const mainnet = `https://livenet.flocha.in`; const testnet = `https://testnet.flocha.in`; let server = mainnet; const sendAmt = 0.001 ; const fee = 0.0005; /*! * Crypto-JS v2.5.4 Crypto.js * http://code.google.com/p/crypto-js/ * Copyright (c) 2009-2013, Jeff Mott. All rights reserved. * http://code.google.com/p/crypto-js/wiki/License */ if (typeof Crypto == "undefined" || !Crypto.util) { (function () { var base64map = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; // Global Crypto object var Crypto = window.Crypto = {}; // Crypto utilities var util = Crypto.util = { // Bit-wise rotate left rotl: function (n, b) { return (n << b) | (n >>> (32 - b)); }, // Bit-wise rotate right rotr: function (n, b) { return (n << (32 - b)) | (n >>> b); }, // Swap big-endian to little-endian and vice versa endian: function (n) { // If number given, swap endian if (n.constructor == Number) { return util.rotl(n, 8) & 0x00FF00FF | util.rotl(n, 24) & 0xFF00FF00; } // Else, assume array and swap all items for (var i = 0; i < n.length; i++) n[i] = util.endian(n[i]); return n; }, // Generate an array of any length of random bytes randomBytes: function (n) { for (var bytes = []; n > 0; n--) bytes.push(Math.floor(Math.random() * 256)); return bytes; }, // Convert a byte array to big-endian 32-bit words bytesToWords: function (bytes) { for (var words = [], i = 0, b = 0; i < bytes.length; i++, b += 8) words[b >>> 5] |= (bytes[i] & 0xFF) << (24 - b % 32); return words; }, // Convert big-endian 32-bit words to a byte array wordsToBytes: function (words) { for (var bytes = [], b = 0; b < words.length * 32; b += 8) bytes.push((words[b >>> 5] >>> (24 - b % 32)) & 0xFF); return bytes; }, // Convert a byte array to a hex string bytesToHex: function (bytes) { for (var hex = [], i = 0; i < bytes.length; i++) { hex.push((bytes[i] >>> 4).toString(16)); hex.push((bytes[i] & 0xF).toString(16)); } return hex.join(""); }, // Convert a hex string to a byte array hexToBytes: function (hex) { for (var bytes = [], c = 0; c < hex.length; c += 2) bytes.push(parseInt(hex.substr(c, 2), 16)); return bytes; }, // Convert a byte array to a base-64 string bytesToBase64: function (bytes) { for (var base64 = [], i = 0; i < bytes.length; i += 3) { var triplet = (bytes[i] << 16) | (bytes[i + 1] << 8) | bytes[i + 2]; for (var j = 0; j < 4; j++) { if (i * 8 + j * 6 <= bytes.length * 8) base64.push(base64map.charAt((triplet >>> 6 * (3 - j)) & 0x3F)); else base64.push("="); } } return base64.join(""); }, // Convert a base-64 string to a byte array base64ToBytes: function (base64) { // Remove non-base-64 characters base64 = base64.replace(/[^A-Z0-9+\/]/ig, ""); for (var bytes = [], i = 0, imod4 = 0; i < base64.length; imod4 = ++i % 4) { if (imod4 == 0) continue; bytes.push(((base64map.indexOf(base64.charAt(i - 1)) & (Math.pow(2, -2 * imod4 + 8) - 1)) << (imod4 * 2)) | (base64map.indexOf(base64.charAt(i)) >>> (6 - imod4 * 2))); } return bytes; } }; // Crypto character encodings var charenc = Crypto.charenc = {}; // UTF-8 encoding var UTF8 = charenc.UTF8 = { // Convert a string to a byte array stringToBytes: function (str) { return Binary.stringToBytes(unescape(encodeURIComponent(str))); }, // Convert a byte array to a string bytesToString: function (bytes) { return decodeURIComponent(escape(Binary.bytesToString(bytes))); } }; // Binary encoding var Binary = charenc.Binary = { // Convert a string to a byte array stringToBytes: function (str) { for (var bytes = [], i = 0; i < str.length; i++) bytes.push(str.charCodeAt(i) & 0xFF); return bytes; }, // Convert a byte array to a string bytesToString: function (bytes) { for (var str = [], i = 0; i < bytes.length; i++) str.push(String.fromCharCode(bytes[i])); return str.join(""); } }; })(); } //Adding SHA1 to fix basic PKBDF2 /* * Crypto-JS v2.5.4 * http://code.google.com/p/crypto-js/ * (c) 2009-2012 by Jeff Mott. All rights reserved. * http://code.google.com/p/crypto-js/wiki/License */ (function () { // Shortcuts var C = Crypto, util = C.util, charenc = C.charenc, UTF8 = charenc.UTF8, Binary = charenc.Binary; // Public API var SHA1 = C.SHA1 = function (message, options) { var digestbytes = util.wordsToBytes(SHA1._sha1(message)); return options && options.asBytes ? digestbytes : options && options.asString ? Binary.bytesToString(digestbytes) : util.bytesToHex(digestbytes); }; // The core SHA1._sha1 = function (message) { // Convert to byte array if (message.constructor == String) message = UTF8.stringToBytes(message); /* else, assume byte array already */ var m = util.bytesToWords(message), l = message.length * 8, w = [], H0 = 1732584193, H1 = -271733879, H2 = -1732584194, H3 = 271733878, H4 = -1009589776; // Padding m[l >> 5] |= 0x80 << (24 - l % 32); m[((l + 64 >>> 9) << 4) + 15] = l; for (var i = 0; i < m.length; i += 16) { var a = H0, b = H1, c = H2, d = H3, e = H4; for (var j = 0; j < 80; j++) { if (j < 16) w[j] = m[i + j]; else { var n = w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16]; w[j] = (n << 1) | (n >>> 31); } var t = ((H0 << 5) | (H0 >>> 27)) + H4 + (w[j] >>> 0) + ( j < 20 ? (H1 & H2 | ~H1 & H3) + 1518500249 : j < 40 ? (H1 ^ H2 ^ H3) + 1859775393 : j < 60 ? (H1 & H2 | H1 & H3 | H2 & H3) - 1894007588 : (H1 ^ H2 ^ H3) - 899497514); H4 = H3; H3 = H2; H2 = (H1 << 30) | (H1 >>> 2); H1 = H0; H0 = t; } H0 += a; H1 += b; H2 += c; H3 += d; H4 += e; } return [H0, H1, H2, H3, H4]; }; // Package private blocksize SHA1._blocksize = 16; SHA1._digestsize = 20; })(); //Added to make PKBDF2 work /* * Crypto-JS v2.5.4 * http://code.google.com/p/crypto-js/ * (c) 2009-2012 by Jeff Mott. All rights reserved. * http://code.google.com/p/crypto-js/wiki/License */ (function () { // Shortcuts var C = Crypto, util = C.util, charenc = C.charenc, UTF8 = charenc.UTF8, Binary = charenc.Binary; C.HMAC = function (hasher, message, key, options) { // Convert to byte arrays if (message.constructor == String) message = UTF8.stringToBytes(message); if (key.constructor == String) key = UTF8.stringToBytes(key); /* else, assume byte arrays already */ // Allow arbitrary length keys if (key.length > hasher._blocksize * 4) key = hasher(key, { asBytes: true }); // XOR keys with pad constants var okey = key.slice(0), ikey = key.slice(0); for (var i = 0; i < hasher._blocksize * 4; i++) { okey[i] ^= 0x5C; ikey[i] ^= 0x36; } var hmacbytes = hasher(okey.concat(hasher(ikey.concat(message), { asBytes: true })), { asBytes: true }); return options && options.asBytes ? hmacbytes : options && options.asString ? Binary.bytesToString(hmacbytes) : util.bytesToHex(hmacbytes); }; })(); //crypto-sha256-hmac.js /* * Crypto-JS v2.5.4 * http://code.google.com/p/crypto-js/ * (c) 2009-2012 by Jeff Mott. All rights reserved. * http://code.google.com/p/crypto-js/wiki/License */ function ascii_to_hexa(str) { var arr1 = []; for (var n = 0, l = str.length; n < l; n++) { var hex = Number(str.charCodeAt(n)).toString(16); arr1.push(hex); } return arr1.join(''); } (typeof Crypto == "undefined" || !Crypto.util) && function () { var d = window.Crypto = {}, k = d.util = { rotl: function (b, a) { return b << a | b >>> 32 - a }, rotr: function (b, a) { return b << 32 - a | b >>> a }, endian: function (b) { if (b.constructor == Number) return k.rotl(b, 8) & 16711935 | k.rotl(b, 24) & 4278255360; for (var a = 0; a < b.length; a++) b[a] = k.endian(b[a]); return b }, randomBytes: function (b) { for (var a = []; b > 0; b--) a.push(Math.floor(Math.random() * 256)); return a }, bytesToWords: function (b) { for (var a = [], c = 0, e = 0; c < b.length; c++, e += 8) a[e >>> 5] |= (b[c] & 255) << 24 - e % 32; return a }, wordsToBytes: function (b) { for (var a = [], c = 0; c < b.length * 32; c += 8) a.push(b[c >>> 5] >>> 24 - c % 32 & 255); return a }, bytesToHex: function (b) { for (var a = [], c = 0; c < b.length; c++) a.push((b[c] >>> 4).toString(16)), a.push((b[c] & 15).toString(16)); return a.join("") }, hexToBytes: function (b) { for (var a = [], c = 0; c < b.length; c += 2) a.push(parseInt(b.substr(c, 2), 16)); return a }, bytesToBase64: function (b) { for (var a = [], c = 0; c < b.length; c += 3) for (var e = b[c] << 16 | b[c + 1] << 8 | b[c + 2], p = 0; p < 4; p++) c * 8 + p * 6 <= b.length * 8 ? a.push( "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".charAt(e >>> 6 * (3 - p) & 63)) : a.push("="); return a.join("") }, base64ToBytes: function (b) { for (var b = b.replace(/[^A-Z0-9+\/]/ig, ""), a = [], c = 0, e = 0; c < b.length; e = ++c % 4) e != 0 && a.push(("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" .indexOf(b.charAt(c - 1)) & Math.pow(2, -2 * e + 8) - 1) << e * 2 | "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".indexOf(b.charAt( c)) >>> 6 - e * 2); return a } }, d = d.charenc = {}; d.UTF8 = { stringToBytes: function (b) { return g.stringToBytes(unescape(encodeURIComponent(b))) }, bytesToString: function (b) { return decodeURIComponent(escape(g.bytesToString(b))) } }; var g = d.Binary = { stringToBytes: function (b) { for (var a = [], c = 0; c < b.length; c++) a.push(b.charCodeAt(c) & 255); return a }, bytesToString: function (b) { for (var a = [], c = 0; c < b.length; c++) a.push(String.fromCharCode(b[c])); return a.join("") } } }(); (function () { var d = Crypto, k = d.util, g = d.charenc, b = g.UTF8, a = g.Binary, c = [1116352408, 1899447441, 3049323471, 3921009573, 961987163, 1508970993, 2453635748, 2870763221, 3624381080, 310598401, 607225278, 1426881987, 1925078388, 2162078206, 2614888103, 3248222580, 3835390401, 4022224774, 264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986, 2554220882, 2821834349, 2952996808, 3210313671, 3336571891, 3584528711, 113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291, 1695183700, 1986661051, 2177026350, 2456956037, 2730485921, 2820302411, 3259730800, 3345764771, 3516065817, 3600352804, 4094571909, 275423344, 430227734, 506948616, 659060556, 883997877, 958139571, 1322822218, 1537002063, 1747873779, 1955562222, 2024104815, 2227730452, 2361852424, 2428436474, 2756734187, 3204031479, 3329325298 ], e = d.SHA256 = function (b, c) { var f = k.wordsToBytes(e._sha256(b)); return c && c.asBytes ? f : c && c.asString ? a.bytesToString(f) : k.bytesToHex(f) }; e._sha256 = function (a) { a.constructor == String && (a = b.stringToBytes(a)); var e = k.bytesToWords(a), f = a.length * 8, a = [1779033703, 3144134277, 1013904242, 2773480762, 1359893119, 2600822924, 528734635, 1541459225 ], d = [], g, m, r, i, n, o, s, t, h, l, j; e[f >> 5] |= 128 << 24 - f % 32; e[(f + 64 >> 9 << 4) + 15] = f; for (t = 0; t < e.length; t += 16) { f = a[0]; g = a[1]; m = a[2]; r = a[3]; i = a[4]; n = a[5]; o = a[6]; s = a[7]; for (h = 0; h < 64; h++) { h < 16 ? d[h] = e[h + t] : (l = d[h - 15], j = d[h - 2], d[h] = ((l << 25 | l >>> 7) ^ (l << 14 | l >>> 18) ^ l >>> 3) + (d[h - 7] >>> 0) + ((j << 15 | j >>> 17) ^ (j << 13 | j >>> 19) ^ j >>> 10) + (d[h - 16] >>> 0)); j = f & g ^ f & m ^ g & m; var u = (f << 30 | f >>> 2) ^ (f << 19 | f >>> 13) ^ (f << 10 | f >>> 22); l = (s >>> 0) + ((i << 26 | i >>> 6) ^ (i << 21 | i >>> 11) ^ (i << 7 | i >>> 25)) + (i & n ^ ~i & o) + c[h] + (d[h] >>> 0); j = u + j; s = o; o = n; n = i; i = r + l >>> 0; r = m; m = g; g = f; f = l + j >>> 0 } a[0] += f; a[1] += g; a[2] += m; a[3] += r; a[4] += i; a[5] += n; a[6] += o; a[7] += s } return a }; e._blocksize = 16; e._digestsize = 32 })(); (function () { var d = Crypto, k = d.util, g = d.charenc, b = g.UTF8, a = g.Binary; d.HMAC = function (c, e, d, g) { e.constructor == String && (e = b.stringToBytes(e)); d.constructor == String && (d = b.stringToBytes(d)); d.length > c._blocksize * 4 && (d = c(d, { asBytes: !0 })); for (var f = d.slice(0), d = d.slice(0), q = 0; q < c._blocksize * 4; q++) f[q] ^= 92, d[q] ^= 54; c = c(f.concat(c(d.concat(e), { asBytes: !0 })), { asBytes: !0 }); return g && g.asBytes ? c : g && g.asString ? a.bytesToString(c) : k.bytesToHex(c) } })(); /*! * Random number generator with ArcFour PRNG * * NOTE: For best results, put code like * * in your main HTML document. * * Copyright Tom Wu, bitaddress.org BSD License. * http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE */ (function () { // Constructor function of Global SecureRandom object var sr = window.SecureRandom = function () { }; // Properties sr.state; sr.pool; sr.pptr; sr.poolCopyOnInit; // Pool size must be a multiple of 4 and greater than 32. // An array of bytes the size of the pool will be passed to init() sr.poolSize = 256; // --- object methods --- // public method // ba: byte array sr.prototype.nextBytes = function (ba) { var i; if (window.crypto && window.crypto.getRandomValues && window.Uint8Array) { try { var rvBytes = new Uint8Array(ba.length); window.crypto.getRandomValues(rvBytes); for (i = 0; i < ba.length; ++i) ba[i] = sr.getByte() ^ rvBytes[i]; return; } catch (e) { alert(e); } } for (i = 0; i < ba.length; ++i) ba[i] = sr.getByte(); }; // --- static methods --- // Mix in the current time (w/milliseconds) into the pool // NOTE: this method should be called from body click/keypress event handlers to increase entropy sr.seedTime = function () { sr.seedInt(new Date().getTime()); } sr.getByte = function () { if (sr.state == null) { sr.seedTime(); sr.state = sr.ArcFour(); // Plug in your RNG constructor here sr.state.init(sr.pool); sr.poolCopyOnInit = []; for (sr.pptr = 0; sr.pptr < sr.pool.length; ++sr.pptr) sr.poolCopyOnInit[sr.pptr] = sr.pool[sr.pptr]; sr.pptr = 0; } // TODO: allow reseeding after first request return sr.state.next(); } // Mix in a 32-bit integer into the pool sr.seedInt = function (x) { sr.seedInt8(x); sr.seedInt8((x >> 8)); sr.seedInt8((x >> 16)); sr.seedInt8((x >> 24)); } // Mix in a 16-bit integer into the pool sr.seedInt16 = function (x) { sr.seedInt8(x); sr.seedInt8((x >> 8)); } // Mix in a 8-bit integer into the pool sr.seedInt8 = function (x) { sr.pool[sr.pptr++] ^= x & 255; if (sr.pptr >= sr.poolSize) sr.pptr -= sr.poolSize; } // Arcfour is a PRNG sr.ArcFour = function () { function Arcfour() { this.i = 0; this.j = 0; this.S = new Array(); } // Initialize arcfour context from key, an array of ints, each from [0..255] function ARC4init(key) { var i, j, t; for (i = 0; i < 256; ++i) this.S[i] = i; j = 0; for (i = 0; i < 256; ++i) { j = (j + this.S[i] + key[i % key.length]) & 255; t = this.S[i]; this.S[i] = this.S[j]; this.S[j] = t; } this.i = 0; this.j = 0; } function ARC4next() { var t; this.i = (this.i + 1) & 255; this.j = (this.j + this.S[this.i]) & 255; t = this.S[this.i]; this.S[this.i] = this.S[this.j]; this.S[this.j] = t; return this.S[(t + this.S[this.i]) & 255]; } Arcfour.prototype.init = ARC4init; Arcfour.prototype.next = ARC4next; return new Arcfour(); }; // Initialize the pool with junk if needed. if (sr.pool == null) { sr.pool = new Array(); sr.pptr = 0; var t; if (window.crypto && window.crypto.getRandomValues && window.Uint8Array) { try { // Use webcrypto if available var ua = new Uint8Array(sr.poolSize); window.crypto.getRandomValues(ua); for (t = 0; t < sr.poolSize; ++t) sr.pool[sr.pptr++] = ua[t]; } catch (e) { alert(e); } } while (sr.pptr < sr.poolSize) { // extract some randomness from Math.random() t = Math.floor(65536 * Math.random()); sr.pool[sr.pptr++] = t >>> 8; sr.pool[sr.pptr++] = t & 255; } sr.pptr = Math.floor(sr.poolSize * Math.random()); sr.seedTime(); // entropy var entropyStr = ""; // screen size and color depth: ~4.8 to ~5.4 bits entropyStr += (window.screen.height * window.screen.width * window.screen.colorDepth); entropyStr += (window.screen.availHeight * window.screen.availWidth * window.screen.pixelDepth); // time zone offset: ~4 bits var dateObj = new Date(); var timeZoneOffset = dateObj.getTimezoneOffset(); entropyStr += timeZoneOffset; // user agent: ~8.3 to ~11.6 bits entropyStr += navigator.userAgent; // browser plugin details: ~16.2 to ~21.8 bits var pluginsStr = ""; for (var i = 0; i < navigator.plugins.length; i++) { pluginsStr += navigator.plugins[i].name + " " + navigator.plugins[i].filename + " " + navigator.plugins[i].description + " " + navigator.plugins[i].version + ", "; } var mimeTypesStr = ""; for (var i = 0; i < navigator.mimeTypes.length; i++) { mimeTypesStr += navigator.mimeTypes[i].description + " " + navigator.mimeTypes[i].type + " " + navigator.mimeTypes[i].suffixes + ", "; } entropyStr += pluginsStr + mimeTypesStr; // cookies and storage: 1 bit entropyStr += navigator.cookieEnabled + typeof (sessionStorage) + typeof (localStorage); // language: ~7 bit entropyStr += navigator.language; // history: ~2 bit entropyStr += window.history.length; // location entropyStr += window.location; var entropyBytes = Crypto.SHA256(entropyStr, { asBytes: true }); for (var i = 0 ; i < entropyBytes.length ; i++) { sr.seedInt8(entropyBytes[i]); } } })(); //ripemd160.js /* CryptoJS v3.1.2 code.google.com/p/crypto-js (c) 2009-2013 by Jeff Mott. All rights reserved. code.google.com/p/crypto-js/wiki/License */ /** @preserve (c) 2012 by Cédric Mesnil. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Constants table var zl = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8, 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12, 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2, 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 ]; var zr = [ 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2, 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13, 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14, 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 ]; var sl = [ 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8, 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12, 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5, 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12, 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 ]; var sr = [ 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6, 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11, 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5, 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8, 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 ]; var hl = [0x00000000, 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xA953FD4E]; var hr = [0x50A28BE6, 0x5C4DD124, 0x6D703EF3, 0x7A6D76E9, 0x00000000]; var bytesToWords = function (bytes) { var words = []; for (var i = 0, b = 0; i < bytes.length; i++, b += 8) { words[b >>> 5] |= bytes[i] << (24 - b % 32); } return words; }; var wordsToBytes = function (words) { var bytes = []; for (var b = 0; b < words.length * 32; b += 8) { bytes.push((words[b >>> 5] >>> (24 - b % 32)) & 0xFF); } return bytes; }; var processBlock = function (H, M, offset) { // Swap endian for (var i = 0; i < 16; i++) { var offset_i = offset + i; var M_offset_i = M[offset_i]; // Swap M[offset_i] = ( (((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) | (((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00) ); } // Working variables var al, bl, cl, dl, el; var ar, br, cr, dr, er; ar = al = H[0]; br = bl = H[1]; cr = cl = H[2]; dr = dl = H[3]; er = el = H[4]; // Computation var t; for (var i = 0; i < 80; i += 1) { t = (al + M[offset + zl[i]]) | 0; if (i < 16) { t += f1(bl, cl, dl) + hl[0]; } else if (i < 32) { t += f2(bl, cl, dl) + hl[1]; } else if (i < 48) { t += f3(bl, cl, dl) + hl[2]; } else if (i < 64) { t += f4(bl, cl, dl) + hl[3]; } else { // if (i<80) { t += f5(bl, cl, dl) + hl[4]; } t = t | 0; t = rotl(t, sl[i]); t = (t + el) | 0; al = el; el = dl; dl = rotl(cl, 10); cl = bl; bl = t; t = (ar + M[offset + zr[i]]) | 0; if (i < 16) { t += f5(br, cr, dr) + hr[0]; } else if (i < 32) { t += f4(br, cr, dr) + hr[1]; } else if (i < 48) { t += f3(br, cr, dr) + hr[2]; } else if (i < 64) { t += f2(br, cr, dr) + hr[3]; } else { // if (i<80) { t += f1(br, cr, dr) + hr[4]; } t = t | 0; t = rotl(t, sr[i]); t = (t + er) | 0; ar = er; er = dr; dr = rotl(cr, 10); cr = br; br = t; } // Intermediate hash value t = (H[1] + cl + dr) | 0; H[1] = (H[2] + dl + er) | 0; H[2] = (H[3] + el + ar) | 0; H[3] = (H[4] + al + br) | 0; H[4] = (H[0] + bl + cr) | 0; H[0] = t; }; function f1(x, y, z) { return ((x) ^ (y) ^ (z)); } function f2(x, y, z) { return (((x) & (y)) | ((~x) & (z))); } function f3(x, y, z) { return (((x) | (~(y))) ^ (z)); } function f4(x, y, z) { return (((x) & (z)) | ((y) & (~(z)))); } function f5(x, y, z) { return ((x) ^ ((y) | (~(z)))); } function rotl(x, n) { return (x << n) | (x >>> (32 - n)); } function ripemd160(message) { var H = [0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0]; var m = bytesToWords(message); var nBitsLeft = message.length * 8; var nBitsTotal = message.length * 8; // Add padding m[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32); m[(((nBitsLeft + 64) >>> 9) << 4) + 14] = ( (((nBitsTotal << 8) | (nBitsTotal >>> 24)) & 0x00ff00ff) | (((nBitsTotal << 24) | (nBitsTotal >>> 8)) & 0xff00ff00) ); for (var i = 0; i < m.length; i += 16) { processBlock(H, m, i); } // Swap endian for (var i = 0; i < 5; i++) { // Shortcut var H_i = H[i]; // Swap H[i] = (((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) | (((H_i << 24) | (H_i >>> 8)) & 0xff00ff00); } var digestbytes = wordsToBytes(H); return digestbytes; } //jsbn.js // Copyright (c) 2005 Tom Wu // All Rights Reserved. // See "LICENSE" for details. // Basic JavaScript BN library - subset useful for RSA encryption. // Bits per digit var dbits; // JavaScript engine analysis var canary = 0xdeadbeefcafe; var j_lm = ((canary & 0xffffff) == 0xefcafe); // (public) Constructor function BigInteger(a, b, c) { if (!