (nRequired + lasttx != response.totalItems ){
nRequired = response.totalItems - lasttx;
continue;
}
response.items.reverse().forEach(tx => {
try {
if (tx.vin[0].addr == addr){
var data = JSON.parse(tx.floData).FLO_Tweet_SuperNode;
if(data !== undefined){
if(data.addNodes)
for(var i=0; i<data.addNodes.length; i++)
superNodeList.add(data.addNodes[i])
if(data.removeNodes)
for(var i=0; i<data.removeNodes.length; i++)
superNodeList.delete(data.removeNodes[i])
storeSuperNodeData(data).then(function (response) {
}).catch(error => {
console.log(error);
});
}
}else{
var data = JSON.parse(tx.floData).FLO_Tweet;
if(data !== undefined){
if(encrypt.getFLOIDfromPubkeyHex(data.pubKey)!=tx.vin[0].addr)
throw("PublicKey doesnot match with floID")
data = {floID : tx.vin[0].addr, onionAddr : data.onionAddr, name : data.name, pubKey:data.pubKey};
profiles[data.floID] = {onionAddr : data.onionAddr, name : data.name, pubKey : data.pubKey};
storeProfile(data).then(function (response) {
}).catch(error => {
console.log(error);
});
}
}
} catch (error) {
//console.log(error)
}
});
var obs = db.transaction('lastTx', "readwrite").objectStore('lastTx');
obs.put(response.totalItems,addr);
break;
}
db.close();
resolve('retrived data from API');
});
};
});
}
/* Common IDB functions */
function storeProfile(data){
return new Promise((resolve,reject) => {
var idb = indexedDB.open("FLO_Tweet");
idb.onerror = (event) => { console.log("Error in opening IndexedDB!") };
idb.onsuccess = (event) => {
var db = event.target.result;
var obs = db.transaction('profiles', "readwrite").objectStore('profiles');
objectRequest = obs.put(data);
objectRequest.onerror = (event) => { reject(Error('Error occured: Unable to store data'))};
objectRequest.onsuccess = (event) => { resolve('Data saved OK') };
db.close();
};
});
}
function storeSuperNodeData(data){
return new Promise((resolve,reject) => {
var idb = indexedDB.open("FLO_Tweet");
idb.onerror = (event) => { reject("Error in opening IndexedDB!"); };
idb.onsuccess = (event) => {
var db = event.target.result;
var obs = db.transaction('superNodes', "readwrite").objectStore('superNodes');
if(data.addNodes)
for(var i=0; i<data.addNodes.length; i++)
obs.add(true,data.addNodes[i])
if(data.removeNodes)
for(var i=0; i<data.removeNodes.length; i++)
obs.delete(data.removeNodes[i])
db.close();
resolve('Updated superNodes list in IDB');
};
});
}
function storeTweet(data,tid){
var idb = indexedDB.open("FLO_Tweet");
idb.onerror = (event) => { console.log("Error in opening IndexedDB!") };
idb.onsuccess = (event) => {
var db = event.target.result;
var obs = db.transaction("tweets", "readwrite").objectStore("tweets");
data.tweetID = `${data.time}_${data.floID}`;
data.tid = tid;
obs.add(data);
var obsL = db.transaction("lastTweet", "readwrite").objectStore("lastTweet");
obsL.put(tid,data.floID);
db.close();
};
}
function storeMsg(data){
var idb = indexedDB.open("FLO_Tweet");
idb.onerror = (event) => { console.log("Error in opening IndexedDB!") };
idb.onsuccess = (event) => {
var db = event.target.result;
var obs = db.transaction("messages", "readwrite").objectStore("messages");
data.msgID = `${data.time}_${data.floID}`;
obs.add(data);
db.close();
};
}
/* SuperNode functions */
function sendDataToSuperNode(floID,data){
kBucketObj.determineClosestSupernode(floID).then(result=>{
var superNodeWS = new WebSocket("ws://"+profiles[result[0].floID].onionAddr+"/ws");
superNodeWS.onopen = function(ev){
console.log(`Connected to ${floID}'s SuperNode!`);
superNodeWS.send(data);
};
superNodeWS.onerror = function(ev) {console.log(`${floid}'s SuperNode is offline!`);};
superNodeWS.onclose = function(ev) {console.log(`Disconnected from ${floid}'s SuperNode!`);};
}).catch(e => {
