3564 lines
126 KiB
HTML
3564 lines
126 KiB
HTML
<!DOCTYPE html>
|
|
<html>
|
|
<head>
|
|
</head>
|
|
<body>
|
|
|
|
<h1>FLO</h1>
|
|
<label for="getBal_addr">Enter sender address : </label>
|
|
<input type="text" id="getBal_addr">
|
|
<button id="getBal_btn">Get Balance</button>
|
|
<div id="dispBal"></div>
|
|
Enter receiver Address : <input type="text" id="receiver">
|
|
<h2>Enter the FLO Data</h2>
|
|
<textarea rows="15" cols="70" id="flotextdata"></textarea><br/>
|
|
<button id="sendBtn" onclick="sendTransaction()" disabled>Send</button>
|
|
|
|
|
|
<!-- SHA1 -->
|
|
<script type="text/javascript">
|
|
|
|
//Adding SHA1 to fix basic PKBDF2
|
|
/*
|
|
* Crypto-JS v2.5.4
|
|
* http://code.google.com/p/crypto-js/
|
|
* (c) 2009-2012 by Jeff Mott. All rights reserved.
|
|
* http://code.google.com/p/crypto-js/wiki/License
|
|
*/
|
|
(function () {
|
|
|
|
// Shortcuts
|
|
var C = Crypto,
|
|
util = C.util,
|
|
charenc = C.charenc,
|
|
UTF8 = charenc.UTF8,
|
|
Binary = charenc.Binary;
|
|
|
|
// Public API
|
|
var SHA1 = C.SHA1 = function (message, options) {
|
|
var digestbytes = util.wordsToBytes(SHA1._sha1(message));
|
|
return options && options.asBytes ? digestbytes :
|
|
options && options.asString ? Binary.bytesToString(digestbytes) :
|
|
util.bytesToHex(digestbytes);
|
|
};
|
|
|
|
// The core
|
|
SHA1._sha1 = function (message) {
|
|
|
|
// Convert to byte array
|
|
if (message.constructor == String) message = UTF8.stringToBytes(message);
|
|
/* else, assume byte array already */
|
|
|
|
var m = util.bytesToWords(message),
|
|
l = message.length * 8,
|
|
w = [],
|
|
H0 = 1732584193,
|
|
H1 = -271733879,
|
|
H2 = -1732584194,
|
|
H3 = 271733878,
|
|
H4 = -1009589776;
|
|
|
|
// Padding
|
|
m[l >> 5] |= 0x80 << (24 - l % 32);
|
|
m[((l + 64 >>> 9) << 4) + 15] = l;
|
|
|
|
for (var i = 0; i < m.length; i += 16) {
|
|
|
|
var a = H0,
|
|
b = H1,
|
|
c = H2,
|
|
d = H3,
|
|
e = H4;
|
|
|
|
for (var j = 0; j < 80; j++) {
|
|
|
|
if (j < 16) w[j] = m[i + j];
|
|
else {
|
|
var n = w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16];
|
|
w[j] = (n << 1) | (n >>> 31);
|
|
}
|
|
|
|
var t = ((H0 << 5) | (H0 >>> 27)) + H4 + (w[j] >>> 0) + (
|
|
j < 20 ? (H1 & H2 | ~H1 & H3) + 1518500249 :
|
|
j < 40 ? (H1 ^ H2 ^ H3) + 1859775393 :
|
|
j < 60 ? (H1 & H2 | H1 & H3 | H2 & H3) - 1894007588 :
|
|
(H1 ^ H2 ^ H3) - 899497514);
|
|
|
|
H4 = H3;
|
|
H3 = H2;
|
|
H2 = (H1 << 30) | (H1 >>> 2);
|
|
H1 = H0;
|
|
H0 = t;
|
|
|
|
}
|
|
|
|
H0 += a;
|
|
H1 += b;
|
|
H2 += c;
|
|
H3 += d;
|
|
H4 += e;
|
|
|
|
}
|
|
|
|
return [H0, H1, H2, H3, H4];
|
|
|
|
};
|
|
|
|
// Package private blocksize
|
|
SHA1._blocksize = 16;
|
|
|
|
SHA1._digestsize = 20;
|
|
|
|
})();
|
|
</script>
|
|
|
|
<!-- HMAC -->
|
|
<script type="text/javascript">
|
|
//Added to make PKBDF2 work
|
|
/*
|
|
* Crypto-JS v2.5.4
|
|
* http://code.google.com/p/crypto-js/
|
|
* (c) 2009-2012 by Jeff Mott. All rights reserved.
|
|
* http://code.google.com/p/crypto-js/wiki/License
|
|
*/
|
|
(function () {
|
|
|
|
// Shortcuts
|
|
var C = Crypto,
|
|
util = C.util,
|
|
charenc = C.charenc,
|
|
UTF8 = charenc.UTF8,
|
|
Binary = charenc.Binary;
|
|
|
|
C.HMAC = function (hasher, message, key, options) {
|
|
|
|
// Convert to byte arrays
|
|
if (message.constructor == String) message = UTF8.stringToBytes(message);
|
|
if (key.constructor == String) key = UTF8.stringToBytes(key);
|
|
/* else, assume byte arrays already */
|
|
|
|
// Allow arbitrary length keys
|
|
if (key.length > hasher._blocksize * 4)
|
|
key = hasher(key, {
|
|
asBytes: true
|
|
});
|
|
|
|
// XOR keys with pad constants
|
|
var okey = key.slice(0),
|
|
ikey = key.slice(0);
|
|
for (var i = 0; i < hasher._blocksize * 4; i++) {
|
|
okey[i] ^= 0x5C;
|
|
ikey[i] ^= 0x36;
|
|
}
|
|
|
|
var hmacbytes = hasher(okey.concat(hasher(ikey.concat(message), {
|
|
asBytes: true
|
|
})), {
|
|
asBytes: true
|
|
});
|
|
|
|
return options && options.asBytes ? hmacbytes :
|
|
options && options.asString ? Binary.bytesToString(hmacbytes) :
|
|
util.bytesToHex(hmacbytes);
|
|
|
|
};
|
|
|
|
})();
|
|
</script>
|
|
|
|
|
|
<script>
|
|
//crypto-sha256-hmac.js
|
|
/*
|
|
* Crypto-JS v2.5.4
|
|
* http://code.google.com/p/crypto-js/
|
|
* (c) 2009-2012 by Jeff Mott. All rights reserved.
|
|
* http://code.google.com/p/crypto-js/wiki/License
|
|
*/
|
|
|
|
function ascii_to_hexa(str) {
|
|
var arr1 = [];
|
|
for (var n = 0, l = str.length; n < l; n++) {
|
|
var hex = Number(str.charCodeAt(n)).toString(16);
|
|
arr1.push(hex);
|
|
}
|
|
return arr1.join('');
|
|
}
|
|
|
|
|
|
(typeof Crypto == "undefined" || !Crypto.util) && function () {
|
|
var d = window.Crypto = {},
|
|
k = d.util = {
|
|
rotl: function (b, a) {
|
|
return b << a | b >>> 32 - a
|
|
},
|
|
rotr: function (b, a) {
|
|
return b << 32 - a | b >>> a
|
|
},
|
|
endian: function (b) {
|
|
if (b.constructor == Number) return k.rotl(b, 8) & 16711935 | k.rotl(b, 24) & 4278255360;
|
|
for (var a = 0; a < b.length; a++) b[a] = k.endian(b[a]);
|
|
return b
|
|
},
|
|
randomBytes: function (b) {
|
|
for (var a = []; b > 0; b--) a.push(Math.floor(Math.random() * 256));
|
|
return a
|
|
},
|
|
bytesToWords: function (b) {
|
|
for (var a = [], c = 0, e = 0; c < b.length; c++, e += 8) a[e >>> 5] |= (b[c] & 255) <<
|
|
24 - e % 32;
|
|
return a
|
|
},
|
|
wordsToBytes: function (b) {
|
|
for (var a = [], c = 0; c < b.length * 32; c += 8) a.push(b[c >>> 5] >>> 24 - c % 32 & 255);
|
|
return a
|
|
},
|
|
bytesToHex: function (b) {
|
|
for (var a = [], c = 0; c < b.length; c++) a.push((b[c] >>> 4).toString(16)), a.push((b[c] &
|
|
15).toString(16));
|
|
return a.join("")
|
|
},
|
|
hexToBytes: function (b) {
|
|
for (var a = [], c = 0; c < b.length; c += 2) a.push(parseInt(b.substr(c, 2), 16));
|
|
return a
|
|
},
|
|
bytesToBase64: function (b) {
|
|
for (var a = [], c = 0; c < b.length; c += 3)
|
|
for (var e = b[c] << 16 | b[c + 1] << 8 | b[c + 2], p = 0; p < 4; p++) c * 8 + p * 6 <=
|
|
b.length * 8 ? a.push(
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".charAt(e >>>
|
|
6 * (3 - p) & 63)) : a.push("=");
|
|
return a.join("")
|
|
},
|
|
base64ToBytes: function (b) {
|
|
for (var b = b.replace(/[^A-Z0-9+\/]/ig, ""), a = [], c = 0, e = 0; c < b.length; e = ++c %
|
|
4) e != 0 && a.push(("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
|
|
.indexOf(b.charAt(c - 1)) & Math.pow(2, -2 * e + 8) - 1) << e * 2 |
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".indexOf(b.charAt(
|
|
c)) >>> 6 - e * 2);
|
|
return a
|
|
}
|
|
},
|
|
d = d.charenc = {};
|
|
d.UTF8 = {
|
|
stringToBytes: function (b) {
|
|
return g.stringToBytes(unescape(encodeURIComponent(b)))
|
|
},
|
|
bytesToString: function (b) {
|
|
return decodeURIComponent(escape(g.bytesToString(b)))
|
|
}
|
|
};
|
|
var g = d.Binary = {
|
|
stringToBytes: function (b) {
|
|
for (var a = [], c = 0; c < b.length; c++) a.push(b.charCodeAt(c) & 255);
|
|
return a
|
|
},
|
|
bytesToString: function (b) {
|
|
for (var a = [], c = 0; c < b.length; c++) a.push(String.fromCharCode(b[c]));
|
|
return a.join("")
|
|
}
|
|
}
|
|
}();
|
|
(function () {
|
|
var d = Crypto,
|
|
k = d.util,
|
|
g = d.charenc,
|
|
b = g.UTF8,
|
|
a = g.Binary,
|
|
c = [1116352408, 1899447441, 3049323471, 3921009573, 961987163, 1508970993, 2453635748, 2870763221,
|
|
3624381080, 310598401, 607225278, 1426881987, 1925078388, 2162078206, 2614888103, 3248222580,
|
|
3835390401, 4022224774, 264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986,
|
|
2554220882, 2821834349, 2952996808, 3210313671, 3336571891, 3584528711, 113926993, 338241895,
|
|
666307205, 773529912, 1294757372, 1396182291, 1695183700, 1986661051, 2177026350, 2456956037,
|
|
2730485921,
|
|
2820302411, 3259730800, 3345764771, 3516065817, 3600352804, 4094571909, 275423344, 430227734,
|
|
506948616, 659060556, 883997877, 958139571, 1322822218, 1537002063, 1747873779, 1955562222,
|
|
2024104815, 2227730452, 2361852424, 2428436474, 2756734187, 3204031479, 3329325298
|
|
],
|
|
e = d.SHA256 = function (b, c) {
|
|
var f = k.wordsToBytes(e._sha256(b));
|
|
return c && c.asBytes ? f : c && c.asString ? a.bytesToString(f) : k.bytesToHex(f)
|
|
};
|
|
e._sha256 = function (a) {
|
|
a.constructor == String && (a = b.stringToBytes(a));
|
|
var e = k.bytesToWords(a),
|
|
f = a.length * 8,
|
|
a = [1779033703, 3144134277,
|
|
1013904242, 2773480762, 1359893119, 2600822924, 528734635, 1541459225
|
|
],
|
|
d = [],
|
|
g, m, r, i, n, o, s, t, h, l, j;
|
|
e[f >> 5] |= 128 << 24 - f % 32;
|
|
e[(f + 64 >> 9 << 4) + 15] = f;
|
|
for (t = 0; t < e.length; t += 16) {
|
|
f = a[0];
|
|
g = a[1];
|
|
m = a[2];
|
|
r = a[3];
|
|
i = a[4];
|
|
n = a[5];
|
|
o = a[6];
|
|
s = a[7];
|
|
for (h = 0; h < 64; h++) {
|
|
h < 16 ? d[h] = e[h + t] : (l = d[h - 15], j = d[h - 2], d[h] = ((l << 25 | l >>> 7) ^
|
|
(l << 14 | l >>> 18) ^ l >>> 3) + (d[h - 7] >>> 0) + ((j << 15 | j >>> 17) ^
|
|
(j << 13 | j >>> 19) ^ j >>> 10) + (d[h - 16] >>> 0));
|
|
j = f & g ^ f & m ^ g & m;
|
|
var u = (f << 30 | f >>> 2) ^ (f << 19 | f >>> 13) ^ (f << 10 | f >>> 22);
|
|
l = (s >>> 0) + ((i << 26 | i >>> 6) ^ (i << 21 | i >>> 11) ^ (i << 7 | i >>> 25)) +
|
|
(i & n ^ ~i & o) + c[h] + (d[h] >>> 0);
|
|
j = u + j;
|
|
s = o;
|
|
o = n;
|
|
n = i;
|
|
i = r + l >>> 0;
|
|
r = m;
|
|
m = g;
|
|
g = f;
|
|
f = l + j >>> 0
|
|
}
|
|
a[0] += f;
|
|
a[1] += g;
|
|
a[2] += m;
|
|
a[3] += r;
|
|
a[4] += i;
|
|
a[5] += n;
|
|
a[6] += o;
|
|
a[7] += s
|
|
}
|
|
return a
|
|
};
|
|
e._blocksize = 16;
|
|
e._digestsize = 32
|
|
})();
|
|
(function () {
|
|
var d = Crypto,
|
|
k = d.util,
|
|
g = d.charenc,
|
|
b = g.UTF8,
|
|
a = g.Binary;
|
|
d.HMAC = function (c, e, d, g) {
|
|
e.constructor == String && (e = b.stringToBytes(e));
|
|
d.constructor == String && (d = b.stringToBytes(d));
|
|
d.length > c._blocksize * 4 && (d = c(d, {
|
|
asBytes: !0
|
|
}));
|
|
for (var f = d.slice(0), d = d.slice(0), q = 0; q < c._blocksize * 4; q++) f[q] ^= 92, d[q] ^=
|
|
54;
|
|
c = c(f.concat(c(d.concat(e), {
|
|
asBytes: !0
|
|
})), {
|
|
asBytes: !0
|
|
});
|
|
return g && g.asBytes ? c : g && g.asString ? a.bytesToString(c) : k.bytesToHex(c)
|
|
}
|
|
})();
|
|
|
|
|
|
|
|
|
|
//ripemd160.js
|
|
/*
|
|
CryptoJS v3.1.2
|
|
code.google.com/p/crypto-js
|
|
(c) 2009-2013 by Jeff Mott. All rights reserved.