(this instanceof BigInteger)) { return new BigInteger(a, b, c); } if (a != null) { if ("number" == typeof a) this.fromNumber(a, b, c); else if (b == null && "string" != typeof a) this.fromString(a, 256); else this.fromString(a, b); } } var proto = BigInteger.prototype; // return new, unset BigInteger function nbi() { return new BigInteger(null); } // am: Compute w_j += (x*this_i), propagate carries, // c is initial carry, returns final carry. // c < 3*dvalue, x < 2*dvalue, this_i < dvalue // We need to select the fastest one that works in this environment. // am1: use a single mult and divide to get the high bits, // max digit bits should be 26 because // max internal value = 2*dvalue^2-2*dvalue (< 2^53) function am1(i, x, w, j, c, n) { while (--n >= 0) { var v = x * this[i++] + w[j] + c; c = Math.floor(v / 0x4000000); w[j++] = v & 0x3ffffff; } return c; } // am2 avoids a big mult-and-extract completely. // Max digit bits should be <= 30 because we do bitwise ops // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) function am2(i, x, w, j, c, n) { var xl = x & 0x7fff, xh = x >> 15; while (--n >= 0) { var l = this[i] & 0x7fff; var h = this[i++] >> 15; var m = xh * l + h * xl; l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff); c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30); w[j++] = l & 0x3fffffff; } return c; } // Alternately, set max digit bits to 28 since some // browsers slow down when dealing with 32-bit numbers. function am3(i, x, w, j, c, n) { var xl = x & 0x3fff, xh = x >> 14; while (--n >= 0) { var l = this[i] & 0x3fff; var h = this[i++] >> 14; var m = xh * l + h * xl; l = xl * l + ((m & 0x3fff) << 14) + w[j] + c; c = (l >> 28) + (m >> 14) + xh * h; w[j++] = l & 0xfffffff; } return c; } // wtf? BigInteger.prototype.am = am1; dbits = 26; /* if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { BigInteger.prototype.am = am2; dbits = 30; } else if(j_lm && (navigator.appName != "Netscape")) { BigInteger.prototype.am = am1; dbits = 26; } else { // Mozilla/Netscape seems to prefer am3 BigInteger.prototype.am = am3; dbits = 28; } */ BigInteger.prototype.DB = dbits; BigInteger.prototype.DM = ((1 << dbits) - 1); var DV = BigInteger.prototype.DV = (1 << dbits); var BI_FP = 52; BigInteger.prototype.FV = Math.pow(2, BI_FP); BigInteger.prototype.F1 = BI_FP - dbits; BigInteger.prototype.F2 = 2 * dbits - BI_FP; // Digit conversions var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; var BI_RC = new Array(); var rr, vv; rr = "0".charCodeAt(0); for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; rr = "a".charCodeAt(0); for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; rr = "A".charCodeAt(0); for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; function int2char(n) { return BI_RM.charAt(n); } function intAt(s, i) { var c = BI_RC[s.charCodeAt(i)]; return (c == null) ? -1 : c; } // (protected) copy this to r function bnpCopyTo(r) { for (var i = this.t - 1; i >= 0; --i) r[i] = this[i]; r.t = this.t; r.s = this.s; } // (protected) set from integer value x, -DV <= x < DV function bnpFromInt(x) { this.t = 1; this.s = (x < 0) ? -1 : 0; if (x > 0) this[0] = x; else if (x < -1) this[0] = x + DV; else this.t = 0; } // return bigint initialized to value function nbv(i) { var r = nbi(); r.fromInt(i); return r; } // (protected) set from string and radix function bnpFromString(s, b) { var self = this; var k; if (b == 16) k = 4; else if (b == 8) k = 3; else if (b == 256) k = 8; // byte array else if (b == 2) k = 1; else if (b == 32) k = 5; else if (b == 4) k = 2; else { self.fromRadix(s, b); return; } self.t = 0; self.s = 0; var i = s.length, mi = false, sh = 0; while (--i >= 0) { var x = (k == 8) ? s[i] & 0xff : intAt(s, i); if (x < 0) { if (s.charAt(i) == "-") mi = true; continue; } mi = false; if (sh == 0) self[self.t++] = x; else if (sh + k > self.DB) { self[self.t - 1] |= (x & ((1 << (self.DB - sh)) - 1)) << sh; self[self.t++] = (x >> (self.DB - sh)); } else self[self.t - 1] |= x << sh; sh += k; if (sh >= self.DB) sh -= self.DB; } if (k == 8 && (s[0] & 0x80) != 0) { self.s = -1; if (sh > 0) self[self.t - 1] |= ((1 << (self.DB - sh)) - 1) << sh; } self.clamp(); if (mi) BigInteger.ZERO.subTo(self, self); } // (protected) clamp off excess high words function bnpClamp() { var c = this.s & this.DM; while (this.t > 0 && this[this.t - 1] == c) --this.t; } // (public) return string representation in given radix function bnToString(b) { var self = this; if (self.s < 0) return "-" + self.negate().toString(b); var k; if (b == 16) k = 4; else if (b == 8) k = 3; else if (b == 2) k = 1; else if (b == 32) k = 5; else if (b == 4) k = 2; else return self.toRadix(b); var km = (1 << k) - 1, d, m = false, r = "", i = self.t; var p = self.DB - (i * self.DB) % k; if (i-- > 0) { if (p < self.DB && (d = self[i] >> p) > 0) { m = true; r = int2char(d); } while (i >= 0) { if (p < k) { d = (self[i] & ((1 << p) - 1)) << (k - p); d |= self[--i] >> (p += self.DB - k); } else { d = (self[i] >> (p -= k)) & km; if (p <= 0) { p += self.DB; --i; } } if (d > 0) m = true; if (m) r += int2char(d); } } return m ? r : "0"; } // (public) -this function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this, r); return r; } // (public) |this| function bnAbs() { return (this.s < 0) ? this.negate() : this; } // (public) return + if this > a, - if this < a, 0 if equal function bnCompareTo(a) { var r = this.s - a.s; if (r != 0) return r; var i = this.t; r = i - a.t; if (r != 0) return (this.s < 0) ? -r : r; while (--i >= 0) if ((r = this[i] - a[i]) != 0) return r; return 0; } // returns bit length of the integer x function nbits(x) { var r = 1, t; if ((t = x >>> 16) != 0) { x = t; r += 16; } if ((t = x >> 8) != 0) { x = t; r += 8; } if ((t = x >> 4) != 0) { x = t; r += 4; } if ((t = x >> 2) != 0) { x = t; r += 2; } if ((t = x >> 1) != 0) { x = t; r += 1; } return r; } // (public) return the number of bits in "this" function bnBitLength() { if (this.t <= 0) return 0; return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM)); } // (protected) r = this << n*DB function bnpDLShiftTo(n, r) { var i; for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i]; for (i = n - 1; i >= 0; --i) r[i] = 0; r.t = this.t + n; r.s = this.s; } // (protected) r = this >> n*DB function bnpDRShiftTo(n, r) { for (var i = n; i < this.t; ++i) r[i - n] = this[i]; r.t = Math.max(this.t - n, 0); r.s = this.s; } // (protected) r = this << n function bnpLShiftTo(n, r) { var self = this; var bs = n % self.DB; var cbs = self.DB - bs; var bm = (1 << cbs) - 1; var ds = Math.floor(n / self.DB), c = (self.s << bs) & self.DM, i; for (i = self.t - 1; i >= 0; --i) { r[i + ds + 1] = (self[i] >> cbs) | c; c = (self[i] & bm) << bs; } for (i = ds - 1; i >= 0; --i) r[i] = 0; r[ds] = c; r.t = self.t + ds + 1; r.s = self.s; r.clamp(); } // (protected) r = this >> n function bnpRShiftTo(n, r) { var self = this; r.s = self.s; var ds = Math.floor(n / self.DB); if (ds >= self.t) { r.t = 0; return; } var bs = n % self.DB; var cbs = self.DB - bs; var bm = (1 << bs) - 1; r[0] = self[ds] >> bs; for (var i = ds + 1; i < self.t; ++i) { r[i - ds - 1] |= (self[i] & bm) << cbs; r[i - ds] = self[i] >> bs; } if (bs > 0) r[self.t - ds - 1] |= (self.s & bm) << cbs; r.t = self.t - ds; r.clamp(); } // (protected) r = this - a function bnpSubTo(a, r) { var self = this; var i = 0, c = 0, m = Math.min(a.t, self.t); while (i < m) { c += self[i] - a[i]; r[i++] = c & self.DM; c >>= self.DB; } if (a.t < self.t) { c -= a.s; while (i < self.t) { c += self[i]; r[i++] = c & self.DM; c >>= self.DB; } c += self.s; } else { c += self.s; while (i < a.t) { c -= a[i]; r[i++] = c & self.DM; c >>= self.DB; } c -= a.s; } r.s = (c < 0) ? -1 : 0; if (c < -1) r[i++] = self.DV + c; else if (c > 0) r[i++] = c; r.t = i; r.clamp(); } // (protected) r = this * a, r != this,a (HAC 14.12) // "this" should be the larger one if appropriate. function bnpMultiplyTo(a, r) { var x = this.abs(), y = a.abs(); var i = x.t; r.t = i + y.t; while (--i >= 0) r[i] = 0; for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t); r.s = 0; r.clamp(); if (this.s != a.s) BigInteger.ZERO.subTo(r, r); } // (protected) r = this^2, r != this (HAC 14.16) function bnpSquareTo(r) { var x = this.abs(); var i = r.t = 2 * x.t; while (--i >= 0) r[i] = 0; for (i = 0; i < x.t - 1; ++i) { var c = x.am(i, x[i], r, 2 * i, 0, 1); if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) { r[i + x.t] -= x.DV; r[i + x.t + 1] = 1; } } if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1); r.s = 0; r.clamp(); } // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // r != q, this != m. q or r may be null. function bnpDivRemTo(m, q, r) { var self = this; var pm = m.abs(); if (pm.t <= 0) return; var pt = self.abs(); if (pt.t < pm.t) { if (q != null) q.fromInt(0); if (r != null) self.copyTo(r); return; } if (r == null) r = nbi(); var y = nbi(), ts = self.s, ms = m.s; var nsh = self.DB - nbits(pm[pm.t - 1]); // normalize modulus if (nsh > 0) { pm.lShiftTo(nsh, y); pt.lShiftTo(nsh, r); } else { pm.copyTo(y); pt.copyTo(r); } var ys = y.t; var y0 = y[ys - 1]; if (y0 == 0) return; var yt = y0 * (1 << self.F1) + ((ys > 1) ? y[ys - 2] >> self.F2 : 0); var d1 = self.FV / yt, d2 = (1 << self.F1) / yt, e = 1 << self.F2; var i = r.t, j = i - ys, t = (q == null) ? nbi() : q; y.dlShiftTo(j, t); if (r.compareTo(t) >= 0) { r[r.t++] = 1; r.subTo(t, r); } BigInteger.ONE.dlShiftTo(ys, t); t.subTo(y, y); // "negative" y so we can replace sub with am later while (y.t < ys) y[y.t++] = 0; while (--j >= 0) { // Estimate quotient digit var qd = (r[--i] == y0) ? self.