console.log(e.message);
});
}
function superNodeMode(data){
if(data.reqNewTweets){
kBucketObj.determineClosestSupernode(data.floID).then(result => {
if(result[0].floID == selfID)
SuperNode_sendTweetsFromIDB(data.floID,data.tid,data.requestor);
}).catch(error => {
console.log(error);
});
}else if(data.newSuperNodeTweet){
kBucketObj.determineClosestSupernode(data.floID).then(result => {
if(result[0].floID == selfID)
SuperNode_storeSuperNodeTweet(data.data,data.tid);
}).catch(error => {
console.log(error);
});
}else if(data.viaSuperNodeMsg){
kBucketObj.determineClosestSupernode(data.to).then(result => {
if(result[0].floID == selfID)
SuperNode_storeViaSuperNodeMsg(data.from,data.to,data.data);
}).catch(error => {
console.log(error);
});
}else if(data.viaMsgreq){
kBucketObj.determineClosestSupernode(data.floID).then(result => {
if(result[0].floID == selfID)
SuperNode_sendviaMsgFromIDB(data.floID);
}).catch(error => {
console.log(error);
});
}
}
function SuperNode_sendTweetsFromIDB(floID,tid,requestor){
return new Promise((resolve,reject) => {
var requestorWS = new WebSocket("ws://"+profiles[requestor].onionAddr+"/ws");
requestorWS.onopen = (event) => {
console.log(`sending ${floID} tweets to ${requestor} Server!`);
var idb = indexedDB.open("FLO_Tweet",2);
idb.onerror = (event) => { reject("Error in opening IndexedDB!") };
idb.onupgradeneeded = (event) => {
var objectStore1 = event.target.result.createObjectStore("superNodeTweet",{ keyPath: 'tweetID' });
objectStore1.createIndex('floID', 'floID', { unique: false });
objectStore1.createIndex('tid', 'tid', { unique: false });
objectStore1.createIndex('data', 'data', { unique: false });
var objectStore2 = event.target.result.createObjectStore("viaSuperNodeMsg",{ keyPath: 'id',autoIncrement:true });
objectStore2.createIndex('from', 'from', { unique: false });
objectStore2.createIndex('to', 'to', { unique: false });
objectStore2.createIndex('data', 'data', { unique: false });
}
idb.onsuccess = (event) => {
var db = event.target.result;
var obs = db.transaction("superNodeTweet", "readwrite").objectStore("superNodeTweet");
var curReq = obs.openCursor();
curReq.onsuccess = (event) => {
var cursor = event.target.result;
if(cursor) {
if(cursor.value.floID == floID && cursor.value.tid > tid){
data = JSON.stringify({fromSuperNode:true, floID:cursor.value.floID,tid:cursor.value.tid,data:cursor.value.data})
requestorWS.send(data);
}
cursor.continue();
}else{
resolve("Displayed Tweets from IDB!");
}
}
curReq.onerror = (event) => { reject("Error in Reading tweets from IDB!") }
db.close();
};
};
requestorWS.onerror = (event) => { console.log(`${requestor} Server is offline!`) };
requestorWS.onclose = (event) => { console.log(`Disconnected from ${requestor} Server!`) };
});
}
function SuperNode_storeSuperNodeTweet(data,tid){
var idb = indexedDB.open("FLO_Tweet",2);
idb.onerror = (event) => { console.log("Error in opening IndexedDB!") };
idb.onupgradeneeded = (event) => {
var objectStore1 = event.target.result.createObjectStore("superNodeTweet",{ keyPath: 'tweetID' });
objectStore1.createIndex('floID', 'floID', { unique: false });
objectStore1.createIndex('tid', 'tid', { unique: false });
objectStore1.createIndex('data', 'data', { unique: false });
var objectStore2 = event.target.result.createObjectStore("viaSuperNodeMsg",{ keyPath: 'id',autoIncrement:true });
objectStore2.createIndex('from', 'from', { unique: false });
objectStore2.createIndex('to', 'to', { unique: false });
objectStore2.createIndex('data', 'data', { unique: false });
}
idb.onsuccess = (event) => {
var db = event.target.result;
var obs = db.transaction("superNodeTweet", "readwrite").objectStore("superNodeTweet");
var parsedData = JSON.parse(data);