|
|
code.google.com/p/crypto-js/wiki/License
|
|
*/
|
|
/** @preserve
|
|
(c) 2012 by Cédric Mesnil. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
|
|
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
// Constants table
|
|
var zl = [
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
|
|
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
|
|
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
|
|
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13
|
|
];
|
|
var zr = [
|
|
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
|
|
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
|
|
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
|
|
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
|
|
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
|
|
];
|
|
var sl = [
|
|
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
|
|
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
|
|
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
|
|
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
|
|
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6
|
|
];
|
|
var sr = [
|
|
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
|
|
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
|
|
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
|
|
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
|
|
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
|
|
];
|
|
|
|
var hl = [0x00000000, 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xA953FD4E];
|
|
var hr = [0x50A28BE6, 0x5C4DD124, 0x6D703EF3, 0x7A6D76E9, 0x00000000];
|
|
|
|
var bytesToWords = function (bytes) {
|
|
var words = [];
|
|
for (var i = 0, b = 0; i < bytes.length; i++, b += 8) {
|
|
words[b >>> 5] |= bytes[i] << (24 - b % 32);
|
|
}
|
|
return words;
|
|
};
|
|
|
|
var wordsToBytes = function (words) {
|
|
var bytes = [];
|
|
for (var b = 0; b < words.length * 32; b += 8) {
|
|
bytes.push((words[b >>> 5] >>> (24 - b % 32)) & 0xFF);
|
|
}
|
|
return bytes;
|
|
};
|
|
|
|
var processBlock = function (H, M, offset) {
|
|
|
|
// Swap endian
|
|
for (var i = 0; i < 16; i++) {
|
|
var offset_i = offset + i;
|
|
var M_offset_i = M[offset_i];
|
|
|
|
// Swap
|
|
M[offset_i] = (
|
|
(((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) |
|
|
(((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00)
|
|
);
|
|
}
|
|
|
|
// Working variables
|
|
var al, bl, cl, dl, el;
|
|
var ar, br, cr, dr, er;
|
|
|
|
ar = al = H[0];
|
|
br = bl = H[1];
|
|
cr = cl = H[2];
|
|
dr = dl = H[3];
|
|
er = el = H[4];
|
|
// Computation
|
|
var t;
|
|
for (var i = 0; i < 80; i += 1) {
|
|
t = (al + M[offset + zl[i]]) | 0;
|
|
if (i < 16) {
|
|
t += f1(bl, cl, dl) + hl[0];
|
|
} else if (i < 32) {
|
|
t += f2(bl, cl, dl) + hl[1];
|
|
} else if (i < 48) {
|
|
t += f3(bl, cl, dl) + hl[2];
|
|
} else if (i < 64) {
|
|
t += f4(bl, cl, dl) + hl[3];
|
|
} else { // if (i<80) {
|
|
t += f5(bl, cl, dl) + hl[4];
|
|
}
|
|
t = t | 0;
|
|
t = rotl(t, sl[i]);
|
|
t = (t + el) | 0;
|
|
al = el;
|
|
el = dl;
|
|
dl = rotl(cl, 10);
|
|
cl = bl;
|
|
bl = t;
|
|
|
|
t = (ar + M[offset + zr[i]]) | 0;
|
|
if (i < 16) {
|
|
t += f5(br, cr, dr) + hr[0];
|
|
} else if (i < 32) {
|
|
t += f4(br, cr, dr) + hr[1];
|
|
} else if (i < 48) {
|
|
t += f3(br, cr, dr) + hr[2];
|
|
} else if (i < 64) {
|
|
t += f2(br, cr, dr) + hr[3];
|
|
} else { // if (i<80) {
|
|
t += f1(br, cr, dr) + hr[4];
|
|
}
|
|
t = t | 0;
|
|
t = rotl(t, sr[i]);
|
|
t = (t + er) | 0;
|
|
ar = er;
|
|
er = dr;
|
|
dr = rotl(cr, 10);
|
|
cr = br;
|
|
br = t;
|
|
}
|
|
// Intermediate hash value
|
|
t = (H[1] + cl + dr) | 0;
|
|
H[1] = (H[2] + dl + er) | 0;
|
|
H[2] = (H[3] + el + ar) | 0;
|
|
H[3] = (H[4] + al + br) | 0;
|
|
H[4] = (H[0] + bl + cr) | 0;
|
|
H[0] = t;
|
|
};
|
|
|
|
function f1(x, y, z) {
|
|
return ((x) ^ (y) ^ (z));
|
|
}
|
|
|
|
function f2(x, y, z) {
|
|
return (((x) & (y)) | ((~x) & (z)));
|
|
}
|
|
|
|
function f3(x, y, z) {
|
|
return (((x) | (~(y))) ^ (z));
|
|
}
|
|
|
|
function f4(x, y, z) {
|
|
return (((x) & (z)) | ((y) & (~(z))));
|
|
}
|
|
|
|
function f5(x, y, z) {
|
|
return ((x) ^ ((y) | (~(z))));
|
|
}
|
|
|
|
function rotl(x, n) {
|
|
return (x << n) | (x >>> (32 - n));
|
|
}
|
|
|
|
function ripemd160(message) {
|
|
var H = [0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0];
|
|
|
|
var m = bytesToWords(message);
|
|
|
|
var nBitsLeft = message.length * 8;
|
|
var nBitsTotal = message.length * 8;
|
|
|
|
// Add padding
|
|
m[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
|
|
m[(((nBitsLeft + 64) >>> 9) << 4) + 14] = (
|
|
(((nBitsTotal << 8) | (nBitsTotal >>> 24)) & 0x00ff00ff) |
|
|
(((nBitsTotal << 24) | (nBitsTotal >>> 8)) & 0xff00ff00)
|
|
);
|
|
|
|
for (var i = 0; i < m.length; i += 16) {
|
|
processBlock(H, m, i);
|
|
}
|
|
|
|
// Swap endian
|
|
for (var i = 0; i < 5; i++) {
|
|
// Shortcut
|
|
var H_i = H[i];
|
|
|
|
// Swap
|
|
H[i] = (((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) |
|
|
(((H_i << 24) | (H_i >>> 8)) & 0xff00ff00);
|
|
}
|
|
|
|
var digestbytes = wordsToBytes(H);
|
|
return digestbytes;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//jsbn.js
|
|
// Copyright (c) 2005 Tom Wu
|
|
// All Rights Reserved.
|
|
// See "LICENSE" for details.
|
|
|
|
// Basic JavaScript BN library - subset useful for RSA encryption.
|
|
|
|
// Bits per digit
|
|
var dbits;
|
|
|
|
// JavaScript engine analysis
|
|
var canary = 0xdeadbeefcafe;
|
|
var j_lm = ((canary & 0xffffff) == 0xefcafe);
|
|
|
|
// (public) Constructor
|
|
function BigInteger(a, b, c) {
|
|
if (!(this instanceof BigInteger)) {
|
|
return new BigInteger(a, b, c);
|
|
}
|
|
|
|
if (a != null) {
|
|
if ("number" == typeof a) this.fromNumber(a, b, c);
|
|
else if (b == null && "string" != typeof a) this.fromString(a, 256);
|
|
else this.fromString(a, b);
|
|
}
|
|
}
|
|
|
|
var proto = BigInteger.prototype;
|
|
|
|
// return new, unset BigInteger
|
|
function nbi() {
|
|
return new BigInteger(null);
|
|
}
|
|
|
|
// am: Compute w_j += (x*this_i), propagate carries,
|
|
// c is initial carry, returns final carry.
|
|
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
|
|
// We need to select the fastest one that works in this environment.
|
|
|
|
// am1: use a single mult and divide to get the high bits,
|
|
// max digit bits should be 26 because
|
|
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
|
|
function am1(i, x, w, j, c, n) {
|
|
while (--n >= 0) {
|
|
var v = x * this[i++] + w[j] + c;
|
|
c = Math.floor(v / 0x4000000);
|
|
w[j++] = v & 0x3ffffff;
|
|
}
|
|
return c;
|
|
}
|
|
// am2 avoids a big mult-and-extract completely.
|
|
// Max digit bits should be <= 30 because we do bitwise ops
|
|
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
|
|
function am2(i, x, w, j, c, n) {
|
|
var xl = x & 0x7fff,
|
|
xh = x >> 15;
|
|
while (--n >= 0) {
|
|
var l = this[i] & 0x7fff;
|
|
var h = this[i++] >> 15;
|
|
var m = xh * l + h * xl;
|
|
l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
|
|
c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
|
|
w[j++] = l & 0x3fffffff;
|
|
}
|
|
return c;
|
|
}
|
|
// Alternately, set max digit bits to 28 since some
|
|
// browsers slow down when dealing with 32-bit numbers.
|
|
function am3(i, x, w, j, c, n) {
|
|
var xl = x & 0x3fff,
|
|
xh = x >> 14;
|
|
while (--n >= 0) {
|
|
var l = this[i] & 0x3fff;
|
|
var h = this[i++] >> 14;
|
|
var m = xh * l + h * xl;
|
|
l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
|
|
c = (l >> 28) + (m >> 14) + xh * h;
|
|
w[j++] = l & 0xfffffff;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
// wtf?
|
|
BigInteger.prototype.am = am1;
|
|
dbits = 26;
|
|
|
|
/*
|
|
if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
|
|
BigInteger.prototype.am = am2;
|
|
dbits = 30;
|
|
}
|
|
else if(j_lm && (navigator.appName != "Netscape")) {
|
|
BigInteger.prototype.am = am1;
|
|
dbits = 26;
|
|
}
|
|
else { // Mozilla/Netscape seems to prefer am3
|
|
BigInteger.prototype.am = am3;
|
|
dbits = 28;
|
|
}
|
|
*/
|
|
|
|
BigInteger.prototype.DB = dbits;
|
|
BigInteger.prototype.DM = ((1 << dbits) - 1);
|
|
var DV = BigInteger.prototype.DV = (1 << dbits);
|
|
|
|
var BI_FP = 52;
|
|
BigInteger.prototype.FV = Math.pow(2, BI_FP);
|
|
BigInteger.prototype.F1 = BI_FP - dbits;
|
|
BigInteger.prototype.F2 = 2 * dbits - BI_FP;
|
|
|
|
// Digit conversions
|
|
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
|
|
var BI_RC = new Array();
|
|
var rr, vv;
|
|
rr = "0".charCodeAt(0);
|
|
for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
|
|
rr = "a".charCodeAt(0);
|
|
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
|
|
rr = "A".charCodeAt(0);
|
|
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
|
|
|
|
function int2char(n) {
|
|
return BI_RM.charAt(n);
|
|
}
|
|
|
|
function intAt(s, i) {
|
|
var c = BI_RC[s.charCodeAt(i)];
|
|
return (c == null) ? -1 : c;
|
|
}
|
|
|
|
// (protected) copy this to r
|
|
function bnpCopyTo(r) {
|
|
for (var i = this.t - 1; i >= 0; --i) r[i] = this[i];
|
|
r.t = this.t;
|
|
r.s = this.s;
|
|
}
|
|
|
|
// (protected) set from integer value x, -DV <= x < DV
|
|
function bnpFromInt(x) {
|
|
this.t = 1;
|
|
this.s = (x < 0) ? -1 : 0;
|
|
if (x > 0) this[0] = x;
|
|
else if (x < -1) this[0] = x + DV;
|
|
else this.t = 0;
|
|
}
|
|
|
|
// return bigint initialized to value
|
|
function nbv(i) {
|
|
var r = nbi();
|
|
r.fromInt(i);
|
|
return r;
|
|
}
|
|
|
|
// (protected) set from string and radix
|
|
function bnpFromString(s, b) {
|
|
var self = this;
|
|
|
|
var k;
|
|
if (b == 16) k = 4;
|
|
else if (b == 8) k = 3;
|
|
else if (b == 256) k = 8; // byte array
|
|
else if (b == 2) k = 1;
|
|
else if (b == 32) k = 5;
|
|
else if (b == 4) k = 2;
|
|
else {
|
|
self.fromRadix(s, b);
|
|
return;
|
|
}
|
|
self.t = 0;
|
|
self.s = 0;
|
|
var i = s.length,
|
|
mi = false,
|
|
sh = 0;
|
|
while (--i >= 0) {
|
|
var x = (k == 8) ? s[i] & 0xff : intAt(s, i);
|
|
if (x < 0) {
|
|
if (s.charAt(i) == "-") mi = true;
|
|
continue;
|
|
}
|
|
mi = false;
|
|
if (sh == 0)
|
|
self[self.t++] = x;
|
|
else if (sh + k > self.DB) {
|
|
self[self.t - 1] |= (x & ((1 << (self.DB - sh)) - 1)) << sh;
|
|
self[self.t++] = (x >> (self.DB - sh));
|
|
} else
|
|
self[self.t - 1] |= x << sh;
|
|
sh += k;
|
|
if (sh >= self.DB) sh -= self.DB;
|
|
}
|
|
if (k == 8 && (s[0] & 0x80) != 0) {
|
|
self.s = -1;
|
|
if (sh > 0) self[self.t - 1] |= ((1 << (self.DB - sh)) - 1) << sh;
|
|
}
|
|
self.clamp();
|
|
if (mi) BigInteger.ZERO.subTo(self, self);
|
|
}
|
|
|
|
// (protected) clamp off excess high words
|
|
function bnpClamp() {
|
|
var c = this.s & this.DM;
|
|
while (this.t > 0 && this[this.t - 1] == c) --this.t;
|
|
}
|
|
|
|
// (public) return string representation in given radix
|
|
function bnToString(b) {
|
|
var self = this;
|
|
if (self.s < 0) return "-" + self.negate().toString(b);
|
|
var k;
|
|
if (b == 16) k = 4;
|
|
else if (b == 8) k = 3;
|
|
else if (b == 2) k = 1;
|
|
else if (b == 32) k = 5;
|
|
else if (b == 4) k = 2;
|
|
else return self.toRadix(b);
|
|
var km = (1 << k) - 1,
|
|
d, m = false,
|
|
r = "",
|
|
i = self.t;
|
|
var p = self.DB - (i * self.DB) % k;
|
|
if (i-- > 0) {
|
|
if (p < self.DB && (d = self[i] >> p) > 0) {
|
|
m = true;
|
|
r = int2char(d);
|
|
}
|
|
while (i >= 0) {
|
|
if (p < k) {
|
|
d = (self[i] & ((1 << p) - 1)) << (k - p);
|
|
d |= self[--i] >> (p += self.DB - k);
|
|
} else {
|
|
d = (self[i] >> (p -= k)) & km;
|
|
if (p <= 0) {
|
|
p += self.DB;
|
|
--i;
|
|
}
|
|
}
|
|
if (d > 0) m = true;
|
|
if (m) r += int2char(d);
|
|
}
|
|
}
|
|
return m ? r : "0";
|
|
}
|
|
|
|
// (public) -this
|
|
function bnNegate() {
|
|
var r = nbi();
|
|
BigInteger.ZERO.subTo(this, r);
|
|
return r;
|
|
}
|
|
|
|
// (public) |this|
|
|
function bnAbs() {
|
|
return (this.s < 0) ? this.negate() : this;
|
|
}
|
|
|
|
// (public) return + if this > a, - if this < a, 0 if equal
|
|
function bnCompareTo(a) {
|
|
var r = this.s - a.s;
|
|
if (r != 0) return r;
|
|
var i = this.t;
|
|
r = i - a.t;
|
|
if (r != 0) return (this.s < 0) ? -r : r;
|
|
while (--i >= 0)
|
|
if ((r = this[i] - a[i]) != 0) return r;
|
|
return 0;
|
|
}
|
|
|
|
// returns bit length of the integer x
|
|
function nbits(x) {
|
|
var r = 1,
|
|
t;
|
|
if ((t = x >>> 16) != 0) {
|
|
x = t;
|
|
r += 16;
|
|
}
|
|
if ((t = x >> 8) != 0) {
|
|
x = t;
|
|
r += 8;
|
|
}
|
|
if ((t = x >> 4) != 0) {
|
|
x = t;
|
|
r += 4;
|
|
}
|
|
if ((t = x >> 2) != 0) {
|
|
x = t;
|
|
r += 2;
|
|
}
|
|
if ((t = x >> 1) != 0) {
|
|
x = t;
|
|
r += 1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
// (public) return the number of bits in "this"
|
|
function bnBitLength() {
|
|
if (this.t <= 0) return 0;
|
|
return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM));
|
|
}
|
|
|
|
// (protected) r = this << n*DB
|
|
function bnpDLShiftTo(n, r) {
|
|
var i;
|
|
for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i];
|
|
for (i = n - 1; i >= 0; --i) r[i] = 0;
|
|
r.t = this.t + n;
|
|
r.s = this.s;
|
|
}
|
|
|
|
// (protected) r = this >> n*DB
|
|
function bnpDRShiftTo(n, r) {
|
|
for (var i = n; i < this.t; ++i) r[i - n] = this[i];
|
|
r.t = Math.max(this.t - n, 0);
|
|
r.s = this.s;
|
|
}
|
|
|
|
// (protected) r = this << n
|
|
function bnpLShiftTo(n, r) {
|
|
var self = this;
|
|
var bs = n % self.DB;
|
|
var cbs = self.DB - bs;
|
|
var bm = (1 << cbs) - 1;
|
|
var ds = Math.floor(n / self.DB),
|
|
c = (self.s << bs) & self.DM,
|
|
i;
|
|
for (i = self.t - 1; i >= 0; --i) {
|
|
r[i + ds + 1] = (self[i] >> cbs) | c;
|
|
c = (self[i] & bm) << bs;
|
|
}
|
|
for (i = ds - 1; i >= 0; --i) r[i] = 0;
|
|
r[ds] = c;
|
|
r.t = self.t + ds + 1;
|
|
r.s = self.s;
|
|
r.clamp();
|
|
}
|
|
|
|
// (protected) r = this >> n
|
|
function bnpRShiftTo(n, r) {
|
|
var self = this;
|
|
r.s = self.s;
|
|
var ds = Math.floor(n / self.DB);
|
|
if (ds >= self.t) {
|
|
r.t = 0;
|
|
return;
|
|
}
|
|
var bs = n % self.DB;
|
|
var cbs = self.DB - bs;
|
|
var bm = (1 << bs) - 1;
|
|
r[0] = self[ds] >> bs;
|
|
for (var i = ds + 1; i < self.t; ++i) {
|
|
r[i - ds - 1] |= (self[i] & bm) << cbs;
|
|
r[i - ds] = self[i] >> bs;
|
|
}
|
|
if (bs > 0) r[self.t - ds - 1] |= (self.s & bm) << cbs;
|
|
r.t = self.t - ds;
|
|
r.clamp();
|
|
}
|
|
|
|
// (protected) r = this - a
|
|
function bnpSubTo(a, r) {
|
|
var self = this;
|
|
var i = 0,
|
|
c = 0,
|
|
m = Math.min(a.t, self.t);
|
|
while (i < m) {
|
|
c += self[i] - a[i];
|
|
r[i++] = c & self.DM;
|
|
c >>= self.DB;
|
|
}
|
|
if (a.t < self.t) {
|
|
c -= a.s;
|
|
while (i < self.t) {
|
|
c += self[i];
|
|
r[i++] = c & self.DM;
|
|
c >>= self.DB;
|
|
}
|
|
c += self.s;
|
|
} else {
|
|
c += self.s;
|
|
while (i < a.t) {
|
|
c -= a[i];
|
|
r[i++] = c & self.DM;
|
|
c >>= self.DB;
|
|
}
|
|
c -= a.s;
|
|
}
|
|
r.s = (c < 0) ? -1 : 0;
|
|
if (c < -1) r[i++] = self.DV + c;
|
|
else if (c > 0) r[i++] = c;
|
|
r.t = i;
|
|
r.clamp();
|
|
}
|
|
|
|
// (protected) r = this * a, r != this,a (HAC 14.12)
|
|
// "this" should be the larger one if appropriate.