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2); if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out y.dlShiftTo(j, t); r.subTo(t, r); while (r[i] < --qd) r.subTo(t, r); } } if (q != null) { r.drShiftTo(ys, q); if (ts != ms) BigInteger.ZERO.subTo(q, q); } r.t = ys; r.clamp(); if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder if (ts < 0) BigInteger.ZERO.subTo(r, r); } // (public) this mod a function bnMod(a) { var r = nbi(); this.abs().divRemTo(a, null, r); if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r); return r; } // Modular reduction using "classic" algorithm function Classic(m) { this.m = m; } function cConvert(x) { if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); else return x; } function cRevert(x) { return x; } function cReduce(x) { x.divRemTo(this.m, null, x); } function cMulTo(x, y, r) { x.multiplyTo(y, r); this.reduce(r); } function cSqrTo(x, r) { x.squareTo(r); this.reduce(r); } Classic.prototype.convert = cConvert; Classic.prototype.revert = cRevert; Classic.prototype.reduce = cReduce; Classic.prototype.mulTo = cMulTo; Classic.prototype.sqrTo = cSqrTo; // (protected) return "-1/this % 2^DB"; useful for Mont. reduction // justification: // xy == 1 (mod m) // xy = 1+km // xy(2-xy) = (1+km)(1-km) // x[y(2-xy)] = 1-k^2m^2 // x[y(2-xy)] == 1 (mod m^2) // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // JS multiply "overflows" differently from C/C++, so care is needed here. function bnpInvDigit() { if (this.t < 1) return 0; var x = this[0]; if ((x & 1) == 0) return 0; var y = x & 3; // y == 1/x mod 2^2 y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4 y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8 y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return (y > 0) ? this.DV - y : -y; } // Montgomery reduction function Montgomery(m) { this.m = m; this.mp = m.invDigit(); this.mpl = this.mp & 0x7fff; this.mph = this.mp >> 15; this.um = (1 << (m.DB - 15)) - 1; this.mt2 = 2 * m.t; } // xR mod m function montConvert(x) { var r = nbi(); x.abs().dlShiftTo(this.m.t, r); r.divRemTo(this.m, null, r); if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r); return r; } // x/R mod m function montRevert(x) { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } // x = x/R mod m (HAC 14.32) function montReduce(x) { while (x.t <= this.mt2) // pad x so am has enough room later x[x.t++] = 0; for (var i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV var j = x[i] & 0x7fff; var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM; // use am to combine the multiply-shift-add into one call j = i + this.m.t; x[j] += this.m.am(0, u0, x, i, 0, this.m.t); // propagate carry while (x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } } x.clamp(); x.drShiftTo(this.m.t, x); if (x.compareTo(this.m) >= 0) x.subTo(this.m, x); } // r = "x^2/R mod m"; x != r function montSqrTo(x, r) { x.squareTo(r); this.reduce(r); } // r = "xy/R mod m"; x,y != r function montMulTo(x, y, r) { x.multiplyTo(y, r); this.reduce(r); } Montgomery.prototype.convert = montConvert; Montgomery.prototype.revert = montRevert; Montgomery.prototype.reduce = montReduce; Montgomery.prototype.mulTo = montMulTo; Montgomery.prototype.sqrTo = montSqrTo; // (protected) true iff this is even function bnpIsEven() { return ((this.t > 0) ? (this[0] & 1) : this.s) == 0; } // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) function bnpExp(e, z) { if (e > 0xffffffff || e < 1) return BigInteger.ONE; var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e) - 1; g.copyTo(r); while (--i >= 0) { z.sqrTo(r, r2); if ((e & (1 << i)) > 0) z.mulTo(r2, g, r); else { var t = r; r = r2; r2 = t; } } return z.revert(r); } // (public) this^e % m, 0 <= e < 2^32 function bnModPowInt(e, m) { var z; if (e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); return this.exp(e, z); } // protected proto.copyTo = bnpCopyTo; proto.fromInt = bnpFromInt; proto.fromString = bnpFromString; proto.clamp = bnpClamp; proto.dlShiftTo = bnpDLShiftTo; proto.drShiftTo = bnpDRShiftTo; proto.lShiftTo = bnpLShiftTo; proto.rShiftTo = bnpRShiftTo; proto.subTo = bnpSubTo; proto.multiplyTo = bnpMultiplyTo; proto.squareTo = bnpSquareTo; proto.divRemTo = bnpDivRemTo; proto.invDigit = bnpInvDigit; proto.isEven = bnpIsEven; proto.exp = bnpExp; // public proto.toString = bnToString; proto.negate = bnNegate; proto.abs = bnAbs; proto.compareTo = bnCompareTo; proto.bitLength = bnBitLength; proto.mod = bnMod; proto.modPowInt = bnModPowInt; //// jsbn2 function nbi() { return new BigInteger(null); } // (public) function bnClone() { var r = nbi(); this.copyTo(r); return r; } // (public) return value as integer function bnIntValue() { if (this.s < 0) { if (this.t == 1) return this[0] - this.DV; else if (this.t == 0) return -1; } else if (this.t == 1) return this[0]; else if (this.t == 0) return 0; // assumes 16 < DB < 32 return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0]; } // (public) return value as byte function bnByteValue() { return (this.t == 0) ? this.s : (this[0] << 24) >> 24; } // (public) return value as short (assumes DB>=16) function bnShortValue() { return (this.t == 0) ? this.s : (this[0] << 16) >> 16; } // (protected) return x s.t. r^x < DV function bnpChunkSize(r) { return Math.floor(Math.LN2 * this.DB / Math.log(r)); } // (public) 0 if this == 0, 1 if this > 0 function bnSigNum() { if (this.s < 0) return -1; else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; else return 1; } // (protected) convert to radix string function bnpToRadix(b) { if (b == null) b = 10; if (this.signum() == 0 || b < 2 || b > 36) return "0"; var cs = this.chunkSize(b); var a = Math.pow(b, cs); var d = nbv(a), y = nbi(), z = nbi(), r = ""; this.divRemTo(d, y, z); while (y.signum() > 0) { r = (a + z.intValue()).toString(b).substr(1) + r; y.divRemTo(d, y, z); } return z.intValue().toString(b) + r; } // (protected) convert from radix string function bnpFromRadix(s, b) { var self = this; self.fromInt(0); if (b == null) b = 10; var cs = self.chunkSize(b); var d = Math.pow(b, cs), mi = false, j = 0, w = 0; for (var i = 0; i < s.length; ++i) { var x = intAt(s, i); if (x < 0) { if (s.charAt(i) == "-" && self.signum() == 0) mi = true; continue; } w = b * w + x; if (++j >= cs) { self.dMultiply(d); self.dAddOffset(w, 0); j = 0; w = 0; } } if (j > 0) { self.dMultiply(Math.pow(b, j)); self.dAddOffset(w, 0); } if (mi) BigInteger.ZERO.subTo(self, self); } // (protected) alternate constructor function bnpFromNumber(a, b, c) { var self = this; if ("number" == typeof b) { // new BigInteger(int,int,RNG) if (a < 2) self.fromInt(1); else { self.fromNumber(a, c); if (!self.testBit(a - 1)) // force MSB set self.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, self); if (self.isEven()) self.dAddOffset(1, 0); // force odd while (!self.isProbablePrime(b)) { self.dAddOffset(2, 0); if (self.bitLength() > a) self.subTo(BigInteger.ONE.shiftLeft(a - 1), self); } } } else { // new BigInteger(int,RNG) var x = new Array(), t = a & 7; x.length = (a >> 3) + 1; b.nextBytes(x); if (t > 0) x[0] &= ((1 << t) - 1); else x[0] = 0; self.fromString(x, 256); } } // (public) convert to bigendian byte array function bnToByteArray() { var self = this; var i = self.t, r = new Array(); r[0] = self.s; var p = self.DB - (i * self.DB) % 8, d, k = 0; if (i-- > 0) { if (p < self.DB && (d = self[i] >> p) != (self.s & self.DM) >> p) r[k++] = d | (self.s << (self.DB - p)); while (i >= 0) { if (p < 8) { d = (self[i] & ((1 << p) - 1)) << (8 - p); d |= self[--i] >> (p += self.DB - 8); } else { d = (self[i] >> (p -= 8)) & 0xff; if (p <= 0) { p += self.DB; --i; } } if ((d & 0x80) != 0) d |= -256; if (k === 0 && (self.s & 0x80) != (d & 0x80)) ++k; if (k > 0 || d != self.s) r[k++] = d; } } return r; } function bnEquals(a) { return (this.compareTo(a) == 0); } function bnMin(a) { return (this.compareTo(a) < 0) ? this : a; } function bnMax(a) { return (this.compareTo(a) > 0) ? this : a; } // (protected) r = this op a (bitwise) function bnpBitwiseTo(a, op, r) { var self = this; var i, f, m = Math.min(a.t, self.t); for (i = 0; i < m; ++i) r[i] = op(self[i], a[i]); if (a.t < self.t) { f = a.s & self.DM; for (i = m; i < self.t; ++i) r[i] = op(self[i], f); r.t = self.t; } else { f = self.s & self.DM; for (i = m; i < a.t; ++i) r[i] = op(f, a[i]); r.t = a.t; } r.s = op(self.s, a.s); r.clamp(); } // (public) this & a function op_and(x, y) { return x & y; } function bnAnd(a) { var r = nbi(); this.bitwiseTo(a, op_and, r); return r; } // (public) this | a function op_or(x, y) { return x | y; } function bnOr(a) { var r = nbi(); this.bitwiseTo(a, op_or, r); return r; } // (public) this ^ a function op_xor(x, y) { return x ^ y; } function bnXor(a) { var r = nbi(); this.bitwiseTo(a, op_xor, r); return r; } // (public) this & ~a function op_andnot(x, y) { return x & ~y; } function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a, op_andnot, r); return r; } // (public) ~this function bnNot() { var r = nbi(); for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i]; r.t = this.t; r.s = ~this.s; return r; } // (public) this << n function bnShiftLeft(n) { var r = nbi(); if (n < 0) this.rShiftTo(-n, r); else this.lShiftTo(n, r); return r; } // (public) this >> n function bnShiftRight(n) { var r = nbi(); if (n < 0) this.lShiftTo(-n, r); else this.rShiftTo(n, r); return r; } // return index of lowest 1-bit in x, x < 2^31 function lbit(x) { if (x == 0) return -1; var r = 0; if ((x & 0xffff) == 0) { x >>= 16; r += 16; } if ((x & 0xff) == 0) { x >>= 8; r += 8; } if ((x & 0xf) == 0) { x >>= 4; r += 4; } if ((x & 3) == 0) { x >>= 2; r += 2; } if ((x & 1) == 0) ++r; return r; } // (public) returns index of lowest 1-bit (or -1 if none) function bnGetLowestSetBit() { for (var i = 0; i < this.t; ++i) if (this[i] != 0) return i * this.DB + lbit(this[i]); if (this.s < 0) return this.t * this.DB; return -1; } // return number of 1 bits in x function cbit(x) { var r = 0; while (x != 0) { x &= x - 1; ++r; } return r; } // (public) return number of set bits function bnBitCount() { var r = 0, x = this.s & this.DM; for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x); return