var tweetID = ''+parsedData.floID+'_'+parsedData.time;
obs.add({tweetID:tweetID,floID:parsedData.floID,tid:tid,data:data});
db.close();
};
}
function SuperNode_storeViaSuperNodeMsg(from,to,data){
var idb = indexedDB.open("FLO_Tweet",2);
idb.onerror = (event) => { console.log("Error in opening IndexedDB!") };
idb.onupgradeneeded = (event) => {
var objectStore1 = event.target.result.createObjectStore("superNodeTweet",{ keyPath: 'tweetID' });
objectStore1.createIndex('floID', 'floID', { unique: false });
objectStore1.createIndex('tid', 'tid', { unique: false });
objectStore1.createIndex('data', 'data', { unique: false });
var objectStore2 = event.target.result.createObjectStore("viaSuperNodeMsg",{ keyPath: 'id',autoIncrement :true });
objectStore2.createIndex('from', 'from', { unique: false });
objectStore2.createIndex('to', 'to', { unique: false });
objectStore2.createIndex('data', 'data', { unique: false });
}
idb.onsuccess = (event) => {
var db = event.target.result;
var obs = db.transaction("viaSuperNodeMsg", "readwrite").objectStore("viaSuperNodeMsg");
obs.add({from:from,to:to,data:data});
db.close();
};
}
function SuperNode_sendviaMsgFromIDB(floID){
var receiverWS = new WebSocket("ws://"+profiles[floID].onionAddr+"/ws");
receiverWS.onopen = (event) => {
var idb = indexedDB.open("FLO_Tweet",2);
idb.onerror = (event) => { console.log("Error in opening IndexedDB!") };
idb.onupgradeneeded = (event) => {
var objectStore1 = event.target.result.createObjectStore("superNodeTweet",{ keyPath: 'tweetID' });
objectStore1.createIndex('floID', 'floID', { unique: false });
objectStore1.createIndex('tid', 'tid', { unique: false });
objectStore1.createIndex('data', 'data', { unique: false });
var objectStore2 = event.target.result.createObjectStore("viaSuperNodeMsg",{ keyPath: 'id',autoIncrement:true });
objectStore2.createIndex('from', 'from', { unique: false });
objectStore2.createIndex('to', 'to', { unique: false });
objectStore2.createIndex('data', 'data', { unique: false });
};
idb.onsuccess = (event) => {
var db = event.target.result;
var obs = db.transaction("viaSuperNodeMsg", "readwrite").objectStore("viaSuperNodeMsg");
obs.openCursor().onsuccess = (event) => {
var cursor = event.target.result;
if(cursor) {
if(cursor.value.to == floID){
receiverWS.send(cursor.value.data);
cursor.delete();
}
cursor.continue();
}else{
console.log('Sent All messages to '+floID)
}
}
db.close();
};
};
receiverWS.onerror = (event) => { console.log('Connection Error to '+floID) };
receiverWS.onclose = (event) => { console.log('Disconnected from '+floID) };
}
/* ---end of app.js --- */
/*Kademlia DHT K-bucket implementation as a binary tree.*/
if (typeof reactor == "undefined" || !reactor) {
(function () {
function Event(name) {
this.name = name;
this.callbacks = [];
}
Event.prototype.registerCallback = function (callback) {
this.callbacks.push(callback);
};
function Reactor() {
this.events = {};
}
Reactor.prototype.registerEvent = function (eventName) {
var event = new Event(eventName);
this.events[eventName] = event;
};
Reactor.prototype.dispatchEvent = function (eventName, eventArgs) {
this.events[eventName].callbacks.forEach(function (callback) {
callback(eventArgs);
});
};
Reactor.prototype.addEventListener = function (eventName, callback) {
this.events[eventName].registerCallback(callback);
};
window.reactor = new Reactor();
})();
}
reactor.registerEvent('added');
reactor.addEventListener('added', function (someObject) {
console.log('Added fired with data ' + someObject);
});
reactor.registerEvent('removed');
reactor.addEventListener('removed', function (someObject) {
console.log('Removed fired with data ' + someObject);
});
reactor.registerEvent('updated');