|
|
function bnpMultiplyTo(a, r) {
|
|
var x = this.abs(),
|
|
y = a.abs();
|
|
var i = x.t;
|
|
r.t = i + y.t;
|
|
while (--i >= 0) r[i] = 0;
|
|
for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
|
|
r.s = 0;
|
|
r.clamp();
|
|
if (this.s != a.s) BigInteger.ZERO.subTo(r, r);
|
|
}
|
|
|
|
// (protected) r = this^2, r != this (HAC 14.16)
|
|
function bnpSquareTo(r) {
|
|
var x = this.abs();
|
|
var i = r.t = 2 * x.t;
|
|
while (--i >= 0) r[i] = 0;
|
|
for (i = 0; i < x.t - 1; ++i) {
|
|
var c = x.am(i, x[i], r, 2 * i, 0, 1);
|
|
if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) {
|
|
r[i + x.t] -= x.DV;
|
|
r[i + x.t + 1] = 1;
|
|
}
|
|
}
|
|
if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
|
|
r.s = 0;
|
|
r.clamp();
|
|
}
|
|
|
|
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
|
|
// r != q, this != m. q or r may be null.
|
|
function bnpDivRemTo(m, q, r) {
|
|
var self = this;
|
|
var pm = m.abs();
|
|
if (pm.t <= 0) return;
|
|
var pt = self.abs();
|
|
if (pt.t < pm.t) {
|
|
if (q != null) q.fromInt(0);
|
|
if (r != null) self.copyTo(r);
|
|
return;
|
|
}
|
|
if (r == null) r = nbi();
|
|
var y = nbi(),
|
|
ts = self.s,
|
|
ms = m.s;
|
|
var nsh = self.DB - nbits(pm[pm.t - 1]); // normalize modulus
|
|
if (nsh > 0) {
|
|
pm.lShiftTo(nsh, y);
|
|
pt.lShiftTo(nsh, r);
|
|
} else {
|
|
pm.copyTo(y);
|
|
pt.copyTo(r);
|
|
}
|
|
var ys = y.t;
|
|
var y0 = y[ys - 1];
|
|
if (y0 == 0) return;
|
|
var yt = y0 * (1 << self.F1) + ((ys > 1) ? y[ys - 2] >> self.F2 : 0);
|
|
var d1 = self.FV / yt,
|
|
d2 = (1 << self.F1) / yt,
|
|
e = 1 << self.F2;
|
|
var i = r.t,
|
|
j = i - ys,
|
|
t = (q == null) ? nbi() : q;
|
|
y.dlShiftTo(j, t);
|
|
if (r.compareTo(t) >= 0) {
|
|
r[r.t++] = 1;
|
|
r.subTo(t, r);
|
|
}
|
|
BigInteger.ONE.dlShiftTo(ys, t);
|
|
t.subTo(y, y); // "negative" y so we can replace sub with am later
|
|
while (y.t < ys) y[y.t++] = 0;
|
|
while (--j >= 0) {
|
|
// Estimate quotient digit
|
|
var qd = (r[--i] == y0) ? self.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
|
|
if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out
|
|
y.dlShiftTo(j, t);
|
|
r.subTo(t, r);
|
|
while (r[i] < --qd) r.subTo(t, r);
|
|
}
|
|
}
|
|
if (q != null) {
|
|
r.drShiftTo(ys, q);
|
|
if (ts != ms) BigInteger.ZERO.subTo(q, q);
|
|
}
|
|
r.t = ys;
|
|
r.clamp();
|
|
if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder
|
|
if (ts < 0) BigInteger.ZERO.subTo(r, r);
|
|
}
|
|
|
|
// (public) this mod a
|
|
function bnMod(a) {
|
|
var r = nbi();
|
|
this.abs().divRemTo(a, null, r);
|
|
if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r);
|
|
return r;
|
|
}
|
|
|
|
// Modular reduction using "classic" algorithm
|
|
function Classic(m) {
|
|
this.m = m;
|
|
}
|
|
|
|
function cConvert(x) {
|
|
if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
|
|
else return x;
|
|
}
|
|
|
|
function cRevert(x) {
|
|
return x;
|
|
}
|
|
|
|
function cReduce(x) {
|
|
x.divRemTo(this.m, null, x);
|
|
}
|
|
|
|
function cMulTo(x, y, r) {
|
|
x.multiplyTo(y, r);
|
|
this.reduce(r);
|
|
}
|
|
|
|
function cSqrTo(x, r) {
|
|
x.squareTo(r);
|
|
this.reduce(r);
|
|
}
|
|
|
|
Classic.prototype.convert = cConvert;
|
|
Classic.prototype.revert = cRevert;
|
|
Classic.prototype.reduce = cReduce;
|
|
Classic.prototype.mulTo = cMulTo;
|
|
Classic.prototype.sqrTo = cSqrTo;
|
|
|
|
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
|
|
// justification:
|
|
// xy == 1 (mod m)
|
|
// xy = 1+km
|
|
// xy(2-xy) = (1+km)(1-km)
|
|
// x[y(2-xy)] = 1-k^2m^2
|
|
// x[y(2-xy)] == 1 (mod m^2)
|
|
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
|
|
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
|
|
// JS multiply "overflows" differently from C/C++, so care is needed here.
|
|
function bnpInvDigit() {
|
|
if (this.t < 1) return 0;
|
|
var x = this[0];
|
|
if ((x & 1) == 0) return 0;
|
|
var y = x & 3; // y == 1/x mod 2^2
|
|
y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4
|
|
y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8
|
|
y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16
|
|
// last step - calculate inverse mod DV directly;
|
|
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
|
|
y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits
|
|
// we really want the negative inverse, and -DV < y < DV
|
|
return (y > 0) ? this.DV - y : -y;
|
|
}
|
|
|
|
// Montgomery reduction
|
|
function Montgomery(m) {
|
|
this.m = m;
|
|
this.mp = m.invDigit();
|
|
this.mpl = this.mp & 0x7fff;
|
|
this.mph = this.mp >> 15;
|
|
this.um = (1 << (m.DB - 15)) - 1;
|
|
this.mt2 = 2 * m.t;
|
|
}
|
|
|
|
// xR mod m
|
|
function montConvert(x) {
|
|
var r = nbi();
|
|
x.abs().dlShiftTo(this.m.t, r);
|
|
r.divRemTo(this.m, null, r);
|
|
if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r);
|
|
return r;
|
|
}
|
|
|
|
// x/R mod m
|
|
function montRevert(x) {
|
|
var r = nbi();
|
|
x.copyTo(r);
|
|
this.reduce(r);
|
|
return r;
|
|
}
|
|
|
|
// x = x/R mod m (HAC 14.32)
|
|
function montReduce(x) {
|
|
while (x.t <= this.mt2) // pad x so am has enough room later
|
|
x[x.t++] = 0;
|
|
for (var i = 0; i < this.m.t; ++i) {
|
|
// faster way of calculating u0 = x[i]*mp mod DV
|
|
var j = x[i] & 0x7fff;
|
|
var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM;
|
|
// use am to combine the multiply-shift-add into one call
|
|
j = i + this.m.t;
|
|
x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
|
|
// propagate carry
|
|
while (x[j] >= x.DV) {
|
|
x[j] -= x.DV;
|
|
x[++j]++;
|
|
}
|
|
}
|
|
x.clamp();
|
|
x.drShiftTo(this.m.t, x);
|
|
if (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
|
|
}
|
|
|
|
// r = "x^2/R mod m"; x != r
|
|
function montSqrTo(x, r) {
|
|
x.squareTo(r);
|
|
this.reduce(r);
|
|
}
|
|
|
|
// r = "xy/R mod m"; x,y != r
|
|
function montMulTo(x, y, r) {
|
|
x.multiplyTo(y, r);
|
|
this.reduce(r);
|
|
}
|
|
|
|
Montgomery.prototype.convert = montConvert;
|
|
Montgomery.prototype.revert = montRevert;
|
|
Montgomery.prototype.reduce = montReduce;
|
|
Montgomery.prototype.mulTo = montMulTo;
|
|
Montgomery.prototype.sqrTo = montSqrTo;
|
|
|
|
// (protected) true iff this is even
|
|
function bnpIsEven() {
|
|
return ((this.t > 0) ? (this[0] & 1) : this.s) == 0;
|
|
}
|
|
|
|
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
|
|
function bnpExp(e, z) {
|
|
if (e > 0xffffffff || e < 1) return BigInteger.ONE;
|
|
var r = nbi(),
|
|
r2 = nbi(),
|
|
g = z.convert(this),
|
|
i = nbits(e) - 1;
|
|
g.copyTo(r);
|
|
while (--i >= 0) {
|
|
z.sqrTo(r, r2);
|
|
if ((e & (1 << i)) > 0) z.mulTo(r2, g, r);
|
|
else {
|
|
var t = r;
|
|
r = r2;
|
|
r2 = t;
|
|
}
|
|
}
|
|
return z.revert(r);
|
|
}
|
|
|
|
// (public) this^e % m, 0 <= e < 2^32
|
|
function bnModPowInt(e, m) {
|
|
var z;
|
|
if (e < 256 || m.isEven()) z = new Classic(m);
|
|
else z = new Montgomery(m);
|
|
return this.exp(e, z);
|
|
}
|
|
|
|
// protected
|
|
proto.copyTo = bnpCopyTo;
|
|
proto.fromInt = bnpFromInt;
|
|
proto.fromString = bnpFromString;
|
|
proto.clamp = bnpClamp;
|
|
proto.dlShiftTo = bnpDLShiftTo;
|
|
proto.drShiftTo = bnpDRShiftTo;
|
|
proto.lShiftTo = bnpLShiftTo;
|
|
proto.rShiftTo = bnpRShiftTo;
|
|
proto.subTo = bnpSubTo;
|
|
proto.multiplyTo = bnpMultiplyTo;
|
|
proto.squareTo = bnpSquareTo;
|
|
proto.divRemTo = bnpDivRemTo;
|
|
proto.invDigit = bnpInvDigit;
|
|
proto.isEven = bnpIsEven;
|
|
proto.exp = bnpExp;
|
|
|
|
// public
|
|
proto.toString = bnToString;
|
|
proto.negate = bnNegate;
|
|
proto.abs = bnAbs;
|
|
proto.compareTo = bnCompareTo;
|
|
proto.bitLength = bnBitLength;
|
|
proto.mod = bnMod;
|
|
proto.modPowInt = bnModPowInt;
|
|
|
|
//// jsbn2
|
|
|
|
function nbi() {
|
|
return new BigInteger(null);
|
|
}
|
|
|
|
// (public)
|
|
function bnClone() {
|
|
var r = nbi();
|
|
this.copyTo(r);
|
|
return r;
|
|
}
|
|
|
|
// (public) return value as integer
|
|
function bnIntValue() {
|
|
if (this.s < 0) {
|
|
if (this.t == 1) return this[0] - this.DV;
|
|
else if (this.t == 0) return -1;
|
|
} else if (this.t == 1) return this[0];
|
|
else if (this.t == 0) return 0;
|
|
// assumes 16 < DB < 32
|
|
return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0];
|
|
}
|
|
|
|
// (public) return value as byte
|
|
function bnByteValue() {
|
|
return (this.t == 0) ? this.s : (this[0] << 24) >> 24;
|
|
}
|
|
|
|
// (public) return value as short (assumes DB>=16)
|
|
function bnShortValue() {
|
|
return (this.t == 0) ? this.s : (this[0] << 16) >> 16;
|
|
}
|
|
|
|
// (protected) return x s.t. r^x < DV
|
|
function bnpChunkSize(r) {
|
|
return Math.floor(Math.LN2 * this.DB / Math.log(r));
|
|
}
|
|
|
|
// (public) 0 if this == 0, 1 if this > 0
|
|
function bnSigNum() {
|
|
if (this.s < 0) return -1;
|
|
else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
|
|
else return 1;
|
|
}
|
|
|
|
// (protected) convert to radix string
|
|
function bnpToRadix(b) {
|
|
if (b == null) b = 10;
|
|
if (this.signum() == 0 || b < 2 || b > 36) return "0";
|
|
var cs = this.chunkSize(b);
|
|
var a = Math.pow(b, cs);
|
|
var d = nbv(a),
|
|
y = nbi(),
|
|
z = nbi(),
|
|
r = "";
|
|
this.divRemTo(d, y, z);
|
|
while (y.signum() > 0) {
|
|
r = (a + z.intValue()).toString(b).substr(1) + r;