r; } // (public) true iff nth bit is set function bnTestBit(n) { var j = Math.floor(n / this.DB); if (j >= this.t) return (this.s != 0); return ((this[j] & (1 << (n % this.DB))) != 0); } // (protected) this op (1<>= self.DB; } if (a.t < self.t) { c += a.s; while (i < self.t) { c += self[i]; r[i++] = c & self.DM; c >>= self.DB; } c += self.s; } else { c += self.s; while (i < a.t) { c += a[i]; r[i++] = c & self.DM; c >>= self.DB; } c += a.s; } r.s = (c < 0) ? -1 : 0; if (c > 0) r[i++] = c; else if (c < -1) r[i++] = self.DV + c; r.t = i; r.clamp(); } // (public) this + a function bnAdd(a) { var r = nbi(); this.addTo(a, r); return r; } // (public) this - a function bnSubtract(a) { var r = nbi(); this.subTo(a, r); return r; } // (public) this * a function bnMultiply(a) { var r = nbi(); this.multiplyTo(a, r); return r; } // (public) this^2 function bnSquare() { var r = nbi(); this.squareTo(r); return r; } // (public) this / a function bnDivide(a) { var r = nbi(); this.divRemTo(a, r, null); return r; } // (public) this % a function bnRemainder(a) { var r = nbi(); this.divRemTo(a, null, r); return r; } // (public) [this/a,this%a] function bnDivideAndRemainder(a) { var q = nbi(), r = nbi(); this.divRemTo(a, q, r); return new Array(q, r); } // (protected) this *= n, this >= 0, 1 < n < DV function bnpDMultiply(n) { this[this.t] = this.am(0, n - 1, this, 0, 0, this.t); ++this.t; this.clamp(); } // (protected) this += n << w words, this >= 0 function bnpDAddOffset(n, w) { if (n == 0) return; while (this.t <= w) this[this.t++] = 0; this[w] += n; while (this[w] >= this.DV) { this[w] -= this.DV; if (++w >= this.t) this[this.t++] = 0; ++this[w]; } } // A "null" reducer function NullExp() {} function nNop(x) { return x; } function nMulTo(x, y, r) { x.multiplyTo(y, r); } function nSqrTo(x, r) { x.squareTo(r); } NullExp.prototype.convert = nNop; NullExp.prototype.revert = nNop; NullExp.prototype.mulTo = nMulTo; NullExp.prototype.sqrTo = nSqrTo; // (public) this^e function bnPow(e) { return this.exp(e, new NullExp()); } // (protected) r = lower n words of "this * a", a.t <= n // "this" should be the larger one if appropriate. function bnpMultiplyLowerTo(a, n, r) { var i = Math.min(this.t + a.t, n); r.s = 0; // assumes a,this >= 0 r.t = i; while (i > 0) r[--i] = 0; var j; for (j = r.t - this.t; i < j; ++i) r[i + this.t] = this.am(0, a[i], r, i, 0, this.t); for (j = Math.min(a.t, n); i < j; ++i) this.am(0, a[i], r, i, 0, n - i); r.clamp(); } // (protected) r = "this * a" without lower n words, n > 0 // "this" should be the larger one if appropriate. function bnpMultiplyUpperTo(a, n, r) { --n; var i = r.t = this.t + a.t - n; r.s = 0; // assumes a,this >= 0 while (--i >= 0) r[i] = 0; for (i = Math.max(n - this.t, 0); i < a.t; ++i) r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n); r.clamp(); r.drShiftTo(1, r); } // Barrett modular reduction function Barrett(m) { // setup Barrett this.r2 = nbi(); this.q3 = nbi(); BigInteger.ONE.dlShiftTo(2 * m.t, this.r2); this.mu = this.r2.divide(m); this.m = m; } function barrettConvert(x) { if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m); else if (x.compareTo(this.m) < 0) return x; else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } } function barrettRevert(x) { return x; } // x = x mod m (HAC 14.42) function barrettReduce(x) { var self = this; x.drShiftTo(self.m.t - 1, self.r2); if (x.t > self.m.t + 1) { x.t = self.m.t + 1; x.clamp(); } self.mu.multiplyUpperTo(self.r2, self.m.t + 1, self.q3); self.m.multiplyLowerTo(self.q3, self.m.t + 1, self.r2); while (x.compareTo(self.r2) < 0) x.dAddOffset(1, self.m.t + 1); x.subTo(self.r2, x); while (x.compareTo(self.m) >= 0) x.subTo(self.m, x); } // r = x^2 mod m; x != r function barrettSqrTo(x, r) { x.squareTo(r); this.reduce(r); } // r = x*y mod m; x,y != r function barrettMulTo(x, y, r) { x.multiplyTo(y, r); this.reduce(r); } Barrett.prototype.convert = barrettConvert; Barrett.prototype.revert = barrettRevert; Barrett.prototype.reduce = barrettReduce; Barrett.prototype.mulTo = barrettMulTo; Barrett.prototype.sqrTo = barrettSqrTo; // (public) this^e % m (HAC 14.85) function bnModPow(e, m) { var i = e.bitLength(), k, r = nbv(1), z; if (i <= 0) return r; else if (i < 18) k = 1; else if (i < 48) k = 3; else if (i < 144) k = 4; else if (i < 768) k = 5; else k = 6; if (i < 8) z = new Classic(m); else if (m.isEven()) z = new Barrett(m); else z = new Montgomery(m); // precomputation var g = new Array(), n = 3, k1 = k - 1, km = (1 << k) - 1; g[1] = z.convert(this); if (k > 1) { var g2 = nbi(); z.sqrTo(g[1], g2); while (n <= km) { g[n] = nbi(); z.mulTo(g2, g[n - 2], g[n]); n += 2; } } var j = e.t - 1, w, is1 = true, r2 = nbi(), t; i = nbits(e[j]) - 1; while (j >= 0) { if (i >= k1) w = (e[j] >> (i - k1)) & km; else { w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i); if (j > 0) w |= e[j - 1] >> (this.DB + i - k1); } n = k; while ((w & 1) == 0) { w >>= 1; --n; } if ((i -= n) < 0) { i += this.DB; --j; } if (is1) { // ret == 1, don't bother squaring or multiplying it g[w].copyTo(r); is1 = false; } else { while (n > 1) { z.sqrTo(r, r2); z.sqrTo(r2, r); n -= 2; } if (n > 0) z.sqrTo(r, r2); else { t = r; r = r2; r2 = t; } z.mulTo(r2, g[w], r); } while (j >= 0 && (e[j] & (1 << i)) == 0) { z.sqrTo(r, r2); t = r; r = r2; r2 = t; if (--i < 0) { i = this.DB - 1; --j; } } } return z.revert(r); } // (public) gcd(this,a) (HAC 14.54) function bnGCD(a) { var x = (this.s < 0) ? this.negate() : this.clone(); var y = (a.s < 0) ? a.negate() : a.clone(); if (x.compareTo(y) < 0) { var t = x; x = y; y = t; } var i = x.getLowestSetBit(), g = y.getLowestSetBit(); if (g < 0) return x; if (i < g) g = i; if (g > 0) { x.rShiftTo(g, x); y.rShiftTo(g, y); } while (x.signum() > 0) { if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x); if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y); if (x.compareTo(y) >= 0) { x.subTo(y, x); x.rShiftTo(1, x); } else { y.subTo(x, y); y.rShiftTo(1, y); } } if (g > 0) y.lShiftTo(g, y); return y; } // (protected) this % n, n < 2^26 function bnpModInt(n) { if (n <= 0) return 0; var d = this.DV % n, r = (this.s < 0) ? n - 1 : 0; if (this.t > 0) if (d == 0) r = this[0] % n; else for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n; return r; } // (public) 1/this % m (HAC 14.61) function bnModInverse(m) { var ac = m.isEven(); if ((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; var u = m.clone(), v = this.clone(); var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); while (u.signum() != 0) { while (u.isEven()) { u.rShiftTo(1, u); if (ac) { if (!a.isEven() || !b.isEven()) { a.addTo(this, a); b.subTo(m, b); } a.rShiftTo(1, a); } else if (!b.isEven()) b.subTo(m, b); b.rShiftTo(1, b); } while (v.isEven()) { v.rShiftTo(1, v); if (ac) { if (!c.isEven() || !d.isEven()) { c.addTo(this, c); d.subTo(m, d); } c.rShiftTo(1, c); } else if (!d.isEven()) d.subTo(m, d); d.rShiftTo(1, d); } if (u.compareTo(v) >= 0) { u.subTo(v, u); if (ac) a.subTo(c, a); b.subTo(d, b); } else { v.subTo(u, v); if (ac) c.subTo(a, c); d.subTo(b, d); } } if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; if (d.compareTo(m) >= 0) return d.subtract(m); if (d.signum() < 0) d.addTo(m, d); else return d; if (d.signum() < 0) return d.add(m); else return d; } // protected proto.chunkSize = bnpChunkSize; proto.toRadix = bnpToRadix; proto.fromRadix = bnpFromRadix; proto.fromNumber = bnpFromNumber; proto.bitwiseTo = bnpBitwiseTo; proto.changeBit = bnpChangeBit; proto.addTo = bnpAddTo; proto.dMultiply = bnpDMultiply; proto.dAddOffset = bnpDAddOffset; proto.multiplyLowerTo = bnpMultiplyLowerTo; proto.multiplyUpperTo = bnpMultiplyUpperTo; proto.modInt = bnpModInt; // public proto.clone = bnClone; proto.intValue = bnIntValue; proto.byteValue = bnByteValue; proto.shortValue = bnShortValue; proto.signum = bnSigNum; proto.toByteArray = bnToByteArray; proto.equals = bnEquals; proto.min = bnMin; proto.max = bnMax; proto.and = bnAnd; proto.or = bnOr; proto.xor = bnXor; proto.andNot = bnAndNot; proto.not = bnNot; proto.shiftLeft = bnShiftLeft; proto.shiftRight = bnShiftRight; proto.getLowestSetBit = bnGetLowestSetBit; proto.bitCount = bnBitCount; proto.testBit = bnTestBit; proto.setBit = bnSetBit; proto.clearBit = bnClearBit; proto.flipBit = bnFlipBit; proto.add = bnAdd; proto.subtract = bnSubtract; proto.multiply = bnMultiply; proto.divide = bnDivide; proto.remainder = bnRemainder; proto.divideAndRemainder = bnDivideAndRemainder; proto.modPow = bnModPow; proto.modInverse = bnModInverse; proto.pow = bnPow; proto.gcd = bnGCD; // JSBN-specific extension proto.square = bnSquare; // BigInteger interfaces not implemented in jsbn: // BigInteger(int signum, byte[] magnitude) // double doubleValue() // float floatValue() // int hashCode() // long longValue() // static BigInteger valueOf(long val) // "constants" BigInteger.ZERO = nbv(0); BigInteger.ONE = nbv(1); BigInteger.valueOf = nbv; /// bitcoinjs addons /** * Turns a byte array into a big integer. * * This function will interpret a byte array as a big integer in big * endian notation and ignore leading zeros. */ BigInteger.fromByteArrayUnsigned = function (ba) { if (!ba.length) { return new BigInteger.valueOf(0); } else if (ba[0] & 0x80) { // Prepend a zero so the BigInteger class doesn't mistake this // for a negative integer. return new BigInteger([0].concat(ba)); } else { return new BigInteger(ba); } }; /** * Parse a signed big integer byte representation. * * For details on the format please see BigInteger.toByteArraySigned. */ BigInteger.fromByteArraySigned = function (ba) { // Check for negative value if (ba[0] & 0x80) { // Remove sign bit ba[0] &= 0x7f; return BigInteger.fromByteArrayUnsigned(ba).negate(); } else { return BigInteger.fromByteArrayUnsigned(ba); } }; /** * Returns a byte array representation of the big integer. * * This returns the absolute of the contained value in big endian * form. A value of zero results in an empty array. */ BigInteger.prototype.toByteArrayUnsigned = function () { var ba = this.abs().toByteArray(); // Empty array, nothing to do if (!ba.length) { return ba; } // remove leading 0 if (ba[0] === 0) { ba = ba.slice(1); } // all values must be positive for (var i = 0; i < ba.length; ++i) { ba[i] = (ba[i] < 0) ? ba[i] + 256 : ba[i]; } return ba; }; /* * Converts big integer to signed byte representation. * * The format for this value uses the most significant bit as a sign * bit. If the most significant bit is already occupied by the * absolute value, an extra byte is prepended and the sign bit is set * there. * * Examples: * * 0 => 0x00 * 1 => 0x01 * -1 => 0x81 * 127 => 0x7f * -127 => 0xff * 128 => 0x0080 * -128 => 0x8080 * 255 => 0x00ff * -255 => 0x80ff * 16300 => 0x3fac * -16300 => 0xbfac * 62300 => 0x00f35c * -62300 => 0x80f35c */ BigInteger.prototype.toByteArraySigned = function () { var val = this.toByteArrayUnsigned(); var neg = this.s < 0; // if the first bit is set, we always unshift // either unshift 0x80 or 0x00 if (val[0] & 0x80) { val.unshift((neg) ? 