reactor.addEventListener('updated', function (someObject) {
console.log('Updated fired with data ' + someObject);
});
reactor.registerEvent('bucket_full');
reactor.addEventListener('bucket_full', function (someObject) {
console.log('Bucket full ' + someObject);
});
/**
* @param {Uint8Array} array1
* @param {Uint8Array} array2
* @return {Boolean}
*/
function arrayEquals(array1, array2) {
if (array1 === array2) {
return true
}
if (array1.length !== array2.length) {
return false
}
for (let i = 0, length = array1.length; i < length; ++i) {
if (array1[i] !== array2[i]) {
return false
}
}
return true
}
function createNode() {
return {
contacts: [],
dontSplit: false,
left: null,
right: null
}
}
function ensureInt8(name, val) {
if (!(val instanceof Uint8Array)) {
throw new TypeError(name + ' is not a Uint8Array')
}
}
/**
* Implementation of a Kademlia DHT k-bucket used for storing
* contact (peer node) information.
*
* @extends EventEmitter
*/
function BuildKBucket(options = {}) {
/**
* `options`:
* `distance`: Function
* `function (firstId, secondId) { return distance }` An optional
* `distance` function that gets two `id` Uint8Arrays
* and return distance (as number) between them.
* `arbiter`: Function (Default: vectorClock arbiter)
* `function (incumbent, candidate) { return contact; }` An optional
* `arbiter` function that givent two `contact` objects with the same `id`
* returns the desired object to be used for updating the k-bucket. For
* more details, see [arbiter function](#arbiter-function).
* `localNodeId`: Uint8Array An optional Uint8Array representing the local node id.
* If not provided, a local node id will be created via `randomBytes(20)`.
* `metadata`: Object (Default: {}) Optional satellite data to include
* with the k-bucket. `metadata` property is guaranteed not be altered by,
* it is provided as an explicit container for users of k-bucket to store
* implementation-specific data.
* `numberOfNodesPerKBucket`: Integer (Default: 20) The number of nodes
* that a k-bucket can contain before being full or split.
* `numberOfNodesToPing`: Integer (Default: 3) The number of nodes to
* ping when a bucket that should not be split becomes full. KBucket will
* emit a `ping` event that contains `numberOfNodesToPing` nodes that have
* not been contacted the longest.
*
* @param {Object=} options optional
*/
this.localNodeId = options.localNodeId || window.crypto.getRandomValues(new Uint8Array(20))
this.numberOfNodesPerKBucket = options.numberOfNodesPerKBucket || 20
this.numberOfNodesToPing = options.numberOfNodesToPing || 3
this.distance = options.distance || this.distance
// use an arbiter from options or vectorClock arbiter by default
this.arbiter = options.arbiter || this.arbiter
this.metadata = Object.assign({}, options.metadata)
ensureInt8('option.localNodeId as parameter 1', this.localNodeId)
this.root = createNode()
/**
* Default arbiter function for contacts with the same id. Uses
* contact.vectorClock to select which contact to update the k-bucket with.
* Contact with larger vectorClock field will be selected. If vectorClock is
* the same, candidat will be selected.
*
* @param {Object} incumbent Contact currently stored in the k-bucket.
* @param {Object} candidate Contact being added to the k-bucket.
* @return {Object} Contact to updated the k-bucket with.
*/
this.arbiter = function (incumbent, candidate) {
return incumbent.vectorClock > candidate.vectorClock ? incumbent : candidate
}
/**
* Default distance function. Finds the XOR
* distance between firstId and secondId.
*
* @param {Uint8Array} firstId Uint8Array containing first id.
* @param {Uint8Array} secondId Uint8Array containing second id.
* @return {Number} Integer The XOR distance between firstId
* and secondId.