|
|
y.divRemTo(d, y, z);
|
|
}
|
|
return z.intValue().toString(b) + r;
|
|
}
|
|
|
|
// (protected) convert from radix string
|
|
function bnpFromRadix(s, b) {
|
|
var self = this;
|
|
self.fromInt(0);
|
|
if (b == null) b = 10;
|
|
var cs = self.chunkSize(b);
|
|
var d = Math.pow(b, cs),
|
|
mi = false,
|
|
j = 0,
|
|
w = 0;
|
|
for (var i = 0; i < s.length; ++i) {
|
|
var x = intAt(s, i);
|
|
if (x < 0) {
|
|
if (s.charAt(i) == "-" && self.signum() == 0) mi = true;
|
|
continue;
|
|
}
|
|
w = b * w + x;
|
|
if (++j >= cs) {
|
|
self.dMultiply(d);
|
|
self.dAddOffset(w, 0);
|
|
j = 0;
|
|
w = 0;
|
|
}
|
|
}
|
|
if (j > 0) {
|
|
self.dMultiply(Math.pow(b, j));
|
|
self.dAddOffset(w, 0);
|
|
}
|
|
if (mi) BigInteger.ZERO.subTo(self, self);
|
|
}
|
|
|
|
// (protected) alternate constructor
|
|
function bnpFromNumber(a, b, c) {
|
|
var self = this;
|
|
if ("number" == typeof b) {
|
|
// new BigInteger(int,int,RNG)
|
|
if (a < 2) self.fromInt(1);
|
|
else {
|
|
self.fromNumber(a, c);
|
|
if (!self.testBit(a - 1)) // force MSB set
|
|
self.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, self);
|
|
if (self.isEven()) self.dAddOffset(1, 0); // force odd
|
|
while (!self.isProbablePrime(b)) {
|
|
self.dAddOffset(2, 0);
|
|
if (self.bitLength() > a) self.subTo(BigInteger.ONE.shiftLeft(a - 1), self);
|
|
}
|
|
}
|
|
} else {
|
|
// new BigInteger(int,RNG)
|
|
var x = new Array(),
|
|
t = a & 7;
|
|
x.length = (a >> 3) + 1;
|
|
b.nextBytes(x);
|
|
if (t > 0) x[0] &= ((1 << t) - 1);
|
|
else x[0] = 0;
|
|
self.fromString(x, 256);
|
|
}
|
|
}
|
|
|
|
// (public) convert to bigendian byte array
|
|
function bnToByteArray() {
|
|
var self = this;
|
|
var i = self.t,
|
|
r = new Array();
|
|
r[0] = self.s;
|
|
var p = self.DB - (i * self.DB) % 8,
|
|
d, k = 0;
|
|
if (i-- > 0) {
|
|
if (p < self.DB && (d = self[i] >> p) != (self.s & self.DM) >> p)
|
|
r[k++] = d | (self.s << (self.DB - p));
|
|
while (i >= 0) {
|
|
if (p < 8) {
|
|
d = (self[i] & ((1 << p) - 1)) << (8 - p);
|
|
d |= self[--i] >> (p += self.DB - 8);
|
|
} else {
|
|
d = (self[i] >> (p -= 8)) & 0xff;
|
|
if (p <= 0) {
|
|
p += self.DB;
|
|
--i;
|
|
}
|
|
}
|
|
if ((d & 0x80) != 0) d |= -256;
|
|
if (k === 0 && (self.s & 0x80) != (d & 0x80)) ++k;
|
|
if (k > 0 || d != self.s) r[k++] = d;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
function bnEquals(a) {
|
|
return (this.compareTo(a) == 0);
|
|
}
|
|
|
|
function bnMin(a) {
|
|
return (this.compareTo(a) < 0) ? this : a;
|
|
}
|
|
|
|
function bnMax(a) {
|
|
return (this.compareTo(a) > 0) ? this : a;
|
|
}
|
|
|
|
// (protected) r = this op a (bitwise)
|
|
function bnpBitwiseTo(a, op, r) {
|
|
var self = this;
|
|
var i, f, m = Math.min(a.t, self.t);
|
|
for (i = 0; i < m; ++i) r[i] = op(self[i], a[i]);
|
|
if (a.t < self.t) {
|
|
f = a.s & self.DM;
|
|
for (i = m; i < self.t; ++i) r[i] = op(self[i], f);
|
|
r.t = self.t;
|
|
} else {
|
|
f = self.s & self.DM;
|
|
for (i = m; i < a.t; ++i) r[i] = op(f, a[i]);
|
|
r.t = a.t;
|
|
}
|
|
r.s = op(self.s, a.s);
|
|
r.clamp();
|
|
}
|
|
|
|
// (public) this & a
|
|
function op_and(x, y) {
|
|
return x & y;
|
|
}
|
|
|
|
function bnAnd(a) {
|
|
var r = nbi();
|
|
this.bitwiseTo(a, op_and, r);
|
|
return r;
|
|
}
|
|
|
|
// (public) this | a
|
|
function op_or(x, y) {
|
|
return x | y;
|
|
}
|
|
|
|
function bnOr(a) {
|
|
var r = nbi();
|
|
this.bitwiseTo(a, op_or, r);
|
|
return r;
|
|
}
|
|
|
|
// (public) this ^ a
|
|
function op_xor(x, y) {
|
|
return x ^ y;
|
|
}
|
|
|
|
function bnXor(a) {
|
|
var r = nbi();
|
|
this.bitwiseTo(a, op_xor, r);
|
|
return r;
|
|
}
|
|
|
|
// (public) this & ~a
|
|
function op_andnot(x, y) {
|
|
return x & ~y;
|
|
}
|
|
|
|
function bnAndNot(a) {
|
|
var r = nbi();
|
|
this.bitwiseTo(a, op_andnot, r);
|
|
return r;
|
|
}
|
|
|
|
// (public) ~this
|
|
function bnNot() {
|
|
var r = nbi();
|
|
for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i];
|
|
r.t = this.t;
|
|
r.s = ~this.s;
|
|
return r;
|
|
}
|
|
|
|
// (public) this << n
|
|
function bnShiftLeft(n) {
|
|
var r = nbi();
|
|
if (n < 0) this.rShiftTo(-n, r);
|
|
else this.lShiftTo(n, r);
|
|
return r;
|
|
}
|
|
|
|
// (public) this >> n
|
|
function bnShiftRight(n) {
|
|
var r = nbi();
|
|
if (n < 0) this.lShiftTo(-n, r);
|
|
else this.rShiftTo(n, r);
|
|
return r;
|
|
}
|
|
|
|
// return index of lowest 1-bit in x, x < 2^31
|
|
function lbit(x) {
|
|
if (x == 0) return -1;
|
|
var r = 0;
|
|
if ((x & 0xffff) == 0) {
|
|
x >>= 16;
|
|
r += 16;
|
|
}
|
|
if ((x & 0xff) == 0) {
|
|
x >>= 8;
|
|
r += 8;
|
|
}
|
|
if ((x & 0xf) == 0) {
|
|
x >>= 4;
|
|
r += 4;
|
|
}
|
|
if ((x & 3) == 0) {
|
|
x >>= 2;
|
|
r += 2;
|
|
}
|
|
if ((x & 1) == 0) ++r;
|
|
return r;
|
|
}
|
|
|
|
// (public) returns index of lowest 1-bit (or -1 if none)
|
|
function bnGetLowestSetBit() {
|
|
for (var i = 0; i < this.t; ++i)
|
|
if (this[i] != 0) return i * this.DB + lbit(this[i]);
|
|
if (this.s < 0) return this.t * this.DB;
|
|
return -1;
|
|
}
|
|
|
|
// return number of 1 bits in x
|
|
function cbit(x) {
|
|
var r = 0;
|
|
while (x != 0) {
|
|
x &= x - 1;
|
|
++r;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
// (public) return number of set bits
|
|
function bnBitCount() {
|
|
var r = 0,
|
|
x = this.s & this.DM;
|
|
for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x);
|
|
return r;
|
|
}
|
|
|
|
// (public) true iff nth bit is set
|
|
function bnTestBit(n) {
|
|
var j = Math.floor(n / this.DB);
|
|
if (j >= this.t) return (this.s != 0);
|
|
return ((this[j] & (1 << (n % this.DB))) != 0);
|
|
}
|
|
|
|
// (protected) this op (1<<n)
|
|
function bnpChangeBit(n, op) {
|
|
var r = BigInteger.ONE.shiftLeft(n);
|
|
this.bitwiseTo(r, op, r);
|
|
return r;
|
|
}
|
|
|
|
// (public) this | (1<<n)
|
|
function bnSetBit(n) {
|
|
return this.changeBit(n, op_or);
|
|
}
|
|
|
|
// (public) this & ~(1<<n)
|
|
function bnClearBit(n) {
|
|
return this.changeBit(n, op_andnot);
|
|
}
|
|
|
|
// (public) this ^ (1<<n)
|
|
function bnFlipBit(n) {
|
|
return this.changeBit(n, op_xor);
|
|
}
|
|
|
|
// (protected) r = this + a
|
|
function bnpAddTo(a, r) {
|
|
var self = this;
|
|
|
|
var i = 0,
|
|
c = 0,
|
|
m = Math.min(a.t, self.t);
|
|
while (i < m) {
|
|
c += self[i] + a[i];
|
|
r[i++] = c & self.DM;
|
|
c >>= self.DB;
|
|
}
|
|
if (a.t < self.t) {
|
|
c += a.s;
|
|
while (i < self.t) {
|
|
c += self[i];
|
|
r[i++] = c & self.DM;
|
|
c >>= self.DB;
|
|
}
|
|
c += self.s;
|
|
} else {
|
|
c += self.s;
|
|
while (i < a.t) {
|
|
c += a[i];
|
|
r[i++] = c & self.DM;
|
|
c >>= self.DB;
|
|
}
|
|
c += a.s;
|
|
}
|
|
r.s = (c < 0) ? -1 : 0;
|
|
if (c > 0) r[i++] = c;
|
|
else if (c < -1) r[i++] = self.DV + c;
|
|
r.t = i;
|
|
r.clamp();
|
|
}
|
|
|
|
// (public) this + a
|
|
function bnAdd(a) {
|
|
var r = nbi();
|
|
this.addTo(a, r);
|
|
return r;
|
|
}
|
|
|
|
// (public) this - a
|
|
function bnSubtract(a) {
|
|
var r = nbi();
|
|
this.subTo(a, r);
|
|
return r;
|
|
}
|
|
|
|
// (public) this * a
|
|
function bnMultiply(a) {
|
|
var r = nbi();
|
|
this.multiplyTo(a, r);
|
|
return r;
|
|
}
|
|
|
|
// (public) this^2
|
|
function bnSquare() {
|
|
var r = nbi();
|
|
this.squareTo(r);
|
|
return r;
|
|
}
|
|
|
|
// (public) this / a
|
|
function bnDivide(a) {
|
|
var r = nbi();
|
|
this.divRemTo(a, r, null);
|
|
return r;
|
|
}
|
|
|
|
// (public) this % a
|
|
function bnRemainder(a) {
|
|
var r = nbi();
|
|
this.divRemTo(a, null, r);
|
|
return r;
|
|
}
|
|
|
|
// (public) [this/a,this%a]
|
|
function bnDivideAndRemainder(a) {
|
|
var q = nbi(),
|
|
r = nbi();
|
|
this.divRemTo(a, q, r);
|
|
return new Array(q, r);
|
|
}
|
|
|
|
// (protected) this *= n, this >= 0, 1 < n < DV
|
|
function bnpDMultiply(n) {
|
|
this[this.t] = this.am(0, n - 1, this, 0, 0, this.t);
|
|
++this.t;
|
|
this.clamp();
|
|
}
|
|
|
|
// (protected) this += n << w words, this >= 0
|
|
function bnpDAddOffset(n, w) {
|
|
if (n == 0) return;
|
|
while (this.t <= w) this[this.t++] = 0;
|
|
this[w] += n;
|
|
while (this[w] >= this.DV) {
|
|
this[w] -= this.DV;
|
|
if (++w >= this.t) this[this.t++] = 0;
|
|
++this[w];
|
|
}
|
|
}
|
|
|
|
// A "null" reducer
|
|
function NullExp() {}
|
|
|
|
function nNop(x) {
|
|
return x;
|
|
}
|
|
|
|
function nMulTo(x, y, r) {
|
|
x.multiplyTo(y, r);
|
|
}
|
|
|
|
function nSqrTo(x, r) {
|
|
x.squareTo(r);
|
|
}
|
|
|
|
NullExp.prototype.convert = nNop;
|
|
NullExp.prototype.revert = nNop;
|
|
NullExp.prototype.mulTo = nMulTo;
|
|
NullExp.prototype.sqrTo = nSqrTo;
|
|
|
|
// (public) this^e
|
|
function bnPow(e) {
|
|
return this.exp(e, new NullExp());
|
|
}
|
|
|
|
// (protected) r = lower n words of "this * a", a.t <= n
|
|
// "this" should be the larger one if appropriate.
|
|
function bnpMultiplyLowerTo(a, n, r) {
|
|
var i = Math.min(this.t + a.t, n);
|
|
r.s = 0; // assumes a,this >= 0
|
|
r.t = i;
|
|
while (i > 0) r[--i] = 0;
|
|
var j;
|
|
for (j = r.t - this.t; i < j; ++i) r[i + this.t] = this.am(0, a[i], r, i, 0, this.t);
|
|
for (j = Math.min(a.t, n); i < j; ++i) this.am(0, a[i], r, i, 0, n - i);
|
|
r.clamp();
|
|
}
|
|
|
|
// (protected) r = "this * a" without lower n words, n > 0
|
|
// "this" should be the larger one if appropriate.