0x80 : 0x00); } // if the first bit isn't set, set it if negative else if (neg) { val[0] |= 0x80; } return val; }; //ellipticcurve.js /*! * Basic Javascript Elliptic Curve implementation * Ported loosely from BouncyCastle's Java EC code * Only Fp curves implemented for now * * Copyright Tom Wu, bitaddress.org BSD License. * http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE */ (function () { // Constructor function of Global EllipticCurve object var ec = window.EllipticCurve = function () {}; // ---------------- // ECFieldElementFp constructor // q instanceof BigInteger // x instanceof BigInteger ec.FieldElementFp = function (q, x) { this.x = x; // TODO if(x.compareTo(q) >= 0) error this.q = q; }; ec.FieldElementFp.prototype.equals = function (other) { if (other == this) return true; return (this.q.equals(other.q) && this.x.equals(other.x)); }; ec.FieldElementFp.prototype.toBigInteger = function () { return this.x; }; ec.FieldElementFp.prototype.negate = function () { return new ec.FieldElementFp(this.q, this.x.negate().mod(this.q)); }; ec.FieldElementFp.prototype.add = function (b) { return new ec.FieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q)); }; ec.FieldElementFp.prototype.subtract = function (b) { return new ec.FieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q)); }; ec.FieldElementFp.prototype.multiply = function (b) { return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q)); }; ec.FieldElementFp.prototype.square = function () { return new ec.FieldElementFp(this.q, this.x.square().mod(this.q)); }; ec.FieldElementFp.prototype.divide = function (b) { return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod( this.q)); }; ec.FieldElementFp.prototype.getByteLength = function () { return Math.floor((this.toBigInteger().bitLength() + 7) / 8); }; // D.1.4 91 /** * return a sqrt root - the routine verifies that the calculation * returns the right value - if none exists it returns null. * * Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org) * Ported to JavaScript by bitaddress.org */ ec.FieldElementFp.prototype.sqrt = function () { if (!this.q.testBit(0)) throw new Error("even value of q"); // p mod 4 == 3 if (this.q.testBit(1)) { // z = g^(u+1) + p, p = 4u + 3 var z = new ec.FieldElementFp(this.q, this.x.modPow(this.q.shiftRight(2).add(BigInteger.ONE), this.q)); return z.square().equals(this) ? z : null; } // p mod 4 == 1 var qMinusOne = this.q.subtract(BigInteger.ONE); var legendreExponent = qMinusOne.shiftRight(1); if (!(this.x.modPow(legendreExponent, this.q).equals(BigInteger.ONE))) return null; var u = qMinusOne.shiftRight(2); var k = u.shiftLeft(1).add(BigInteger.ONE); var Q = this.x; var fourQ = Q.shiftLeft(2).mod(this.q); var U, V; do { var rand = new SecureRandom(); var P; do { P = new BigInteger(this.q.bitLength(), rand); } while (P.compareTo(this.q) >= 0 || !(P.multiply(P).subtract(fourQ).modPow(legendreExponent, this.q).equals(qMinusOne))); var result = ec.FieldElementFp.fastLucasSequence(this.q, P, Q, k); U = result[0]; V = result[1]; if (V.multiply(V).mod(this.q).equals(fourQ)) { // Integer division by 2, mod q if (V.testBit(0)) { V = V.add(this.q); } V = V.shiftRight(1); return new ec.FieldElementFp(this.q, V); } } while (U.equals(BigInteger.ONE) || U.equals(qMinusOne)); return null; }; /* * Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org) * Ported to JavaScript by bitaddress.org */ ec.FieldElementFp.fastLucasSequence = function (p, P, Q, k) { // TODO Research and apply "common-multiplicand multiplication here" var n = k.bitLength(); var s = k.getLowestSetBit(); var Uh = BigInteger.ONE; var Vl = BigInteger.TWO; var Vh = P; var Ql = BigInteger.ONE; var Qh = BigInteger.ONE; for (var j = n - 1; j >= s + 1; --j) { Ql = Ql.multiply(Qh).mod(p); if (k.testBit(j)) { Qh = Ql.multiply(Q).mod(p); Uh = Uh.multiply(Vh).mod(p); Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p); Vh = Vh.multiply(Vh).subtract(Qh.shiftLeft(1)).mod(p); } else { Qh = Ql; Uh = Uh.multiply(Vl).subtract(Ql).mod(p); Vh = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p); Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p); } } Ql = Ql.multiply(Qh).mod(p); Qh = Ql.multiply(Q).mod(p); Uh = Uh.multiply(Vl).subtract(Ql).mod(p); Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p); Ql = Ql.multiply(Qh).mod(p); for (var j = 1; j <= s; ++j) { Uh = Uh.multiply(Vl).mod(p); Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p); Ql = Ql.multiply(Ql).mod(p); } return [Uh, Vl]; }; // ---------------- // ECPointFp constructor ec.PointFp = function (curve, x, y, z, compressed) { this.curve = curve; this.x = x; this.y = y; // Projective coordinates: either zinv == null or z * zinv == 1 // z and zinv are just BigIntegers, not fieldElements if (z == null) { this.z = BigInteger.ONE; } else { this.z = z; } this.zinv = null; // compression flag this.compressed = !!compressed; }; ec.PointFp.prototype.getX = function () { if (this.zinv == null) { this.zinv = this.z.modInverse(this.curve.q); } var r = this.x.toBigInteger().multiply(this.zinv); this.curve.reduce(r); return this.curve.fromBigInteger(r); }; ec.PointFp.prototype.getY = function () { if (this.zinv == null) { this.zinv = this.z.modInverse(this.curve.q); } var r = this.y.toBigInteger().multiply(this.zinv); this.curve.reduce(r); return this.curve.fromBigInteger(r); }; ec.PointFp.prototype.equals = function (other) { if (other == this) return true; if (this.isInfinity()) return other.isInfinity(); if (other.isInfinity()) return this.isInfinity(); var u, v; // u = Y2 * Z1 - Y1 * Z2 u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod( this.curve.q); if (!u.equals(BigInteger.ZERO)) return false; // v = X2 * Z1 - X1 * Z2 v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod( this.curve.q); return v.equals(BigInteger.ZERO); }; ec.PointFp.prototype.isInfinity = function () { if ((this.x == null) && (this.y == null)) return true; return this.z.equals(BigInteger.ZERO) && !this.y.toBigInteger().equals(BigInteger.ZERO); }; ec.PointFp.prototype.negate = function () { return new ec.PointFp(this.curve, this.x, this.y.negate(), this.z); }; ec.PointFp.prototype.add = function (b) { if (this.isInfinity()) return b; if (b.isInfinity()) return this; // u = Y2 * Z1 - Y1 * Z2 var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod( this.curve.q); // v = X2 * Z1 - X1 * Z2 var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod( this.curve.q); if (BigInteger.ZERO.equals(v)) { if (BigInteger.ZERO.equals(u)) { return this.twice(); // this == b, so double } return this.curve.getInfinity(); // this = -b, so infinity } var THREE = new BigInteger("3"); var x1 = this.x.toBigInteger(); var y1 = this.y.toBigInteger(); var x2 = b.x.toBigInteger(); var y2 = b.y.toBigInteger(); var v2 = v.square(); var v3 = v2.multiply(v); var x1v2 = x1.multiply(v2); var zu2 = u.square().multiply(this.z); // x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3) var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q); // y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3 var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply( b.z).add(u.multiply(v3)).mod(this.curve.q); // z3 = v^3 * z1 * z2 var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q); return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3); }; ec.PointFp.prototype.twice = function () { if (this.isInfinity()) return this; if (this.y.toBigInteger().signum() == 0) return this.curve.getInfinity(); // TODO: optimized handling of constants var THREE = new BigInteger("3"); var x1 = this.x.toBigInteger(); var y1 = this.y.toBigInteger(); var y1z1 = y1.multiply(this.z); var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q); var a = this.curve.a.toBigInteger(); // w = 3 * x1^2 + a * z1^2 var w = x1.square().multiply(THREE); if (!BigInteger.ZERO.equals(a)) { w = w.add(this.z.square().multiply(a)); } w = w.mod(this.curve.q); //this.curve.reduce(w); // x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1) var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod( this.curve.q); // y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3 var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply( y1sqz1).subtract(w.square().multiply(w)).mod(this.curve.q); // z3 = 8 * (y1 * z1)^3 var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q); return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3); }; // Simple NAF (Non-Adjacent Form) multiplication algorithm // TODO: modularize the multiplication algorithm ec.PointFp.prototype.multiply = function (k) { if (this.isInfinity()) return this; if (k.signum() == 0) return this.curve.getInfinity(); var e = k; var h = e.multiply(new BigInteger("3")); var neg = this.negate(); var R = this; var i; for (i = h.bitLength() - 2; i > 0; --i) { R = R.twice(); var hBit = h.testBit(i); var eBit = e.testBit(i); if (hBit != eBit) { R = R.add(hBit ? this : neg); } } return R; }; // Compute this*j + x*k (simultaneous multiplication) ec.PointFp.prototype.multiplyTwo = function (j, x, k) { var i; if (j.bitLength() > k.bitLength()) i = j.bitLength() - 1; else i = k.bitLength() - 1; var R = this.curve.getInfinity(); var both = this.add(x); while (i >= 0) { R = R.twice(); if (j.testBit(i)) { if (k.testBit(i)) { R = R.add(both); } else { R = R.add(this); } } else { if (k.testBit(i)) { R = R.add(x); } } --i; } return R; }; // patched by bitaddress.org and Casascius for use with Bitcoin.ECKey // patched by coretechs to support compressed public keys ec.PointFp.prototype.getEncoded = function (compressed) { var x = this.getX().toBigInteger(); var y = this.getY().toBigInteger(); var len = 32; // integerToBytes will zero pad if integer is less than 32 bytes. 