*/
this.distance = function (firstId, secondId) {
let distance = 0
let i = 0
const min = Math.min(firstId.length, secondId.length)
const max = Math.max(firstId.length, secondId.length)
for (; i < min; ++i) {
distance = distance * 256 + (firstId[i] ^ secondId[i])
}
for (; i < max; ++i) distance = distance * 256 + 255
return distance
}
/**
* Adds a contact to the k-bucket.
*
* @param {Object} contact the contact object to add
*/
this.add = function (contact) {
ensureInt8('contact.id', (contact || {}).id)
let bitIndex = 0
let node = this.root
while (node.contacts === null) {
// this is not a leaf node but an inner node with 'low' and 'high'
// branches; we will check the appropriate bit of the identifier and
// delegate to the appropriate node for further processing
node = this._determineNode(node, contact.id, bitIndex++)
}
// check if the contact already exists
const index = this._indexOf(node, contact.id)
if (index >= 0) {
this._update(node, index, contact)
return this
}
if (node.contacts.length < this.numberOfNodesPerKBucket) {
node.contacts.push(contact)
reactor.dispatchEvent('added', contact)
return this
}
// the bucket is full
if (node.dontSplit) {
// we are not allowed to split the bucket
// we need to ping the first this.numberOfNodesToPing
// in order to determine if they are alive
// only if one of the pinged nodes does not respond, can the new contact
// be added (this prevents DoS flodding with new invalid contacts)
reactor.dispatchEvent('bucket_full', {1: node.contacts.slice(0, this.numberOfNodesToPing),2: contact})
return this
}
this._split(node, bitIndex)
return this.add(contact)
}
/**
* Get the n closest contacts to the provided node id. "Closest" here means:
* closest according to the XOR metric of the contact node id.
*
* @param {Uint8Array} id Contact node id
* @param {Number=} n Integer (Default: Infinity) The maximum number of
* closest contacts to return
* @return {Array} Array Maximum of n closest contacts to the node id
*/
this.closest = function (id, n = Infinity) {
ensureInt8('id', id)
if ((!Number.isInteger(n) && n !== Infinity) || n <= 0) {
throw new TypeError('n is not positive number')
}
let contacts = []
for (let nodes = [this.root], bitIndex = 0; nodes.length > 0 && contacts.length < n;) {
const node = nodes.pop()
if (node.contacts === null) {
const detNode = this._determineNode(node, id, bitIndex++)
nodes.push(node.left === detNode ? node.right : node.left)
nodes.push(detNode)
} else {
contacts = contacts.concat(node.contacts)
}
}
return contacts
.map(a => [this.distance(a.id, id), a])
.sort((a, b) => a[0] - b[0])
.slice(0, n)
.map(a => a[1])
}
/**
* Counts the total number of contacts in the tree.
*
* @return {Number} The number of contacts held in the tree
*/
this.count = function () {
// return this.toArray().length
let count = 0
for (const nodes = [this.root]; nodes.length > 0;) {
const node = nodes.pop()
if (node.contacts === null) nodes.push(node.right, node.left)
else count += node.contacts.length
}
return count
}
/**
* Determines whether the id at the bitIndex is 0 or 1.
* Return left leaf if `id` at `bitIndex` is 0, right leaf otherwise
*
* @param {Object} node internal object that has 2 leafs: left and right
* @param {Uint8Array} id Id to compare localNodeId with.
* @param {Number} bitIndex Integer (Default: 0) The bit index to which bit
* to check in the id Uint8Array.
* @return {Object} left leaf if id at bitIndex is 0, right leaf otherwise.