|
|
function bnpMultiplyUpperTo(a, n, r) {
|
|
--n;
|
|
var i = r.t = this.t + a.t - n;
|
|
r.s = 0; // assumes a,this >= 0
|
|
while (--i >= 0) r[i] = 0;
|
|
for (i = Math.max(n - this.t, 0); i < a.t; ++i)
|
|
r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n);
|
|
r.clamp();
|
|
r.drShiftTo(1, r);
|
|
}
|
|
|
|
// Barrett modular reduction
|
|
function Barrett(m) {
|
|
// setup Barrett
|
|
this.r2 = nbi();
|
|
this.q3 = nbi();
|
|
BigInteger.ONE.dlShiftTo(2 * m.t, this.r2);
|
|
this.mu = this.r2.divide(m);
|
|
this.m = m;
|
|
}
|
|
|
|
function barrettConvert(x) {
|
|
if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m);
|
|
else if (x.compareTo(this.m) < 0) return x;
|
|
else {
|
|
var r = nbi();
|
|
x.copyTo(r);
|
|
this.reduce(r);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
function barrettRevert(x) {
|
|
return x;
|
|
}
|
|
|
|
// x = x mod m (HAC 14.42)
|
|
function barrettReduce(x) {
|
|
var self = this;
|
|
x.drShiftTo(self.m.t - 1, self.r2);
|
|
if (x.t > self.m.t + 1) {
|
|
x.t = self.m.t + 1;
|
|
x.clamp();
|
|
}
|
|
self.mu.multiplyUpperTo(self.r2, self.m.t + 1, self.q3);
|
|
self.m.multiplyLowerTo(self.q3, self.m.t + 1, self.r2);
|
|
while (x.compareTo(self.r2) < 0) x.dAddOffset(1, self.m.t + 1);
|
|
x.subTo(self.r2, x);
|
|
while (x.compareTo(self.m) >= 0) x.subTo(self.m, x);
|
|
}
|
|
|
|
// r = x^2 mod m; x != r
|
|
function barrettSqrTo(x, r) {
|
|
x.squareTo(r);
|
|
this.reduce(r);
|
|
}
|
|
|
|
// r = x*y mod m; x,y != r
|
|
function barrettMulTo(x, y, r) {
|
|
x.multiplyTo(y, r);
|
|
this.reduce(r);
|
|
}
|
|
|
|
Barrett.prototype.convert = barrettConvert;
|
|
Barrett.prototype.revert = barrettRevert;
|
|
Barrett.prototype.reduce = barrettReduce;
|
|
Barrett.prototype.mulTo = barrettMulTo;
|
|
Barrett.prototype.sqrTo = barrettSqrTo;
|
|
|
|
// (public) this^e % m (HAC 14.85)
|
|
function bnModPow(e, m) {
|
|
var i = e.bitLength(),
|
|
k, r = nbv(1),
|
|
z;
|
|
if (i <= 0) return r;
|
|
else if (i < 18) k = 1;
|
|
else if (i < 48) k = 3;
|
|
else if (i < 144) k = 4;
|
|
else if (i < 768) k = 5;
|
|
else k = 6;
|
|
if (i < 8)
|
|
z = new Classic(m);
|
|
else if (m.isEven())
|
|
z = new Barrett(m);
|
|
else
|
|
z = new Montgomery(m);
|
|
|
|
// precomputation
|
|
var g = new Array(),
|
|
n = 3,
|
|
k1 = k - 1,
|
|
km = (1 << k) - 1;
|
|
g[1] = z.convert(this);
|
|
if (k > 1) {
|
|
var g2 = nbi();
|
|
z.sqrTo(g[1], g2);
|
|
while (n <= km) {
|
|
g[n] = nbi();
|
|
z.mulTo(g2, g[n - 2], g[n]);
|
|
n += 2;
|
|
}
|
|
}
|
|
|
|
var j = e.t - 1,
|
|
w, is1 = true,
|
|
r2 = nbi(),
|
|
t;
|
|
i = nbits(e[j]) - 1;
|
|
while (j >= 0) {
|
|
if (i >= k1) w = (e[j] >> (i - k1)) & km;
|
|
else {
|
|
w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i);
|
|
if (j > 0) w |= e[j - 1] >> (this.DB + i - k1);
|
|
}
|
|
|
|
n = k;
|
|
while ((w & 1) == 0) {
|
|
w >>= 1;
|
|
--n;
|
|
}
|
|
if ((i -= n) < 0) {
|
|
i += this.DB;
|
|
--j;
|
|
}
|
|
if (is1) { // ret == 1, don't bother squaring or multiplying it
|
|
g[w].copyTo(r);
|
|
is1 = false;
|
|
} else {
|
|
while (n > 1) {
|
|
z.sqrTo(r, r2);
|
|
z.sqrTo(r2, r);
|
|
n -= 2;
|
|
}
|
|
if (n > 0) z.sqrTo(r, r2);
|
|
else {
|
|
t = r;
|
|
r = r2;
|
|
r2 = t;
|
|
}
|
|
z.mulTo(r2, g[w], r);
|
|
}
|
|
|
|
while (j >= 0 && (e[j] & (1 << i)) == 0) {
|
|
z.sqrTo(r, r2);
|
|
t = r;
|
|
r = r2;
|
|
r2 = t;
|
|
if (--i < 0) {
|
|
i = this.DB - 1;
|
|
--j;
|
|
}
|
|
}
|
|
}
|
|
return z.revert(r);
|
|
}
|
|
|
|
// (public) gcd(this,a) (HAC 14.54)
|
|
function bnGCD(a) {
|
|
var x = (this.s < 0) ? this.negate() : this.clone();
|
|
var y = (a.s < 0) ? a.negate() : a.clone();
|
|
if (x.compareTo(y) < 0) {
|
|
var t = x;
|
|
x = y;
|
|
y = t;
|
|
}
|
|
var i = x.getLowestSetBit(),
|
|
g = y.getLowestSetBit();
|
|
if (g < 0) return x;
|
|
if (i < g) g = i;
|
|
if (g > 0) {
|
|
x.rShiftTo(g, x);
|
|
y.rShiftTo(g, y);
|
|
}
|
|
while (x.signum() > 0) {
|
|
if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x);
|
|
if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y);
|
|
if (x.compareTo(y) >= 0) {
|
|
x.subTo(y, x);
|
|
x.rShiftTo(1, x);
|
|
} else {
|
|
y.subTo(x, y);
|
|
y.rShiftTo(1, y);
|
|
}
|
|
}
|
|
if (g > 0) y.lShiftTo(g, y);
|
|
return y;
|
|
}
|
|
|
|
// (protected) this % n, n < 2^26
|
|
function bnpModInt(n) {
|
|
if (n <= 0) return 0;
|
|
var d = this.DV % n,
|
|
r = (this.s < 0) ? n - 1 : 0;
|
|
if (this.t > 0)
|
|
if (d == 0) r = this[0] % n;
|
|
else
|
|
for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n;
|
|
return r;
|
|
}
|
|
|
|
// (public) 1/this % m (HAC 14.61)
|
|
function bnModInverse(m) {
|
|
var ac = m.isEven();
|
|
if ((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
|
|
var u = m.clone(),
|
|
v = this.clone();
|
|
var a = nbv(1),
|
|
b = nbv(0),
|
|
c = nbv(0),
|
|
d = nbv(1);
|
|
while (u.signum() != 0) {
|
|
while (u.isEven()) {
|
|
u.rShiftTo(1, u);
|
|
if (ac) {
|
|
if (!a.isEven() || !b.isEven()) {
|
|
a.addTo(this, a);
|
|
b.subTo(m, b);
|
|
}
|
|
a.rShiftTo(1, a);
|
|
} else if (!b.isEven()) b.subTo(m, b);
|
|
b.rShiftTo(1, b);
|
|
}
|
|
while (v.isEven()) {
|
|
v.rShiftTo(1, v);
|
|
if (ac) {
|
|
if (!c.isEven() || !d.isEven()) {
|
|
c.addTo(this, c);
|
|
d.subTo(m, d);
|
|
}
|
|
c.rShiftTo(1, c);
|
|
} else if (!d.isEven()) d.subTo(m, d);
|
|
d.rShiftTo(1, d);
|
|
}
|
|
if (u.compareTo(v) >= 0) {
|
|
u.subTo(v, u);
|
|
if (ac) a.subTo(c, a);
|
|
b.subTo(d, b);
|
|
} else {
|
|
v.subTo(u, v);
|
|
if (ac) c.subTo(a, c);
|
|
d.subTo(b, d);
|
|
}
|
|
}
|
|
if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
|
|
if (d.compareTo(m) >= 0) return d.subtract(m);
|
|
if (d.signum() < 0) d.addTo(m, d);
|
|
else return d;
|
|
if (d.signum() < 0) return d.add(m);
|
|
else return d;
|
|
}
|
|
|
|
// protected
|
|
proto.chunkSize = bnpChunkSize;
|
|
proto.toRadix = bnpToRadix;
|
|
proto.fromRadix = bnpFromRadix;
|
|
proto.fromNumber = bnpFromNumber;
|
|
proto.bitwiseTo = bnpBitwiseTo;
|
|
proto.changeBit = bnpChangeBit;
|
|
proto.addTo = bnpAddTo;
|
|
proto.dMultiply = bnpDMultiply;
|
|
proto.dAddOffset = bnpDAddOffset;
|
|
proto.multiplyLowerTo = bnpMultiplyLowerTo;
|
|
proto.multiplyUpperTo = bnpMultiplyUpperTo;
|
|
proto.modInt = bnpModInt;
|
|
|
|
// public
|
|
proto.clone = bnClone;
|
|
proto.intValue = bnIntValue;
|
|
proto.byteValue = bnByteValue;
|
|
proto.shortValue = bnShortValue;
|
|
proto.signum = bnSigNum;
|
|
proto.toByteArray = bnToByteArray;
|
|
proto.equals = bnEquals;
|
|
proto.min = bnMin;
|
|
proto.max = bnMax;
|
|
proto.and = bnAnd;
|
|
proto.or = bnOr;
|
|
proto.xor = bnXor;
|
|
proto.andNot = bnAndNot;
|
|
proto.not = bnNot;
|
|
proto.shiftLeft = bnShiftLeft;
|
|
proto.shiftRight = bnShiftRight;
|
|
proto.getLowestSetBit = bnGetLowestSetBit;
|
|
proto.bitCount = bnBitCount;
|
|
proto.testBit = bnTestBit;
|
|
proto.setBit = bnSetBit;
|
|
proto.clearBit = bnClearBit;
|
|
proto.flipBit = bnFlipBit;
|
|
proto.add = bnAdd;
|
|
proto.subtract = bnSubtract;
|
|
proto.multiply = bnMultiply;
|
|
proto.divide = bnDivide;
|
|
proto.remainder = bnRemainder;
|
|
proto.divideAndRemainder = bnDivideAndRemainder;
|
|
proto.modPow = bnModPow;
|
|
proto.modInverse = bnModInverse;
|
|
proto.pow = bnPow;
|
|
proto.gcd = bnGCD;
|
|
|
|
// JSBN-specific extension
|
|
proto.square = bnSquare;
|
|
|
|
// BigInteger interfaces not implemented in jsbn:
|
|
|
|
// BigInteger(int signum, byte[] magnitude)
|
|
// double doubleValue()
|
|
// float floatValue()
|
|
// int hashCode()
|
|
// long longValue()
|
|
// static BigInteger valueOf(long val)
|
|
|
|
// "constants"
|
|
BigInteger.ZERO = nbv(0);
|
|
BigInteger.ONE = nbv(1);
|
|
BigInteger.valueOf = nbv;
|
|
|
|
|
|
/// bitcoinjs addons
|
|
|
|
/**
|
|
* Turns a byte array into a big integer.
|
|
*
|
|
* This function will interpret a byte array as a big integer in big
|
|
* endian notation and ignore leading zeros.
|
|
*/
|
|
BigInteger.fromByteArrayUnsigned = function (ba) {
|
|
|
|
if (!ba.length) {
|
|
return new BigInteger.valueOf(0);
|
|
} else if (ba[0] & 0x80) {
|
|
// Prepend a zero so the BigInteger class doesn't mistake this
|
|
// for a negative integer.
|
|
return new BigInteger([0].concat(ba));
|
|
} else {
|
|
return new BigInteger(ba);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Parse a signed big integer byte representation.
|
|
*
|
|
* For details on the format please see BigInteger.toByteArraySigned.
|
|
*/
|
|
BigInteger.fromByteArraySigned = function (ba) {
|
|
// Check for negative value
|
|
if (ba[0] & 0x80) {
|
|
// Remove sign bit
|
|
ba[0] &= 0x7f;
|
|
|
|
return BigInteger.fromByteArrayUnsigned(ba).negate();
|
|
} else {
|
|
return BigInteger.fromByteArrayUnsigned(ba);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Returns a byte array representation of the big integer.
|
|
*
|
|
* This returns the absolute of the contained value in big endian
|
|
* form. A value of zero results in an empty array.
|
|
*/
|
|
BigInteger.prototype.toByteArrayUnsigned = function () {
|
|
var ba = this.abs().toByteArray();
|
|
|
|
// Empty array, nothing to do
|
|
if (!ba.length) {
|
|
return ba;
|
|
}
|
|
|
|
// remove leading 0
|
|
if (ba[0] === 0) {
|
|
ba = ba.slice(1);
|
|
}
|
|
|
|
// all values must be positive
|
|
for (var i = 0; i < ba.length; ++i) {
|
|
ba[i] = (ba[i] < 0) ? ba[i] + 256 : ba[i];
|
|
}
|
|
|
|
return ba;
|
|
};
|
|
|
|
/*
|
|
* Converts big integer to signed byte representation.
|
|
*
|
|
* The format for this value uses the most significant bit as a sign
|
|
* bit. If the most significant bit is already occupied by the
|
|
* absolute value, an extra byte is prepended and the sign bit is set
|
|
* there.
|
|
*
|
|
* Examples:
|
|
*
|
|
* 0 => 0x00
|
|
* 1 => 0x01
|
|
* -1 => 0x81
|
|
* 127 => 0x7f
|
|
* -127 => 0xff
|
|
* 128 => 0x0080
|
|
* -128 => 0x8080
|
|
* 255 => 0x00ff
|
|
* -255 => 0x80ff
|
|
* 16300 => 0x3fac
|
|
* -16300 => 0xbfac
|
|
* 62300 => 0x00f35c
|
|
* -62300 => 0x80f35c
|
|
*/
|
|
BigInteger.prototype.toByteArraySigned = function () {
|
|
var val = this.toByteArrayUnsigned();
|
|
var neg = this.s < 0;
|
|
|
|
// if the first bit is set, we always unshift
|
|
// either unshift 0x80 or 0x00
|
|
if (val[0] & 0x80) {
|
|
val.unshift((neg) ? 0x80 : 0x00);
|
|
}
|
|
// if the first bit isn't set, set it if negative
|
|
else if (neg) {
|
|
val[0] |= 0x80;
|
|
}
|
|
|
|
return val;
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
//ellipticcurve.js
|
|
/*!
|
|
* Basic Javascript Elliptic Curve implementation
|
|
* Ported loosely from BouncyCastle's Java EC code
|
|
* Only Fp curves implemented for now
|
|
*
|
|
* Copyright Tom Wu, bitaddress.org BSD License.
|
|
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
|
|
*/
|
|
(function () {
|
|
|
|
// Constructor function of Global EllipticCurve object
|
|
var ec = window.EllipticCurve = function () {};
|
|
|
|
|
|
// ----------------
|
|
// ECFieldElementFp constructor
|
|
// q instanceof BigInteger
|
|
// x instanceof BigInteger
|
|
ec.FieldElementFp = function (q, x) {
|
|
this.x = x;
|
|
// TODO if(x.compareTo(q) >= 0) error
|
|
this.q = q;
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.equals = function (other) {
|
|
if (other == this) return true;
|
|
return (this.q.equals(other.q) && this.x.equals(other.x));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.toBigInteger = function () {
|
|
return this.x;
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.negate = function () {
|
|
return new ec.FieldElementFp(this.q, this.x.negate().mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.add = function (b) {
|
|
return new ec.FieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.subtract = function (b) {
|
|
return new ec.FieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.multiply = function (b) {
|
|
return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.square = function () {
|
|
return new ec.FieldElementFp(this.q, this.x.square().mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.divide = function (b) {
|
|
return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(
|
|
this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.getByteLength = function () {
|
|
return Math.floor((this.toBigInteger().bitLength() + 7) / 8);
|
|
};
|
|
|
|
// D.1.4 91
|
|
/**
|
|
* return a sqrt root - the routine verifies that the calculation
|
|
* returns the right value - if none exists it returns null.