32 bytes length is required by the Bitcoin protocol. var enc = ec.integerToBytes(x, len); // when compressed prepend byte depending if y point is even or odd if (compressed) { if (y.isEven()) { enc.unshift(0x02); } else { enc.unshift(0x03); } } else { enc.unshift(0x04); enc = enc.concat(ec.integerToBytes(y, len)); // uncompressed public key appends the bytes of the y point } return enc; }; ec.PointFp.decodeFrom = function (curve, enc) { var type = enc[0]; var dataLen = enc.length - 1; // Extract x and y as byte arrays var xBa = enc.slice(1, 1 + dataLen / 2); var yBa = enc.slice(1 + dataLen / 2, 1 + dataLen); // Prepend zero byte to prevent interpretation as negative integer xBa.unshift(0); yBa.unshift(0); // Convert to BigIntegers var x = new BigInteger(xBa); var y = new BigInteger(yBa); // Return point return new ec.PointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y)); }; ec.PointFp.prototype.add2D = function (b) { if (this.isInfinity()) return b; if (b.isInfinity()) return this; if (this.x.equals(b.x)) { if (this.y.equals(b.y)) { // this = b, i.e. this must be doubled return this.twice(); } // this = -b, i.e. the result is the point at infinity return this.curve.getInfinity(); } var x_x = b.x.subtract(this.x); var y_y = b.y.subtract(this.y); var gamma = y_y.divide(x_x); var x3 = gamma.square().subtract(this.x).subtract(b.x); var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y); return new ec.PointFp(this.curve, x3, y3); }; ec.PointFp.prototype.twice2D = function () { if (this.isInfinity()) return this; if (this.y.toBigInteger().signum() == 0) { // if y1 == 0, then (x1, y1) == (x1, -y1) // and hence this = -this and thus 2(x1, y1) == infinity return this.curve.getInfinity(); } var TWO = this.curve.fromBigInteger(BigInteger.valueOf(2)); var THREE = this.curve.fromBigInteger(BigInteger.valueOf(3)); var gamma = this.x.square().multiply(THREE).add(this.curve.a).divide(this.y.multiply(TWO)); var x3 = gamma.square().subtract(this.x.multiply(TWO)); var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y); return new ec.PointFp(this.curve, x3, y3); }; ec.PointFp.prototype.multiply2D = function (k) { if (this.isInfinity()) return this; if (k.signum() == 0) return this.curve.getInfinity(); var e = k; var h = e.multiply(new BigInteger("3")); var neg = this.negate(); var R = this; var i; for (i = h.bitLength() - 2; i > 0; --i) { R = R.twice(); var hBit = h.testBit(i); var eBit = e.testBit(i); if (hBit != eBit) { R = R.add2D(hBit ? this : neg); } } return R; }; ec.PointFp.prototype.isOnCurve = function () { var x = this.getX().toBigInteger(); var y = this.getY().toBigInteger(); var a = this.curve.getA().toBigInteger(); var b = this.curve.getB().toBigInteger(); var n = this.curve.getQ(); var lhs = y.multiply(y).mod(n); var rhs = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(n); return lhs.equals(rhs); }; ec.PointFp.prototype.toString = function () { return '(' + this.getX().toBigInteger().toString() + ',' + this.getY().toBigInteger().toString() + ')'; }; /** * Validate an elliptic curve point. * * See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive */ ec.PointFp.prototype.validate = function () { var n = this.curve.getQ(); // Check Q != O if (this.isInfinity()) { throw new Error("Point is at infinity."); } // Check coordinate bounds var x = this.getX().toBigInteger(); var y = this.getY().toBigInteger(); if (x.compareTo(BigInteger.ONE) < 0 || x.compareTo(n.subtract(BigInteger.ONE)) > 0) { throw new Error('x coordinate out of bounds'); } if (y.compareTo(BigInteger.ONE) < 0 || y.compareTo(n.subtract(BigInteger.ONE)) > 0) { throw new Error('y coordinate out of bounds'); } // Check y^2 = x^3 + ax + b (mod n) if (!this.isOnCurve()) { throw new Error("Point is not on the curve."); } // Check nQ = 0 (Q is a scalar multiple of G) if (this.multiply(n).isInfinity()) { // TODO: This check doesn't work - fix. throw new Error("Point is not a scalar multiple of G."); } return true; }; // ---------------- // ECCurveFp constructor ec.CurveFp = function (q, a, b) { this.q = q; this.a = this.fromBigInteger(a); this.b = this.fromBigInteger(b); this.infinity = new ec.PointFp(this, null, null); this.reducer = new Barrett(this.q); } ec.CurveFp.prototype.getQ = function () { return this.q; }; ec.CurveFp.prototype.getA = function () { return this.a; }; ec.CurveFp.prototype.getB = function () { return this.b; }; ec.CurveFp.prototype.equals = function (other) { if (other == this) return true; return (this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b)); }; ec.CurveFp.prototype.getInfinity = function () { return this.infinity; }; ec.CurveFp.prototype.fromBigInteger = function (x) { return new ec.FieldElementFp(this.q, x); }; ec.CurveFp.prototype.reduce = function (x) { this.reducer.reduce(x); }; // for now, work with hex strings because they're easier in JS // compressed support added by bitaddress.org ec.CurveFp.prototype.decodePointHex = function (s) { var firstByte = parseInt(s.substr(0, 2), 16); switch (firstByte) { // first byte case 0: return this.infinity; case 2: // compressed case 3: // compressed var yTilde = firstByte & 1; var xHex = s.substr(2, s.length - 2); var X1 = new BigInteger(xHex, 16); return this.decompressPoint(yTilde, X1); case 4: // uncompressed case 6: // hybrid case 7: // hybrid var len = (s.length - 2) / 2; var xHex = s.substr(2, len); var yHex = s.substr(len + 2, len); return new ec.PointFp(this, this.fromBigInteger(new BigInteger(xHex, 16)), this.fromBigInteger(new BigInteger(yHex, 16))); default: // unsupported return null; } }; ec.CurveFp.prototype.encodePointHex = function (p) { if (p.isInfinity()) return "00"; var xHex = p.getX().toBigInteger().toString(16); var yHex = p.getY().toBigInteger().toString(16); var oLen = this.getQ().toString(16).length; if ((oLen % 2) != 0) oLen++; while (xHex.length < oLen) { xHex = "0" + xHex; } while (yHex.length < oLen) { yHex = "0" + yHex; } return "04" + xHex + yHex; }; /* * Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org) * Ported to JavaScript by bitaddress.org * * Number yTilde * BigInteger X1 */ ec.CurveFp.prototype.decompressPoint = function (yTilde, X1) { var x = this.fromBigInteger(X1); var alpha = x.multiply(x.square().add(this.getA())).add(this.getB()); var beta = alpha.sqrt(); // if we can't find a sqrt we haven't got a point on the curve - run! if (beta == null) throw new Error("Invalid point compression"); var betaValue = beta.toBigInteger(); var bit0 = betaValue.testBit(0) ? 1 : 0; if (bit0 != yTilde) { // Use the other root beta = this.fromBigInteger(this.getQ().subtract(betaValue)); } return new ec.PointFp(this, x, beta, null, true); }; ec.fromHex = function (s) { return new BigInteger(s, 16); }; ec.integerToBytes = function (i, len) { var bytes = i.toByteArrayUnsigned(); if (len < bytes.length) { bytes = bytes.slice(bytes.length - len); } else while (len > bytes.length) { bytes.unshift(0); } return bytes; }; // Named EC curves // ---------------- // X9ECParameters constructor ec.X9Parameters = function (curve, g, n, h) { this.curve = curve; this.g = g; this.n = n; this.h = h; } ec.X9Parameters.prototype.getCurve = function () { return this.curve; }; ec.X9Parameters.prototype.getG = function () { return this.g; }; ec.X9Parameters.prototype.getN = function () { return this.n; }; ec.X9Parameters.prototype.getH = function () { return this.h; }; // secp256k1 is the Curve used by Bitcoin ec.secNamedCurves = { // used by Bitcoin "secp256k1": function () { // p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1 var p = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F"); var a = BigInteger.ZERO; var b = ec.fromHex("7"); var n = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141"); var h = BigInteger.ONE; var curve = new ec.CurveFp(p, a, b); var G = curve.decodePointHex("04" + "79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798" + "483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8"); return new ec.X9Parameters(curve, G, n, h); } }; // secp256k1 called by Bitcoin's ECKEY ec.getSECCurveByName = function (name) { if (ec.secNamedCurves[name] == undefined) return null; return ec.secNamedCurves[name](); } })(); //bitTrx.js (function () { var bitjs = window.bitjs = function () {}; /* public vars */ bitjs.pub = 0x23; // flochange - changed the prefix to FLO Mainnet PublicKey Prefix 0x23 bitjs.priv = 0xa3; //flochange - changed the prefix to FLO Mainnet Private key prefix 0xa3 bitjs.compressed = false; /* provide a privkey and return an WIF */ bitjs.privkey2wif = function (h) { var r = Crypto.util.hexToBytes(h); if (bitjs.compressed == true) { r.push(0x01); } r.unshift(bitjs.priv); var hash = Crypto.SHA256(Crypto.SHA256(r, { asBytes: true }), { asBytes: true }); var checksum = hash.slice(0, 4); return B58.encode(r.concat(checksum)); } /* convert a wif key back to a private key */ bitjs.wif2privkey = function (wif) { var compressed = false; var decode = B58.decode(wif); var key = decode.slice(0, decode.length - 4); key = key.slice(1, key.length); if (key.length >= 33 && key[key.length - 1] == 0x01) { key = key.slice(0, key.length - 1); compressed = true; } return { 'privkey': Crypto.util.bytesToHex(key), 'compressed': compressed }; } /* convert a wif to a pubkey */ bitjs.wif2pubkey = function (wif) { var compressed = bitjs.compressed; var r = bitjs.wif2privkey(wif); bitjs.compressed = r['compressed']; var pubkey = bitjs.newPubkey(r['privkey']); bitjs.compressed = compressed; return { 'pubkey': pubkey, 'compressed': r['compressed'] }; } /* convert a wif to a address */ bitjs.wif2address = function (wif) { var r = bitjs.wif2pubkey(wif); return { 'address': bitjs.pubkey2address(r['pubkey']), 'compressed': r['compressed'] }; } /* generate a public key from a private key */ bitjs.newPubkey = function (hash) { var privateKeyBigInt = BigInteger.fromByteArrayUnsigned(Crypto.util.hexToBytes(hash)); var curve = EllipticCurve.getSECCurveByName("secp256k1"); var curvePt = curve.getG().multiply(privateKeyBigInt); var x = curvePt.getX().toBigInteger(); var y = curvePt.getY().toBigInteger(); var publicKeyBytes = EllipticCurve.integerToBytes(x, 32); publicKeyBytes = publicKeyBytes.concat(EllipticCurve.integerToBytes(y, 32)); publicKeyBytes.unshift(0x04); if (bitjs.compressed == true) { var publicKeyBytesCompressed = EllipticCurve.integerToBytes(x, 32) if (y.isEven()) { publicKeyBytesCompressed.unshift(0x02) } else { publicKeyBytesCompressed.unshift(0x03) } return Crypto.util.bytesToHex(publicKeyBytesCompressed); } else { return Crypto.util.bytesToHex(publicKeyBytes); } } /* provide a public key and return address */ bitjs.pubkey2address = function (h, byte) { var r = ripemd160(Crypto.SHA256(Crypto.util.hexToBytes(h), { asBytes: true })); r.unshift(byte || bitjs.pub); var hash = Crypto.SHA256(Crypto.SHA256(r, { asBytes: true }), { asBytes: true }); var checksum = hash.slice(0, 4); return B58.encode(r.concat(checksum)); } bitjs.transaction = function () { var btrx = {}; btrx.version = 2; //flochange look at this version btrx.inputs = []; btrx.outputs = []; btrx.locktime = 0; btrx.floData = ""; //flochange .. look at this btrx.addinput = function (txid, index, scriptPubKey, sequence) { var o = {}; o.outpoint = { 'hash': txid, 'index': index }; //o.script = []; Signature and Public Key should be added after singning o.script = Crypto.util.hexToBytes(scriptPubKey); //push previous output pubkey script o.sequence = sequence || ((btrx.locktime == 0) ? 