*/
this._determineNode = function (node, id, bitIndex) {
// *NOTE* remember that id is a Uint8Array and has granularity of
// bytes (8 bits), whereas the bitIndex is the bit index (not byte)
// id's that are too short are put in low bucket (1 byte = 8 bits)
// (bitIndex >> 3) finds how many bytes the bitIndex describes
// bitIndex % 8 checks if we have extra bits beyond byte multiples
// if number of bytes is <= no. of bytes described by bitIndex and there
// are extra bits to consider, this means id has less bits than what
// bitIndex describes, id therefore is too short, and will be put in low
// bucket
const bytesDescribedByBitIndex = bitIndex >> 3
const bitIndexWithinByte = bitIndex % 8
if ((id.length <= bytesDescribedByBitIndex) && (bitIndexWithinByte !== 0)) {
return node.left
}
const byteUnderConsideration = id[bytesDescribedByBitIndex]
// byteUnderConsideration is an integer from 0 to 255 represented by 8 bits
// where 255 is 11111111 and 0 is 00000000
// in order to find out whether the bit at bitIndexWithinByte is set
// we construct (1 << (7 - bitIndexWithinByte)) which will consist
// of all bits being 0, with only one bit set to 1
// for example, if bitIndexWithinByte is 3, we will construct 00010000 by
// (1 << (7 - 3)) -> (1 << 4) -> 16
if (byteUnderConsideration & (1 << (7 - bitIndexWithinByte))) {
return node.right
}
return node.left
}
/**
* Get a contact by its exact ID.
* If this is a leaf, loop through the bucket contents and return the correct
* contact if we have it or null if not. If this is an inner node, determine
* which branch of the tree to traverse and repeat.
*
* @param {Uint8Array} id The ID of the contact to fetch.
* @return {Object|Null} The contact if available, otherwise null
*/
this.get = function (id) {
ensureInt8('id', id)
let bitIndex = 0
let node = this.root
while (node.contacts === null) {
node = this._determineNode(node, id, bitIndex++)
}
// index of uses contact id for matching
const index = this._indexOf(node, id)
return index >= 0 ? node.contacts[index] : null
}
/**
* Returns the index of the contact with provided
* id if it exists, returns -1 otherwise.
*
* @param {Object} node internal object that has 2 leafs: left and right
* @param {Uint8Array} id Contact node id.
* @return {Number} Integer Index of contact with provided id if it
* exists, -1 otherwise.
*/
this._indexOf = function (node, id) {
for (let i = 0; i < node.contacts.length; ++i) {
if (arrayEquals(node.contacts[i].id, id)) return i
}
return -1
}
/**
* Removes contact with the provided id.
*
* @param {Uint8Array} id The ID of the contact to remove.
* @return {Object} The k-bucket itself.
*/
this.remove = function (id) {
ensureInt8('the id as parameter 1', id)
let bitIndex = 0
let node = this.root
while (node.contacts === null) {
node = this._determineNode(node, id, bitIndex++)
}
const index = this._indexOf(node, id)
if (index >= 0) {
const contact = node.contacts.splice(index, 1)[0]
reactor.dispatchEvent('removed', contact)
}
return this
}
/**
* Splits the node, redistributes contacts to the new nodes, and marks the
* node that was split as an inner node of the binary tree of nodes by
* setting this.root.contacts = null
*
* @param {Object} node node for splitting
* @param {Number} bitIndex the bitIndex to which byte to check in the
* Uint8Array for navigating the binary tree
*/
this._split = function (node, bitIndex) {
node.left = createNode()
node.right = createNode()
// redistribute existing contacts amongst the two newly created nodes
for (const contact of node.contacts) {
this._determineNode(node, contact.id, bitIndex).contacts.push(contact)
}
node.contacts = null // mark as inner tree node
// don't split the "far away" node
// we check where the local node would end up and mark the other one as
// "dontSplit" (i.e. "far away")
const detNode = this._determineNode(node, this.localNodeId, bitIndex)
const otherNode = node.left === detNode ? node.right : node.left
otherNode.dontSplit = true
}
/**
* Returns all the contacts contained in the tree as an array.
* If this is a leaf, return a copy of the bucket. `slice` is used so that we
* don't accidentally leak an internal reference out that might be
* accidentally misused. If this is not a leaf, return the union of the low
* and high branches (themselves also as arrays).
*
* @return {Array} All of the contacts in the tree, as an array
*/
this.toArray = function () {
let result = []
for (const nodes = [this.root]; nodes.length > 0;) {
const node = nodes.pop()
if (node.contacts === null) nodes.push(node.right, node.left)
else result = result.concat(node.contacts)
}
return result
}
/**
* Updates the contact selected by the arbiter.
* If the selection is our old contact and the candidate is some new contact
* then the new contact is abandoned (not added).