|
|
*
|
|
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
|
|
* Ported to JavaScript by bitaddress.org
|
|
*/
|
|
ec.FieldElementFp.prototype.sqrt = function () {
|
|
if (!this.q.testBit(0)) throw new Error("even value of q");
|
|
|
|
// p mod 4 == 3
|
|
if (this.q.testBit(1)) {
|
|
// z = g^(u+1) + p, p = 4u + 3
|
|
var z = new ec.FieldElementFp(this.q, this.x.modPow(this.q.shiftRight(2).add(BigInteger.ONE),
|
|
this.q));
|
|
return z.square().equals(this) ? z : null;
|
|
}
|
|
|
|
// p mod 4 == 1
|
|
var qMinusOne = this.q.subtract(BigInteger.ONE);
|
|
var legendreExponent = qMinusOne.shiftRight(1);
|
|
if (!(this.x.modPow(legendreExponent, this.q).equals(BigInteger.ONE))) return null;
|
|
var u = qMinusOne.shiftRight(2);
|
|
var k = u.shiftLeft(1).add(BigInteger.ONE);
|
|
var Q = this.x;
|
|
var fourQ = Q.shiftLeft(2).mod(this.q);
|
|
var U, V;
|
|
|
|
do {
|
|
var rand = new SecureRandom();
|
|
var P;
|
|
do {
|
|
P = new BigInteger(this.q.bitLength(), rand);
|
|
}
|
|
while (P.compareTo(this.q) >= 0 || !(P.multiply(P).subtract(fourQ).modPow(legendreExponent,
|
|
this.q).equals(qMinusOne)));
|
|
|
|
var result = ec.FieldElementFp.fastLucasSequence(this.q, P, Q, k);
|
|
|
|
U = result[0];
|
|
V = result[1];
|
|
if (V.multiply(V).mod(this.q).equals(fourQ)) {
|
|
// Integer division by 2, mod q
|
|
if (V.testBit(0)) {
|
|
V = V.add(this.q);
|
|
}
|
|
V = V.shiftRight(1);
|
|
return new ec.FieldElementFp(this.q, V);
|
|
}
|
|
}
|
|
while (U.equals(BigInteger.ONE) || U.equals(qMinusOne));
|
|
|
|
return null;
|
|
};
|
|
|
|
/*
|
|
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
|
|
* Ported to JavaScript by bitaddress.org
|
|
*/
|
|
ec.FieldElementFp.fastLucasSequence = function (p, P, Q, k) {
|
|
// TODO Research and apply "common-multiplicand multiplication here"
|
|
|
|
var n = k.bitLength();
|
|
var s = k.getLowestSetBit();
|
|
var Uh = BigInteger.ONE;
|
|
var Vl = BigInteger.TWO;
|
|
var Vh = P;
|
|
var Ql = BigInteger.ONE;
|
|
var Qh = BigInteger.ONE;
|
|
|
|
for (var j = n - 1; j >= s + 1; --j) {
|
|
Ql = Ql.multiply(Qh).mod(p);
|
|
if (k.testBit(j)) {
|
|
Qh = Ql.multiply(Q).mod(p);
|
|
Uh = Uh.multiply(Vh).mod(p);
|
|
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
|
|
Vh = Vh.multiply(Vh).subtract(Qh.shiftLeft(1)).mod(p);
|
|
} else {
|
|
Qh = Ql;
|
|
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
|
|
Vh = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
|
|
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
|
|
}
|
|
}
|
|
|
|
Ql = Ql.multiply(Qh).mod(p);
|
|
Qh = Ql.multiply(Q).mod(p);
|
|
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
|
|
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
|
|
Ql = Ql.multiply(Qh).mod(p);
|
|
|
|
for (var j = 1; j <= s; ++j) {
|
|
Uh = Uh.multiply(Vl).mod(p);
|
|
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
|
|
Ql = Ql.multiply(Ql).mod(p);
|
|
}
|
|
|
|
return [Uh, Vl];
|
|
};
|
|
|
|
// ----------------
|
|
// ECPointFp constructor
|
|
ec.PointFp = function (curve, x, y, z, compressed) {
|
|
this.curve = curve;
|
|
this.x = x;
|
|
this.y = y;
|
|
// Projective coordinates: either zinv == null or z * zinv == 1
|
|
// z and zinv are just BigIntegers, not fieldElements
|
|
if (z == null) {
|
|
this.z = BigInteger.ONE;
|
|
} else {
|
|
this.z = z;
|
|
}
|
|
this.zinv = null;
|
|
// compression flag
|
|
this.compressed = !!compressed;
|
|
};
|
|
|
|
ec.PointFp.prototype.getX = function () {
|
|
if (this.zinv == null) {
|
|
this.zinv = this.z.modInverse(this.curve.q);
|
|
}
|
|
var r = this.x.toBigInteger().multiply(this.zinv);
|
|
this.curve.reduce(r);
|
|
return this.curve.fromBigInteger(r);
|
|
};
|
|
|
|
ec.PointFp.prototype.getY = function () {
|
|
if (this.zinv == null) {
|
|
this.zinv = this.z.modInverse(this.curve.q);
|
|
}
|
|
var r = this.y.toBigInteger().multiply(this.zinv);
|
|
this.curve.reduce(r);
|
|
return this.curve.fromBigInteger(r);
|
|
};
|
|
|
|
ec.PointFp.prototype.equals = function (other) {
|
|
if (other == this) return true;
|
|
if (this.isInfinity()) return other.isInfinity();
|
|
if (other.isInfinity()) return this.isInfinity();
|
|
var u, v;
|
|
// u = Y2 * Z1 - Y1 * Z2
|
|
u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(
|
|
this.curve.q);
|
|
if (!u.equals(BigInteger.ZERO)) return false;
|
|
// v = X2 * Z1 - X1 * Z2
|
|
v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(
|
|
this.curve.q);
|
|
return v.equals(BigInteger.ZERO);
|
|
};
|
|
|
|
ec.PointFp.prototype.isInfinity = function () {
|
|
if ((this.x == null) && (this.y == null)) return true;
|
|
return this.z.equals(BigInteger.ZERO) && !this.y.toBigInteger().equals(BigInteger.ZERO);
|
|
};
|
|
|
|
ec.PointFp.prototype.negate = function () {
|
|
return new ec.PointFp(this.curve, this.x, this.y.negate(), this.z);
|
|
};
|
|
|
|
ec.PointFp.prototype.add = function (b) {
|
|
if (this.isInfinity()) return b;
|
|
if (b.isInfinity()) return this;
|
|
|
|
// u = Y2 * Z1 - Y1 * Z2
|
|
var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(
|
|
this.curve.q);
|
|
// v = X2 * Z1 - X1 * Z2
|
|
var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(
|
|
this.curve.q);
|
|
|
|
|
|
if (BigInteger.ZERO.equals(v)) {
|
|
if (BigInteger.ZERO.equals(u)) {
|
|
return this.twice(); // this == b, so double
|
|
}
|
|
return this.curve.getInfinity(); // this = -b, so infinity
|
|
}
|
|
|
|
var THREE = new BigInteger("3");
|
|
var x1 = this.x.toBigInteger();
|
|
var y1 = this.y.toBigInteger();
|
|
var x2 = b.x.toBigInteger();
|
|
var y2 = b.y.toBigInteger();
|
|
|
|
var v2 = v.square();
|
|
var v3 = v2.multiply(v);
|
|
var x1v2 = x1.multiply(v2);
|
|
var zu2 = u.square().multiply(this.z);
|
|
|
|
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
|
|
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q);
|
|
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
|
|
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(
|
|
b.z).add(u.multiply(v3)).mod(this.curve.q);
|
|
// z3 = v^3 * z1 * z2
|
|
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q);
|
|
|
|
return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3),
|
|
z3);
|
|
};
|
|
|
|
ec.PointFp.prototype.twice = function () {
|
|
if (this.isInfinity()) return this;
|
|
if (this.y.toBigInteger().signum() == 0) return this.curve.getInfinity();
|
|
|
|
// TODO: optimized handling of constants
|
|
var THREE = new BigInteger("3");
|
|
var x1 = this.x.toBigInteger();
|
|
var y1 = this.y.toBigInteger();
|
|
|
|
var y1z1 = y1.multiply(this.z);
|
|
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q);
|
|
var a = this.curve.a.toBigInteger();
|
|
|
|
// w = 3 * x1^2 + a * z1^2
|
|
var w = x1.square().multiply(THREE);
|
|
if (!BigInteger.ZERO.equals(a)) {
|
|
w = w.add(this.z.square().multiply(a));
|
|
}
|
|
w = w.mod(this.curve.q);
|
|
//this.curve.reduce(w);
|
|
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
|
|
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(
|
|
this.curve.q);
|
|
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
|
|
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(
|
|
y1sqz1).subtract(w.square().multiply(w)).mod(this.curve.q);
|
|
// z3 = 8 * (y1 * z1)^3
|
|
var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q);
|
|
|
|
return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3),
|
|
z3);
|
|
};
|
|
|
|
// Simple NAF (Non-Adjacent Form) multiplication algorithm
|
|
// TODO: modularize the multiplication algorithm
|
|
ec.PointFp.prototype.multiply = function (k) {
|
|
if (this.isInfinity()) return this;
|
|
if (k.signum() == 0) return this.curve.getInfinity();
|
|
|
|
var e = k;
|
|
var h = e.multiply(new BigInteger("3"));
|
|
|
|
var neg = this.negate();
|
|
var R = this;
|
|
|
|
var i;
|
|
for (i = h.bitLength() - 2; i > 0; --i) {
|
|
R = R.twice();
|
|
|
|
var hBit = h.testBit(i);
|
|
var eBit = e.testBit(i);
|
|
|
|
if (hBit != eBit) {
|
|
R = R.add(hBit ? this : neg);
|
|
}
|
|
}
|
|
|
|
return R;
|
|
};
|
|
|
|
// Compute this*j + x*k (simultaneous multiplication)
|
|
ec.PointFp.prototype.multiplyTwo = function (j, x, k) {
|
|
var i;
|
|
if (j.bitLength() > k.bitLength())
|
|
i = j.bitLength() - 1;
|
|
else
|
|
i = k.bitLength() - 1;
|
|
|
|
var R = this.curve.getInfinity();
|
|
var both = this.add(x);
|
|
while (i >= 0) {
|
|
R = R.twice();
|
|
if (j.testBit(i)) {
|
|
if (k.testBit(i)) {
|
|
R = R.add(both);
|
|
} else {
|
|
R = R.add(this);
|
|
}
|
|
} else {
|
|
if (k.testBit(i)) {
|
|
R = R.add(x);
|
|
}
|
|
}
|
|
--i;
|
|
}
|
|
|
|
return R;
|
|
};
|
|
|
|
// patched by bitaddress.org and Casascius for use with Bitcoin.ECKey
|
|
// patched by coretechs to support compressed public keys
|
|
ec.PointFp.prototype.getEncoded = function (compressed) {
|
|
var x = this.getX().toBigInteger();
|
|
var y = this.getY().toBigInteger();
|
|
var len = 32; // integerToBytes will zero pad if integer is less than 32 bytes. 32 bytes length is required by the Bitcoin protocol.
|
|
var enc = ec.integerToBytes(x, len);
|
|
|
|
// when compressed prepend byte depending if y point is even or odd
|
|
if (compressed) {
|
|
if (y.isEven()) {
|
|
enc.unshift(0x02);
|
|
} else {
|
|
enc.unshift(0x03);
|
|
}
|
|
} else {
|
|
enc.unshift(0x04);
|
|
enc = enc.concat(ec.integerToBytes(y, len)); // uncompressed public key appends the bytes of the y point
|
|
}
|
|
return enc;
|
|
};
|
|
|
|
ec.PointFp.decodeFrom = function (curve, enc) {
|
|
var type = enc[0];
|
|
var dataLen = enc.length - 1;
|
|
|
|
// Extract x and y as byte arrays
|
|
var xBa = enc.slice(1, 1 + dataLen / 2);
|
|
var yBa = enc.slice(1 + dataLen / 2, 1 + dataLen);
|
|
|
|
// Prepend zero byte to prevent interpretation as negative integer
|
|
xBa.unshift(0);
|
|
yBa.unshift(0);
|
|
|
|
// Convert to BigIntegers
|
|
var x = new BigInteger(xBa);
|
|
var y = new BigInteger(yBa);
|
|
|
|
// Return point
|
|
return new ec.PointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y));
|
|
};
|
|
|
|
ec.PointFp.prototype.add2D = function (b) {
|
|
if (this.isInfinity()) return b;
|
|
if (b.isInfinity()) return this;
|
|
|
|
if (this.x.equals(b.x)) {
|
|
if (this.y.equals(b.y)) {
|
|
// this = b, i.e. this must be doubled
|
|
return this.twice();
|
|
}
|
|
// this = -b, i.e. the result is the point at infinity
|
|
return this.curve.getInfinity();
|
|
}
|
|
|
|
var x_x = b.x.subtract(this.x);
|
|
var y_y = b.y.subtract(this.y);
|
|
var gamma = y_y.divide(x_x);
|
|
|
|
var x3 = gamma.square().subtract(this.x).subtract(b.x);
|
|
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
|
|
|
|
return new ec.PointFp(this.curve, x3, y3);
|
|
};
|
|
|
|
ec.PointFp.prototype.twice2D = function () {
|
|
if (this.isInfinity()) return this;
|
|
if (this.y.toBigInteger().signum() == 0) {
|
|
// if y1 == 0, then (x1, y1) == (x1, -y1)
|
|
// and hence this = -this and thus 2(x1, y1) == infinity
|
|
return this.curve.getInfinity();
|
|
}
|
|
|
|
var TWO = this.curve.fromBigInteger(BigInteger.valueOf(2));
|
|
var THREE = this.curve.fromBigInteger(BigInteger.valueOf(3));
|
|
var gamma = this.x.square().multiply(THREE).add(this.curve.a).divide(this.y.multiply(TWO));
|
|
|
|
var x3 = gamma.square().subtract(this.x.multiply(TWO));
|
|
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
|
|
|
|
return new ec.PointFp(this.curve, x3, y3);
|
|
};
|
|
|
|
ec.PointFp.prototype.multiply2D = function (k) {
|
|
if (this.isInfinity()) return this;
|
|
if (k.signum() == 0) return this.curve.getInfinity();
|
|
|
|
var e = k;
|
|
var h = e.multiply(new BigInteger("3"));
|
|
|
|
var neg = this.negate();
|
|
var R = this;
|
|
|
|
var i;
|
|
for (i = h.bitLength() - 2; i > 0; --i) {
|
|
R = R.twice();
|
|
|
|
var hBit = h.testBit(i);
|
|
var eBit = e.testBit(i);
|
|
|
|
if (hBit != eBit) {
|
|
R = R.add2D(hBit ? this : neg);
|
|
}
|
|
}
|
|
|
|
return R;
|
|
};
|
|
|
|
ec.PointFp.prototype.isOnCurve = function () {
|
|
var x = this.getX().toBigInteger();
|
|
var y = this.getY().toBigInteger();
|
|
var a = this.curve.getA().toBigInteger();
|
|
var b = this.curve.getB().toBigInteger();
|
|
var n = this.curve.getQ();
|
|
var lhs = y.multiply(y).mod(n);
|
|
var rhs = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(n);
|
|
return lhs.equals(rhs);
|
|
};
|
|
|
|
ec.PointFp.prototype.toString = function () {
|
|
return '(' + this.getX().toBigInteger().toString() + ',' + this.getY().toBigInteger().toString() +
|
|
')';
|
|
};
|
|
|
|
/**
|
|
* Validate an elliptic curve point.
|
|
*
|
|
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
|
|
*/
|
|
ec.PointFp.prototype.validate = function () {
|
|
var n = this.curve.getQ();
|
|
|
|
// Check Q != O
|
|
if (this.isInfinity()) {
|
|
throw new Error("Point is at infinity.");
|
|
}
|
|
|
|
// Check coordinate bounds
|
|
var x = this.getX().toBigInteger();
|
|
var y = this.getY().toBigInteger();
|
|
if (x.compareTo(BigInteger.ONE) < 0 || x.compareTo(n.subtract(BigInteger.ONE)) > 0) {
|
|
throw new Error('x coordinate out of bounds');
|
|
}
|
|
if (y.compareTo(BigInteger.ONE) < 0 || y.compareTo(n.subtract(BigInteger.ONE)) > 0) {
|
|
throw new Error('y coordinate out of bounds');
|
|
}
|
|
|
|
// Check y^2 = x^3 + ax + b (mod n)
|
|
if (!this.isOnCurve()) {
|
|
throw new Error("Point is not on the curve.");
|
|
}
|
|
|
|
// Check nQ = 0 (Q is a scalar multiple of G)
|
|
if (this.multiply(n).isInfinity()) {
|
|
// TODO: This check doesn't work - fix.
|
|
throw new Error("Point is not a scalar multiple of G.");
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
|
|
|
|
|
|
// ----------------
|
|
// ECCurveFp constructor
|
|
ec.CurveFp = function (q, a, b) {
|
|
this.q = q;
|
|
this.a = this.fromBigInteger(a);
|
|
this.b = this.fromBigInteger(b);
|
|
this.infinity = new ec.PointFp(this, null, null);
|
|
this.reducer = new Barrett(this.q);
|
|
}
|
|
|
|
ec.CurveFp.prototype.getQ = function () {
|
|
return this.q;
|
|
};
|
|
|
|
ec.CurveFp.prototype.getA = function () {
|
|
return this.a;
|
|
};
|
|
|
|
ec.CurveFp.prototype.getB = function () {
|
|
return this.b;
|
|
};
|
|
|
|
ec.CurveFp.prototype.equals = function (other) {
|
|
if (other == this) return true;
|
|
return (this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b));
|
|
};
|
|
|
|
ec.CurveFp.prototype.getInfinity = function () {
|
|
return this.infinity;
|
|
};
|
|
|
|
ec.CurveFp.prototype.fromBigInteger = function (x) {
|
|
return new ec.FieldElementFp(this.q, x);
|
|
};
|
|
|
|
ec.CurveFp.prototype.reduce = function (x) {
|
|
this.reducer.reduce(x);
|
|
};
|
|
|
|
// for now, work with hex strings because they're easier in JS
|
|
// compressed support added by bitaddress.org
|
|
ec.CurveFp.prototype.decodePointHex = function (s) {
|
|
var firstByte = parseInt(s.substr(0, 2), 16);
|
|
switch (firstByte) { // first byte
|
|
case 0:
|
|
return this.infinity;
|
|
case 2: // compressed
|
|
case 3: // compressed
|
|
var yTilde = firstByte & 1;
|
|
var xHex = s.substr(2, s.length - 2);
|
|
var X1 = new BigInteger(xHex, 16);
|
|
return this.decompressPoint(yTilde, X1);
|
|
case 4: // uncompressed
|
|
case 6: // hybrid
|
|
case 7: // hybrid
|
|
var len = (s.length - 2) / 2;
|
|
var xHex = s.substr(2, len);
|
|
var yHex = s.substr(len + 2, len);
|
|
|
|
return new ec.PointFp(this,
|
|
this.fromBigInteger(new BigInteger(xHex, 16)),
|
|
this.fromBigInteger(new BigInteger(yHex, 16)));
|
|
|
|
default: // unsupported
|
|
return null;
|
|
}
|
|
};
|
|
|
|
ec.CurveFp.prototype.encodePointHex = function (p) {
|
|
if (p.isInfinity()) return "00";
|
|
var xHex = p.getX().toBigInteger().toString(16);
|
|
var yHex = p.getY().toBigInteger().toString(16);
|
|
var oLen = this.getQ().toString(16).length;
|
|
if ((oLen % 2) != 0) oLen++;
|
|
while (xHex.length < oLen) {
|
|
xHex = "0" + xHex;
|
|
}
|
|
while (yHex.length < oLen) {
|
|
yHex = "0" + yHex;
|
|
}
|
|
return "04" + xHex + yHex;
|
|
};
|
|
|
|
/*
|
|
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
|
|
* Ported to JavaScript by bitaddress.org
|
|
*
|
|
* Number yTilde
|
|
* BigInteger X1
|
|
*/
|
|
ec.CurveFp.prototype.decompressPoint = function (yTilde, X1) {
|
|
var x = this.fromBigInteger(X1);
|
|
var alpha = x.multiply(x.square().add(this.getA())).add(this.getB());
|
|
var beta = alpha.sqrt();
|
|
// if we can't find a sqrt we haven't got a point on the curve - run!