* If the selection is our old contact and the candidate is our old contact
* then we are refreshing the contact and it is marked as most recently
* contacted (by being moved to the right/end of the bucket array).
* If the selection is our new contact, the old contact is removed and the new
* contact is marked as most recently contacted.
*
* @param {Object} node internal object that has 2 leafs: left and right
* @param {Number} index the index in the bucket where contact exists
* (index has already been computed in a previous
* calculation)
* @param {Object} contact The contact object to update.
*/
this._update = function (node, index, contact) {
// sanity check
if (!arrayEquals(node.contacts[index].id, contact.id)) {
throw new Error('wrong index for _update')
}
const incumbent = node.contacts[index]
/***************Change made by Abhishek*************/
const selection = this.arbiter(incumbent, contact)
//const selection = localbitcoinplusplus.kademlia.arbiter(incumbent, contact);
// if the selection is our old contact and the candidate is some new
// contact, then there is nothing to do
if (selection === incumbent && incumbent !== contact) return
node.contacts.splice(index, 1) // remove old contact
node.contacts.push(selection) // add more recent contact version
/***************Change made by Abhishek*************/
reactor.dispatchEvent('updated', {
...incumbent,
...selection
})
//reactor.dispatchEvent('updated', incumbent.concat(selection))
}
}
kBucketObj = {
decodeBase58Address: function (address) {
let k = bitjs.Base58.decode(address)
k.shift()
k.splice(-4, 4)
return Crypto.util.bytesToHex(k)
},
launchKBucket: function() {
return new Promise((resolve, reject)=>{
try {
//const master_flo_pubKey = localbitcoinplusplus.master_configurations.masterFLOPubKey;
const master_flo_addr = adminID;
const SuKBucketId = this.floIdToKbucketId(master_flo_addr);
const SukbOptions = { localNodeId: SuKBucketId }
supernodeKBucket = new BuildKBucket(SukbOptions);
var SNArray = Array.from(superNodeList);
for(var i=0; i<SNArray.length ; i++)
this.addNewUserNodeInKbucket(SNArray[i],supernodeKBucket)
resolve('SuperNode KBucket formed');
} catch (error) {
reject(error);
}
});
},
launchSupernodesKBucket: function() {
localbitcoinplusplus.master_configurations.supernodesPubKeys.map(pubKey=>{
return new Promise((resolve, reject)=>{
try {
let flo_id = bitjs.pubkey2address(pubKey);
let kname = `SKBucket_${pubKey}`;
const KBucketId = this.floIdToKbucketId(flo_id)
const kbOptions = { localNodeId: KBucketId }
window[kname] = new BuildKBucket(kbOptions);
resolve(true);
} catch (error) {
reject(error);
}
})
})
},
addContact: function (id, floID, KB=supernodeKBucket) {
const contact = {
id: id,
floID: floID
};
KB.add(contact)
},
addNewUserNodeInKbucket: function(address, KB=supernodeKBucket) {
let decodedId = address;
try {
decodedId = this.floIdToKbucketId(address);
} catch(e) {
decodedId = address;
}
const addNewUserNode = this.addContact(decodedId, address, KB);
return {decodedId:decodedId, address:address};
},
floIdToKbucketId: function (address) {
const decodedId = this.decodeBase58Address(address);
const nodeIdBigInt = new BigInteger(decodedId, 16);
const nodeIdBytes = nodeIdBigInt.toByteArrayUnsigned();
const nodeIdNewInt8Array = new Uint8Array(nodeIdBytes);
return nodeIdNewInt8Array;
},
arbiter: function (incumbent, candidate) {
// we create a new object so that our selection is guaranteed to replace
// the incumbent
const merged = {
id: incumbent.id, // incumbent.id === candidate.id within an arbiter
data: incumbent.data
}
Object.keys(candidate.data).forEach(workerNodeId => {