|
|
if (beta == null) throw new Error("Invalid point compression");
|
|
var betaValue = beta.toBigInteger();
|
|
var bit0 = betaValue.testBit(0) ? 1 : 0;
|
|
if (bit0 != yTilde) {
|
|
// Use the other root
|
|
beta = this.fromBigInteger(this.getQ().subtract(betaValue));
|
|
}
|
|
return new ec.PointFp(this, x, beta, null, true);
|
|
};
|
|
|
|
|
|
ec.fromHex = function (s) {
|
|
return new BigInteger(s, 16);
|
|
};
|
|
|
|
ec.integerToBytes = function (i, len) {
|
|
var bytes = i.toByteArrayUnsigned();
|
|
if (len < bytes.length) {
|
|
bytes = bytes.slice(bytes.length - len);
|
|
} else
|
|
while (len > bytes.length) {
|
|
bytes.unshift(0);
|
|
}
|
|
return bytes;
|
|
};
|
|
|
|
|
|
// Named EC curves
|
|
// ----------------
|
|
// X9ECParameters constructor
|
|
ec.X9Parameters = function (curve, g, n, h) {
|
|
this.curve = curve;
|
|
this.g = g;
|
|
this.n = n;
|
|
this.h = h;
|
|
}
|
|
ec.X9Parameters.prototype.getCurve = function () {
|
|
return this.curve;
|
|
};
|
|
ec.X9Parameters.prototype.getG = function () {
|
|
return this.g;
|
|
};
|
|
ec.X9Parameters.prototype.getN = function () {
|
|
return this.n;
|
|
};
|
|
ec.X9Parameters.prototype.getH = function () {
|
|
return this.h;
|
|
};
|
|
|
|
// secp256k1 is the Curve used by Bitcoin
|
|
ec.secNamedCurves = {
|
|
// used by Bitcoin
|
|
"secp256k1": function () {
|
|
// p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1
|
|
var p = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F");
|
|
var a = BigInteger.ZERO;
|
|
var b = ec.fromHex("7");
|
|
var n = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141");
|
|
var h = BigInteger.ONE;
|
|
var curve = new ec.CurveFp(p, a, b);
|
|
var G = curve.decodePointHex("04" +
|
|
"79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798" +
|
|
"483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8");
|
|
return new ec.X9Parameters(curve, G, n, h);
|
|
}
|
|
};
|
|
|
|
// secp256k1 called by Bitcoin's ECKEY
|
|
ec.getSECCurveByName = function (name) {
|
|
if (ec.secNamedCurves[name] == undefined) return null;
|
|
return ec.secNamedCurves[name]();
|
|
}
|
|
})();
|
|
|
|
|
|
//bitTrx.js
|
|
(function () {
|
|
|
|
var bitjs = window.bitjs = function () {};
|
|
|
|
/* public vars */
|
|
bitjs.pub = 0x23; // flochange - changed the prefix to FLO Mainnet PublicKey Prefix 0x23
|
|
bitjs.priv = 0xa3; //flochange - changed the prefix to FLO Mainnet Private key prefix 0xa3
|
|
bitjs.compressed = false;
|
|
|
|
/* provide a privkey and return an WIF */
|
|
bitjs.privkey2wif = function (h) {
|
|
var r = Crypto.util.hexToBytes(h);
|
|
|
|
if (bitjs.compressed == true) {
|
|
r.push(0x01);
|
|
}
|
|
|
|
r.unshift(bitjs.priv);
|
|
var hash = Crypto.SHA256(Crypto.SHA256(r, {
|
|
asBytes: true
|
|
}), {
|
|
asBytes: true
|
|
});
|
|
var checksum = hash.slice(0, 4);
|
|
|
|
return B58.encode(r.concat(checksum));
|
|
}
|
|
|
|
/* convert a wif key back to a private key */
|
|
bitjs.wif2privkey = function (wif) {
|
|
var compressed = false;
|
|
var decode = B58.decode(wif);
|
|
var key = decode.slice(0, decode.length - 4);
|
|
key = key.slice(1, key.length);
|
|
if (key.length >= 33 && key[key.length - 1] == 0x01) {
|
|
key = key.slice(0, key.length - 1);
|
|
compressed = true;
|
|
}
|
|
return {
|
|
'privkey': Crypto.util.bytesToHex(key),
|
|
'compressed': compressed
|
|
};
|
|
}
|
|
|
|
/* convert a wif to a pubkey */
|
|
bitjs.wif2pubkey = function (wif) {
|
|
var compressed = bitjs.compressed;
|
|
var r = bitjs.wif2privkey(wif);
|
|
bitjs.compressed = r['compressed'];
|
|
var pubkey = bitjs.newPubkey(r['privkey']);
|
|
bitjs.compressed = compressed;
|
|
return {
|
|
'pubkey': pubkey,
|
|
'compressed': r['compressed']
|
|
};
|
|
}
|
|
|
|
/* convert a wif to a address */
|
|
bitjs.wif2address = function (wif) {
|
|
var r = bitjs.wif2pubkey(wif);
|
|
return {
|
|
'address': bitjs.pubkey2address(r['pubkey']),
|
|
'compressed': r['compressed']
|
|
};
|
|
}
|
|
|
|
/* generate a public key from a private key */
|
|
bitjs.newPubkey = function (hash) {
|
|
var privateKeyBigInt = BigInteger.fromByteArrayUnsigned(Crypto.util.hexToBytes(hash));
|
|
var curve = EllipticCurve.getSECCurveByName("secp256k1");
|
|
|
|
var curvePt = curve.getG().multiply(privateKeyBigInt);
|
|
var x = curvePt.getX().toBigInteger();
|
|
var y = curvePt.getY().toBigInteger();
|
|
|
|
var publicKeyBytes = EllipticCurve.integerToBytes(x, 32);
|
|
publicKeyBytes = publicKeyBytes.concat(EllipticCurve.integerToBytes(y, 32));
|
|
publicKeyBytes.unshift(0x04);
|
|
|
|
if (bitjs.compressed == true) {
|
|
var publicKeyBytesCompressed = EllipticCurve.integerToBytes(x, 32)
|
|
if (y.isEven()) {
|
|
publicKeyBytesCompressed.unshift(0x02)
|
|
} else {
|
|
publicKeyBytesCompressed.unshift(0x03)
|
|
}
|
|
return Crypto.util.bytesToHex(publicKeyBytesCompressed);
|
|
} else {
|
|
return Crypto.util.bytesToHex(publicKeyBytes);
|
|
}
|
|
}
|
|
|
|
/* provide a public key and return address */
|
|
bitjs.pubkey2address = function (h, byte) {
|
|
var r = ripemd160(Crypto.SHA256(Crypto.util.hexToBytes(h), {
|
|
asBytes: true
|
|
}));
|
|
r.unshift(byte || bitjs.pub);
|
|
var hash = Crypto.SHA256(Crypto.SHA256(r, {
|
|
asBytes: true
|
|
}), {
|
|
asBytes: true
|
|
});
|
|
var checksum = hash.slice(0, 4);
|
|
return B58.encode(r.concat(checksum));
|
|
}
|
|
|
|
bitjs.transaction = function () {
|
|
var btrx = {};
|
|
btrx.version = 2; //flochange look at this version
|
|
btrx.inputs = [];
|
|
btrx.outputs = [];
|
|
btrx.locktime = 0;
|
|
btrx.floData = ""; //flochange .. look at this
|
|
|
|
|
|
btrx.addinput = function (txid, index, scriptPubKey, sequence) {
|
|
var o = {};
|
|
o.outpoint = {
|
|
'hash': txid,
|
|
'index': index
|
|
};
|
|
//o.script = []; Signature and Public Key should be added after singning
|
|
o.script = Crypto.util.hexToBytes(scriptPubKey); //push previous output pubkey script
|
|
o.sequence = sequence || ((btrx.locktime == 0) ? 4294967295 : 0);
|
|
return this.inputs.push(o);
|
|
}
|
|
|
|
btrx.addoutput = function (address, value) {
|
|
var o = {};
|
|
var buf = [];
|
|
var addrDecoded = btrx.addressDecode(address);
|
|
o.value = new BigInteger('' + Math.round((value * 1) * 1e8), 10);
|
|
buf.push(118); //OP_DUP
|
|
buf.push(169); //OP_HASH160
|
|
buf.push(addrDecoded.length);
|
|
buf = buf.concat(addrDecoded); // address in bytes
|
|
buf.push(136); //OP_EQUALVERIFY
|
|
buf.push(172); // OP_CHECKSIG
|
|
o.script = buf;
|
|
return this.outputs.push(o);
|
|
}
|
|
|
|
|
|
btrx.addflodata = function (txcomments) { // flochange - this whole function needs to be done
|
|
this.floData = txcomments;
|
|
return this.floData; //flochange .. returning the txcomments -- check if the function return will assign
|
|
}
|
|
|
|
|
|
// Only standard addresses
|
|
btrx.addressDecode = function (address) {
|
|
var bytes = B58.decode(address);
|
|
var front = bytes.slice(0, bytes.length - 4);
|
|
var back = bytes.slice(bytes.length - 4);
|
|
var checksum = Crypto.SHA256(Crypto.SHA256(front, {
|
|
asBytes: true
|
|
}), {
|
|
asBytes: true
|
|
}).slice(0, 4);
|
|
if (checksum + "" == back + "") {
|
|
return front.slice(1);
|
|
}
|
|
}
|
|
|
|
/* generate the transaction hash to sign from a transaction input */
|
|
btrx.transactionHash = function (index, sigHashType) {
|
|
|
|
var clone = bitjs.clone(this);
|
|
var shType = sigHashType || 1;
|
|
|
|
/* black out all other ins, except this one */
|
|
for (var i = 0; i < clone.inputs.length; i++) {
|
|
if (index != i) {
|
|
clone.inputs[i].script = [];
|
|
}
|
|
}
|
|
|
|
|
|
if ((clone.inputs) && clone.inputs[index]) {
|
|
|
|
/* SIGHASH : For more info on sig hashs see https://en.bitcoin.it/wiki/OP_CHECKSIG
|
|
and https://bitcoin.org/en/developer-guide#signature-hash-type */
|
|
|
|
if (shType == 1) {
|
|
//SIGHASH_ALL 0x01
|
|
|
|
} else if (shType == 2) {
|
|
//SIGHASH_NONE 0x02
|
|
clone.outputs = [];
|
|
for (var i = 0; i < clone.inputs.length; i++) {
|
|
if (index != i) {
|
|
clone.inputs[i].sequence = 0;
|
|
}
|
|
}
|
|
|
|
} else if (shType == 3) {
|
|
|
|
//SIGHASH_SINGLE 0x03
|
|
clone.outputs.length = index + 1;
|
|
|
|
for (var i = 0; i < index; i++) {
|
|
clone.outputs[i].value = -1;
|
|
clone.outputs[i].script = [];
|
|
}
|
|
|
|
for (var i = 0; i < clone.inputs.length; i++) {
|
|
if (index != i) {
|
|
clone.inputs[i].sequence = 0;
|
|
}
|
|
}
|
|
|
|
} else if (shType >= 128) {
|
|
//SIGHASH_ANYONECANPAY 0x80
|
|
clone.inputs = [clone.inputs[index]];
|
|
|
|
if (shType == 129) {
|
|
// SIGHASH_ALL + SIGHASH_ANYONECANPAY
|
|
|
|
} else if (shType == 130) {
|
|
// SIGHASH_NONE + SIGHASH_ANYONECANPAY
|
|
clone.outputs = [];
|
|
|
|
} else if (shType == 131) {
|
|
// SIGHASH_SINGLE + SIGHASH_ANYONECANPAY
|
|
clone.outputs.length = index + 1;
|
|
for (var i = 0; i < index; i++) {
|
|
clone.outputs[i].value = -1;
|
|
clone.outputs[i].script = [];
|
|
}
|
|
}
|
|
}
|
|
|
|
var buffer = Crypto.util.hexToBytes(clone.serialize());
|
|
buffer = buffer.concat(bitjs.numToBytes(parseInt(shType), 4));
|
|
var hash = Crypto.SHA256(buffer, {
|
|
asBytes: true
|
|
});
|
|
var r = Crypto.util.bytesToHex(Crypto.SHA256(hash, {
|
|
asBytes: true
|
|
}));
|
|
return r;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* generate a signature from a transaction hash */
|
|
btrx.transactionSig = function (index, wif, sigHashType, txhash) {
|
|
|
|
function serializeSig(r, s) {
|
|
var rBa = r.toByteArraySigned();
|
|
var sBa = s.toByteArraySigned();
|
|
|
|
var sequence = [];
|
|
sequence.push(0x02); // INTEGER
|
|
sequence.push(rBa.length);
|
|
sequence = sequence.concat(rBa);
|
|
|
|
sequence.push(0x02); // INTEGER
|
|
sequence.push(sBa.length);
|
|
sequence = sequence.concat(sBa);
|
|
|
|
sequence.unshift(sequence.length);
|
|
sequence.unshift(0x30); // SEQUENCE
|
|
|
|
return sequence;
|
|
}
|
|
|
|
var shType = sigHashType || 1;
|
|
var hash = txhash || Crypto.util.hexToBytes(this.transactionHash(index, shType));
|
|
|
|
if (hash) {
|
|
var curve = EllipticCurve.getSECCurveByName("secp256k1");
|
|
var key = bitjs.wif2privkey(wif);
|
|
var priv = BigInteger.fromByteArrayUnsigned(Crypto.util.hexToBytes(key['privkey']));
|
|
var n = curve.getN();
|
|
var e = BigInteger.fromByteArrayUnsigned(hash);
|
|
var badrs = 0
|
|
do {
|
|
var k = this.deterministicK(wif, hash, badrs);
|
|
var G = curve.getG();
|
|
var Q = G.multiply(k);
|
|
var r = Q.getX().toBigInteger().mod(n);
|
|
var s = k.modInverse(n).multiply(e.add(priv.multiply(r))).mod(n);
|
|
badrs++
|
|
} while (r.compareTo(BigInteger.ZERO) <= 0 || s.compareTo(BigInteger.ZERO) <= 0);
|
|
|
|
// Force lower s values per BIP62
|
|
var halfn = n.shiftRight(1);
|
|
if (s.compareTo(halfn) > 0) {
|
|
s = n.subtract(s);
|
|
};
|
|
|
|
var sig = serializeSig(r, s);
|
|
sig.push(parseInt(shType, 10));
|
|
|
|
return Crypto.util.bytesToHex(sig);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// https://tools.ietf.org/html/rfc6979#section-3.2
|
|
btrx.deterministicK = function (wif, hash, badrs) {
|
|
// if r or s were invalid when this function was used in signing,
|
|
// we do not want to actually compute r, s here for efficiency, so,
|
|
// we can increment badrs. explained at end of RFC 6979 section 3.2
|
|
|
|
// wif is b58check encoded wif privkey.