merged.data[workerNodeId] = candidate.data[workerNodeId];
})
return merged;
},
newBase64DiscoverId: function (pubKey) {
let pubKeyBytes = Crypto.util.hexToBytes(pubKey);
return Crypto.util.bytesToBase64(pubKeyBytes);
},
restoreKbucket: function(flo_addr, KB=KBucket) {
return new Promise((resolve, reject)=>{
readAllDB('kBucketStore')
.then(dbObject => {
if (typeof dbObject=="object") {
let su_flo_addr_array = localbitcoinplusplus.master_configurations.supernodesPubKeys
.map(pubk=>bitjs.pubkey2address(pubk));
// Prevent supernode to re-added in kbucket
dbObject
.filter(f=>!su_flo_addr_array.includes(f.data.id))
.map(dbObj=>{
this.addNewUserNodeInKbucket(flo_addr, dbObj.data, KB);
});
} else {
reject(`Failed to restore kBucket.`);
}
resolve(dbObject);
});
})
},
restoreSupernodeKBucket: function() {
return new Promise((resolve, reject)=>{
const supernodeSeeds = localbitcoinplusplus.master_configurations.supernodeSeeds;
if (typeof supernodeSeeds !== "object") reject("Failed to get supernode seeds.");
let supernodeSeedsObj = JSON.parse(supernodeSeeds);
Object.entries(supernodeSeedsObj).map(seedObj=>{
let kbuck = this.addNewUserNodeInKbucket(seedObj[1].kbucketId,
{ id: seedObj[1].kbucketId }, supernodeKBucket);
});
resolve(true);
})
},
updateClosestSupernodeSeeds: function(flo_addr) {
return new Promise(async (resolve, reject) => {
await removeAllinDB('myClosestSupernodes');
let nearestSupernodeAddresslist = await this.addClosestSupernodeInDB(flo_addr);
nearestSupernodeAddresslist.map((nearestSupernodeAddress, index)=>{
updateinDB('myClosestSupernodes', {
id: index+1,
ip: nearestSupernodeAddress.ip,
port: nearestSupernodeAddress.port,
trader_flo_address: nearestSupernodeAddress.kbucketId,
is_live: null
}).then(updatedClosestSupernodes=>{
readAllDB('myClosestSupernodes').then(nearestSupernodeAddresslist=>{
showMessage(`INFO: Updated closest supernodes list successfully.`);
resolve(nearestSupernodeAddresslist);
});
});
});
});
},
getSupernodeSeed: function (flo_addr) {
return new Promise(async (resolve, reject) => {
let nearestSupernodeAddresslist = await readAllDB('myClosestSupernodes');
if (nearestSupernodeAddresslist.length<1) {
nearestSupernodeAddresslist = await this.updateClosestSupernodeSeeds(flo_addr);
}
resolve(nearestSupernodeAddresslist);
});
},
isNodePresentInMyKbucket: function(flo_id, KB=KBucket) {
return new Promise((resolve, reject)=>{
let kArray = KB.toArray();
let kArrayFloIds = kArray.map(k=>k.data.id);
if (kArrayFloIds.includes(flo_id)) {
resolve(true);
} else {
reject(false);
}
});
},
determineClosestSupernode: function(flo_addr="", n=1, KB=supernodeKBucket, su="") {
return new Promise((resolve, reject)=>{
let msg = ``;
if (typeof supernodeKBucket !== "object") {
msg = `ERROR: Supernode KBucket not found.`;
showMessage(msg);
reject(msg);
return false;
}
if (su.length>0) {
try {
let closestSupernodeMasterList = supernodeKBucket.closest(supernodeKBucket.localNodeId);
const index = closestSupernodeMasterList.findIndex(f=>f.data.id==su);
let tail = closestSupernodeMasterList.splice(0, index);
const newClosestSupernodeMasterList = closestSupernodeMasterList.concat(tail);
resolve(newClosestSupernodeMasterList);
return true;
} catch (error) {
reject(error);
}
return false;
}
try {
if(flo_addr.length < 0) {
showMessage(`WARNING: No Flo Id provided to determine closest Supenode.`);
return;
}
let isFloIdUint8 = flo_addr instanceof Uint8Array;
if (!isFloIdUint8) {
flo_addr = this.floIdToKbucketId(flo_addr);
}
const closestSupernode = supernodeKBucket.closest(flo_addr, n);
resolve(closestSupernode);
return true;
} catch (error) {
showMessage(error);
reject(error);
return false;
}
})
}
}