|
|
// hash is byte array of transaction digest.
|
|
// badrs is used only if the k resulted in bad r or s.
|
|
|
|
// some necessary things out of the way for clarity.
|
|
badrs = badrs || 0;
|
|
var key = bitjs.wif2privkey(wif);
|
|
var x = Crypto.util.hexToBytes(key['privkey'])
|
|
var curve = EllipticCurve.getSECCurveByName("secp256k1");
|
|
var N = curve.getN();
|
|
|
|
// Step: a
|
|
// hash is a byteArray of the message digest. so h1 == hash in our case
|
|
|
|
// Step: b
|
|
var v = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1
|
|
];
|
|
|
|
// Step: c
|
|
var k = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0
|
|
];
|
|
|
|
// Step: d
|
|
k = Crypto.HMAC(Crypto.SHA256, v.concat([0]).concat(x).concat(hash), k, {
|
|
asBytes: true
|
|
});
|
|
|
|
// Step: e
|
|
v = Crypto.HMAC(Crypto.SHA256, v, k, {
|
|
asBytes: true
|
|
});
|
|
|
|
// Step: f
|
|
k = Crypto.HMAC(Crypto.SHA256, v.concat([1]).concat(x).concat(hash), k, {
|
|
asBytes: true
|
|
});
|
|
|
|
// Step: g
|
|
v = Crypto.HMAC(Crypto.SHA256, v, k, {
|
|
asBytes: true
|
|
});
|
|
|
|
// Step: h1
|
|
var T = [];
|
|
|
|
// Step: h2 (since we know tlen = qlen, just copy v to T.)
|
|
v = Crypto.HMAC(Crypto.SHA256, v, k, {
|
|
asBytes: true
|
|
});
|
|
T = v;
|
|
|
|
// Step: h3
|
|
var KBigInt = BigInteger.fromByteArrayUnsigned(T);
|
|
|
|
// loop if KBigInt is not in the range of [1, N-1] or if badrs needs incrementing.
|
|
var i = 0
|
|
while (KBigInt.compareTo(N) >= 0 || KBigInt.compareTo(BigInteger.ZERO) <= 0 || i <
|
|
badrs) {
|
|
k = Crypto.HMAC(Crypto.SHA256, v.concat([0]), k, {
|
|
asBytes: true
|
|
});
|
|
v = Crypto.HMAC(Crypto.SHA256, v, k, {
|
|
asBytes: true
|
|
});
|
|
v = Crypto.HMAC(Crypto.SHA256, v, k, {
|
|
asBytes: true
|
|
});
|
|
T = v;
|
|
KBigInt = BigInteger.fromByteArrayUnsigned(T);
|
|
i++
|
|
};
|
|
|
|
return KBigInt;
|
|
};
|
|
|
|
/* sign a "standard" input */
|
|
btrx.signinput = function (index, wif, sigHashType) {
|
|
var key = bitjs.wif2pubkey(wif);
|
|
var shType = sigHashType || 1;
|
|
var signature = this.transactionSig(index, wif, shType);
|
|
var buf = [];
|
|
var sigBytes = Crypto.util.hexToBytes(signature);
|
|
buf.push(sigBytes.length);
|
|
buf = buf.concat(sigBytes);
|
|
var pubKeyBytes = Crypto.util.hexToBytes(key['pubkey']);
|
|
buf.push(pubKeyBytes.length);
|
|
buf = buf.concat(pubKeyBytes);
|
|
this.inputs[index].script = buf;
|
|
return true;
|
|
}
|
|
|
|
/* sign inputs */
|
|
btrx.sign = function (wif, sigHashType) {
|
|
var shType = sigHashType || 1;
|
|
for (var i = 0; i < this.inputs.length; i++) {
|
|
this.signinput(i, wif, shType);
|
|
}
|
|
return this.serialize();
|
|
}
|
|
|
|
|
|
/* serialize a transaction */
|
|
btrx.serialize = function () {
|
|
var buffer = [];
|
|
buffer = buffer.concat(bitjs.numToBytes(parseInt(this.version), 4));
|
|
|
|
buffer = buffer.concat(bitjs.numToVarInt(this.inputs.length));
|
|
for (var i = 0; i < this.inputs.length; i++) {
|
|
var txin = this.inputs[i];
|
|
buffer = buffer.concat(Crypto.util.hexToBytes(txin.outpoint.hash).reverse());
|
|
buffer = buffer.concat(bitjs.numToBytes(parseInt(txin.outpoint.index), 4));
|
|
var scriptBytes = txin.script;
|
|
buffer = buffer.concat(bitjs.numToVarInt(scriptBytes.length));
|
|
buffer = buffer.concat(scriptBytes);
|
|
buffer = buffer.concat(bitjs.numToBytes(parseInt(txin.sequence), 4));
|
|
|
|
}
|
|
buffer = buffer.concat(bitjs.numToVarInt(this.outputs.length));
|
|
|
|
for (var i = 0; i < this.outputs.length; i++) {
|
|
var txout = this.outputs[i];
|
|
buffer = buffer.concat(bitjs.numToBytes(txout.value, 8));
|
|
var scriptBytes = txout.script;
|
|
buffer = buffer.concat(bitjs.numToVarInt(scriptBytes.length));
|
|
buffer = buffer.concat(scriptBytes);
|
|
}
|
|
|
|
buffer = buffer.concat(bitjs.numToBytes(parseInt(this.locktime),4));
|
|
flohex = ascii_to_hexa(this.floData);
|
|
floDataCount = this.floData.length;
|
|
|
|
//flochange -- creating unique data character count logic for floData. This string is prefixed before actual floData string in Raw Transaction
|
|
if (floDataCount <= 16) {
|
|
floDataCountString = floDataCount.toString(16);
|
|
floDataCountString = "0"+ floDataCountString;
|
|
} else if (floDataCount < 253) {
|
|
floDataCountString = floDataCount.toString(16);
|
|
} else if (floDataCount <= 1023) {
|
|
floDataCountAdjusted = (floDataCount - 253) + parseInt("0xfd00fd");
|
|
floDataCountStringAdjusted = floDataCountAdjusted.toString(16);
|
|
floDataCountString = floDataCountStringAdjusted.substr(0,2)+ floDataCountStringAdjusted.substr(4,2)+ floDataCountStringAdjusted.substr(2,2);
|
|
} else {
|
|
floDataCountString = "Character Limit Exceeded";
|
|
}
|
|
|
|
|
|
return Crypto.util.bytesToHex(buffer)+floDataCountString+flohex; // flochange -- Addition of floDataCountString and floData in serialization
|
|
}
|
|
|
|
|
|
|
|
return btrx;
|
|
|
|
}
|
|
|
|
bitjs.numToBytes = function (num, bytes) {
|
|
if (typeof bytes === "undefined") bytes = 8;
|
|
if (bytes == 0) {
|
|
return [];
|
|
} else if (num == -1) {
|
|
return Crypto.util.hexToBytes("ffffffffffffffff");
|
|
} else {
|
|
return [num % 256].concat(bitjs.numToBytes(Math.floor(num / 256), bytes - 1));
|
|
}
|
|
}
|
|
|
|
bitjs.numToByteArray = function (num) {
|
|
if (num <= 256) {
|
|
return [num];
|
|
} else {
|
|
return [num % 256].concat(bitjs.numToByteArray(Math.floor(num / 256)));
|
|
}
|
|
}
|
|
|
|
bitjs.numToVarInt = function (num) {
|
|
if (num < 253) {
|
|
return [num];
|
|
} else if (num < 65536) {
|
|
return [253].concat(bitjs.numToBytes(num, 2));
|
|
} else if (num < 4294967296) {
|
|
return [254].concat(bitjs.numToBytes(num, 4));
|
|
} else {
|
|
return [255].concat(bitjs.numToBytes(num, 8));
|
|
}
|
|
}
|
|
|
|
bitjs.bytesToNum = function (bytes) {
|
|
if (bytes.length == 0) return 0;
|
|
else return bytes[0] + 256 * bitjs.bytesToNum(bytes.slice(1));
|
|
}
|
|
|
|
/* clone an object */
|
|
bitjs.clone = function (obj) {
|
|
if (obj == null || typeof (obj) != 'object') return obj;
|
|
var temp = new obj.constructor();
|
|
|
|
for (var key in obj) {
|
|
if (obj.hasOwnProperty(key)) {
|
|
temp[key] = bitjs.clone(obj[key]);
|
|
}
|
|
}
|
|
return temp;
|
|
}
|
|
|
|
var B58 = bitjs.Base58 = {
|
|
alphabet: "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz",
|
|
validRegex: /^[1-9A-HJ-NP-Za-km-z]+$/,
|
|
base: BigInteger.valueOf(58),
|
|
|
|
/**
|
|
* Convert a byte array to a base58-encoded string.
|
|
*
|
|
* Written by Mike Hearn for BitcoinJ.
|
|
* Copyright (c) 2011 Google Inc.
|
|
*
|
|
* Ported to JavaScript by Stefan Thomas.
|
|
*/
|
|
encode: function (input) {
|
|
var bi = BigInteger.fromByteArrayUnsigned(input);
|
|
var chars = [];
|
|
|
|
while (bi.compareTo(B58.base) >= 0) {
|
|
var mod = bi.mod(B58.base);
|
|
chars.unshift(B58.alphabet[mod.intValue()]);
|
|
bi = bi.subtract(mod).divide(B58.base);
|
|
}
|
|
chars.unshift(B58.alphabet[bi.intValue()]);
|
|
|
|
// Convert leading zeros too.
|
|
for (var i = 0; i < input.length; i++) {
|
|
if (input[i] == 0x00) {
|
|
chars.unshift(B58.alphabet[0]);
|
|
} else break;
|
|
}
|
|
|
|
return chars.join('');
|
|
},
|
|
|
|
/**
|
|
* Convert a base58-encoded string to a byte array.
|
|
*
|
|
* Written by Mike Hearn for BitcoinJ.
|
|
* Copyright (c) 2011 Google Inc.
|
|
*
|
|
* Ported to JavaScript by Stefan Thomas.
|
|
*/
|
|
decode: function (input) {
|
|
var bi = BigInteger.valueOf(0);
|
|
var leadingZerosNum = 0;
|
|
for (var i = input.length - 1; i >= 0; i--) {
|
|
var alphaIndex = B58.alphabet.indexOf(input[i]);
|
|
if (alphaIndex < 0) {
|
|
throw "Invalid character";
|
|
}
|
|
bi = bi.add(BigInteger.valueOf(alphaIndex)
|
|
.multiply(B58.base.pow(input.length - 1 - i)));
|
|
|
|
// This counts leading zero bytes
|
|
if (input[i] == "1") leadingZerosNum++;
|
|
else leadingZerosNum = 0;
|
|
}
|
|
var bytes = bi.toByteArrayUnsigned();
|
|
|
|
// Add leading zeros
|
|
while (leadingZerosNum-- > 0) bytes.unshift(0);
|
|
|
|
return bytes;
|
|
}
|
|
}
|
|
return bitjs;
|
|
|
|
})();
|
|
|
|
</script>
|
|
|
|
|
|
<script>
|
|
const mainnet = `https://livenet.flocha.in`;
|
|
const testnet = `https://testnet.flocha.in`;
|
|
|
|
let server = testnet;
|
|
|
|
const sendAmt = 0.002;
|
|
const fee = 0.0005;
|
|
|
|
function ajax(method, uri){
|
|
var request = new XMLHttpRequest();
|
|
var url = `${server}/${uri}`
|
|
console.log(url)
|
|
var result;
|
|
request.open(method,url , false);
|
|
request.onload = function () {
|
|
if (request.status >= 200 && request.status < 400)
|
|
result = this.response;
|
|
else {
|
|
console.log('error');
|
|
result = false;
|
|
}
|
|
};
|
|
request.send();
|
|
console.log(result);
|
|
return result;
|
|
}
|
|
function is_alphanumeric(inputtxt) {
|
|
var letters = /^[0-9a-zA-Z]+$/;
|
|
if (inputtxt.match(letters)) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
</script>
|
|
<script>
|
|
var getBal_btn = document.getElementById("getBal_btn");
|
|
getBal_btn.onclick = function () {
|
|
|
|
var addrs = document.getElementById("getBal_addr").value;
|
|
var dispBal = document.getElementById("dispBal");
|
|
|
|
if (addrs.length < 1) {
|
|
alert("Address field cannot be empty.");
|
|
return false;
|
|
}
|
|
let addrList = addrs.split(',');
|
|
addrList = Array.from(new Set(addrList));
|
|
var result = "";
|
|
var totBal = 0;
|
|
addrList.forEach(function(addr){
|
|
if (!is_alphanumeric(addr) || addr.length<1){
|
|
alert(`Invalid address : ${addr}`);
|
|
return;
|
|
}
|
|
var response = ajax("GET",`api/addr/${addr}/balance`);
|
|
if(response){
|
|
result += `<input type="radio" name="sender" value=${addr} checked> ${addr} ${response} <br/>\n`;
|
|
totBal+=response;
|
|
}else
|
|
console.log("error");
|
|
});
|
|
result+=`\nTotal Balance : ${totBal}`;
|
|
dispBal.innerHTML = result;
|
|
document.getElementById("sendBtn").disabled = false;
|
|
}
|
|
|
|
|
|
</script>
|
|
<script>
|
|
function sendTransaction(){
|
|
|
|
var radioButtons = document.getElementsByName("sender");
|
|
var sender;
|
|
for (var x = 0; x < radioButtons.length; x++)
|
|
if (radioButtons[x].checked)
|
|
sender=radioButtons[x].value;
|
|
|
|
console.log(sender);
|
|
var response = ajax("GET",`api/addr/${sender}/utxo`);
|
|
var utxos = JSON.parse(response);
|
|
for(var x = 0; x < utxos.length; x++)
|
|
if(utxos[x].amount > sendAmt+fee){
|
|
var txid = utxos[x].txid;
|
|
var index = utxos[x].vout;
|
|
var scriptPubKey = utxos[x].scriptPubKey;
|
|
var bal = utxos[x].amount
|
|
break;
|
|
}
|
|
|
|
|
|
var trx = bitjs.transaction();
|
|
trx.addinput(txid, index, scriptPubKey);
|
|
console.log(txid + " : " + index +" : "+scriptPubKey +":"+bal);
|
|
|
|
var receiver = document.getElementById("receiver").value;
|
|
trx.addoutput(receiver, sendAmt);
|
|
console.log(receiver+":"+ sendAmt);
|
|
|
|
var change = bal-sendAmt-fee;
|
|
trx.addoutput(sender, change);
|
|
console.log(sender+":"+ change);
|
|
|
|
var sendFloData = document.getElementById("flotextdata").value;
|
|
trx.addflodata(sendFloData);
|
|
console.log(sendFloData);
|
|
|
|
var wif = prompt("Enter Private Key");
|
|
var signedTxHash = trx.sign(wif, 1);
|
|
console.log(signedTxHash);
|
|
broadcastTx(signedTxHash);
|
|
}
|
|
</script>
|
|
<script>
|
|
function broadcastTx(signedTxHash) {
|
|
var http = new XMLHttpRequest();
|
|
var url = `${server}/api/tx/send`;
|
|
if (signedTxHash.length < 1) {
|
|
alert("Empty Signature");
|
|
return false;
|
|
}
|
|
|
|
var params = `{"rawtx":"${signedTxHash}"}`;
|
|
|
|
http.open('POST', url, true);
|
|
|
|
//Send the proper header information along with the request
|
|
http.setRequestHeader('Content-type', 'application/json');
|
|
|
|
http.onreadystatechange = function () { //Call a function when the state changes.
|
|
if (http.readyState == 4 && http.status == 200) {
|
|
console.log(http.responseText);
|
|
} else {
|
|
console.log(http.responseText);
|
|
}
|
|
}
|
|
http.send(params);
|
|
}
|
|
</script>
|
|
|
|
</body>
|
|
</html> |