4294967295 : 0); return this.inputs.push(o); } btrx.addoutput = function (address, value) { var o = {}; var buf = []; var addrDecoded = btrx.addressDecode(address); o.value = new BigInteger('' + Math.round((value * 1) * 1e8), 10); buf.push(118); //OP_DUP buf.push(169); //OP_HASH160 buf.push(addrDecoded.length); buf = buf.concat(addrDecoded); // address in bytes buf.push(136); //OP_EQUALVERIFY buf.push(172); // OP_CHECKSIG o.script = buf; return this.outputs.push(o); } btrx.addflodata = function (txcomments) { // flochange - this whole function needs to be done this.floData = txcomments; return this.floData; //flochange .. returning the txcomments -- check if the function return will assign } // Only standard addresses btrx.addressDecode = function (address) { var bytes = B58.decode(address); var front = bytes.slice(0, bytes.length - 4); var back = bytes.slice(bytes.length - 4); var checksum = Crypto.SHA256(Crypto.SHA256(front, { asBytes: true }), { asBytes: true }).slice(0, 4); if (checksum + "" == back + "") { return front.slice(1); } } /* generate the transaction hash to sign from a transaction input */ btrx.transactionHash = function (index, sigHashType) { var clone = bitjs.clone(this); var shType = sigHashType || 1; /* black out all other ins, except this one */ for (var i = 0; i < clone.inputs.length; i++) { if (index != i) { clone.inputs[i].script = []; } } if ((clone.inputs) && clone.inputs[index]) { /* SIGHASH : For more info on sig hashs see https://en.bitcoin.it/wiki/OP_CHECKSIG and https://bitcoin.org/en/developer-guide#signature-hash-type */ if (shType == 1) { //SIGHASH_ALL 0x01 } else if (shType == 2) { //SIGHASH_NONE 0x02 clone.outputs = []; for (var i = 0; i < clone.inputs.length; i++) { if (index != i) { clone.inputs[i].sequence = 0; } } } else if (shType == 3) { //SIGHASH_SINGLE 0x03 clone.outputs.length = index + 1; for (var i = 0; i < index; i++) { clone.outputs[i].value = -1; clone.outputs[i].script = []; } for (var i = 0; i < clone.inputs.length; i++) { if (index != i) { clone.inputs[i].sequence = 0; } } } else if (shType >= 128) { //SIGHASH_ANYONECANPAY 0x80 clone.inputs = [clone.inputs[index]]; if (shType == 129) { // SIGHASH_ALL + SIGHASH_ANYONECANPAY } else if (shType == 130) { // SIGHASH_NONE + SIGHASH_ANYONECANPAY clone.outputs = []; } else if (shType == 131) { // SIGHASH_SINGLE + SIGHASH_ANYONECANPAY clone.outputs.length = index + 1; for (var i = 0; i < index; i++) { clone.outputs[i].value = -1; clone.outputs[i].script = []; } } } var buffer = Crypto.util.hexToBytes(clone.serialize()); buffer = buffer.concat(bitjs.numToBytes(parseInt(shType), 4)); var hash = Crypto.SHA256(buffer, { asBytes: true }); var r = Crypto.util.bytesToHex(Crypto.SHA256(hash, { asBytes: true })); return r; } else { return false; } } /* generate a signature from a transaction hash */ btrx.transactionSig = function (index, wif, sigHashType, txhash) { function serializeSig(r, s) { var rBa = r.toByteArraySigned(); var sBa = s.toByteArraySigned(); var sequence = []; sequence.push(0x02); // INTEGER sequence.push(rBa.length); sequence = sequence.concat(rBa); sequence.push(0x02); // INTEGER sequence.push(sBa.length); sequence = sequence.concat(sBa); sequence.unshift(sequence.length); sequence.unshift(0x30); // SEQUENCE return sequence; } var shType = sigHashType || 1; var hash = txhash || Crypto.util.hexToBytes(this.transactionHash(index, shType)); if (hash) { var curve = EllipticCurve.getSECCurveByName("secp256k1"); var key = bitjs.wif2privkey(wif); var priv = BigInteger.fromByteArrayUnsigned(Crypto.util.hexToBytes(key['privkey'])); var n = curve.getN(); var e = BigInteger.fromByteArrayUnsigned(hash); var badrs = 0 do { var k = this.deterministicK(wif, hash, badrs); var G = curve.getG(); var Q = G.multiply(k); var r = Q.getX().toBigInteger().mod(n); var s = k.modInverse(n).multiply(e.add(priv.multiply(r))).mod(n); badrs++ } while (r.compareTo(BigInteger.ZERO) <= 0 || s.compareTo(BigInteger.ZERO) <= 0); // Force lower s values per BIP62 var halfn = n.shiftRight(1); if (s.compareTo(halfn) > 0) { s = n.subtract(s); }; var sig = serializeSig(r, s); sig.push(parseInt(shType, 10)); return Crypto.util.bytesToHex(sig); } else { return false; } } // https://tools.ietf.org/html/rfc6979#section-3.2 btrx.deterministicK = function (wif, hash, badrs) { // if r or s were invalid when this function was used in signing, // we do not want to actually compute r, s here for efficiency, so, // we can increment badrs. explained at end of RFC 6979 section 3.2 // wif is b58check encoded wif privkey. // hash is byte array of transaction digest. // badrs is used only if the k resulted in bad r or s. // some necessary things out of the way for clarity. badrs = badrs || 0; var key = bitjs.wif2privkey(wif); var x = Crypto.util.hexToBytes(key['privkey']) var curve = EllipticCurve.getSECCurveByName("secp256k1"); var N = curve.getN(); // Step: a // hash is a byteArray of the message digest. so h1 == hash in our case // Step: b var v = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]; // Step: c var k = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]; // Step: d k = Crypto.HMAC(Crypto.SHA256, v.concat([0]).concat(x).concat(hash), k, { asBytes: true }); // Step: e v = Crypto.HMAC(Crypto.SHA256, v, k, { asBytes: true }); // Step: f k = Crypto.HMAC(Crypto.SHA256, v.concat([1]).concat(x).concat(hash), k, { asBytes: true }); // Step: g v = Crypto.HMAC(Crypto.SHA256, v, k, { asBytes: true }); // Step: h1 var T = []; // Step: h2 (since we know tlen = qlen, just copy v to T.) v = Crypto.HMAC(Crypto.SHA256, v, k, { asBytes: true }); T = v; // Step: h3 var KBigInt = BigInteger.fromByteArrayUnsigned(T); // loop if KBigInt is not in the range of [1, N-1] or if badrs needs incrementing. var i = 0 while (KBigInt.compareTo(N) >= 0 || KBigInt.compareTo(BigInteger.ZERO) <= 0 || i < badrs) { k = Crypto.HMAC(Crypto.SHA256, v.concat([0]), k, { asBytes: true }); v = Crypto.HMAC(Crypto.SHA256, v, k, { asBytes: true }); v = Crypto.HMAC(Crypto.SHA256, v, k, { asBytes: true }); T = v; KBigInt = BigInteger.fromByteArrayUnsigned(T); i++ }; return KBigInt; }; /* sign a "standard" input */ btrx.signinput = function (index, wif, sigHashType) { var key = bitjs.wif2pubkey(wif); var shType = sigHashType || 1; var signature = this.transactionSig(index, wif, shType); var buf = []; var sigBytes = Crypto.util.hexToBytes(signature); buf.push(sigBytes.length); buf = buf.concat(sigBytes); var pubKeyBytes = Crypto.util.hexToBytes(key['pubkey']); buf.push(pubKeyBytes.length); buf = buf.concat(pubKeyBytes); this.inputs[index].script = buf; return true; } /* sign inputs */ btrx.sign = function (wif, sigHashType) { var shType = sigHashType || 1; for (var i = 0; i < this.inputs.length; i++) { this.signinput(i, wif, shType); } return this.serialize(); } /* serialize a transaction */ btrx.serialize = function () { var buffer = []; buffer = buffer.concat(bitjs.numToBytes(parseInt(this.version), 4)); buffer = buffer.concat(bitjs.numToVarInt(this.inputs.length)); for (var i = 0; i < this.inputs.length; i++) { var txin = this.inputs[i]; buffer = buffer.concat(Crypto.util.hexToBytes(txin.outpoint.hash).reverse()); buffer = buffer.concat(bitjs.numToBytes(parseInt(txin.outpoint.index), 4)); var scriptBytes = txin.script; buffer = buffer.concat(bitjs.numToVarInt(scriptBytes.length)); buffer = buffer.concat(scriptBytes); buffer = buffer.concat(bitjs.numToBytes(parseInt(txin.sequence), 4)); } buffer = buffer.concat(bitjs.numToVarInt(this.outputs.length)); for (var i = 0; i < this.outputs.length; i++) { var txout = this.outputs[i]; buffer = buffer.concat(bitjs.numToBytes(txout.value, 8)); var scriptBytes = txout.script; buffer = buffer.concat(bitjs.numToVarInt(scriptBytes.length)); buffer = buffer.concat(scriptBytes); } buffer = buffer.concat(bitjs.numToBytes(parseInt(this.locktime),4)); flohex = ascii_to_hexa(this.floData); floDataCount = this.floData.length; //flochange -- creating unique data character count logic for floData. This string is prefixed before actual floData string in Raw Transaction if (floDataCount <= 16) { floDataCountString = floDataCount.toString(16); floDataCountString = "0"+ floDataCountString; } else if (floDataCount < 253) { floDataCountString = floDataCount.toString(16); } else if (floDataCount <= 1023) { floDataCountAdjusted = (floDataCount - 253) + parseInt("0xfd00fd"); floDataCountStringAdjusted = floDataCountAdjusted.toString(16); floDataCountString = floDataCountStringAdjusted.substr(0,2)+ floDataCountStringAdjusted.substr(4,2)+ floDataCountStringAdjusted.substr(2,2); } else { floDataCountString = "Character Limit Exceeded"; } return Crypto.util.bytesToHex(buffer)+floDataCountString+flohex; // flochange -- Addition of floDataCountString and floData in serialization } return btrx; } bitjs.numToBytes = function (num, bytes) { if (typeof bytes === "undefined") bytes = 8; if (bytes == 0) { return []; } else if (num == -1) { return Crypto.util.hexToBytes("ffffffffffffffff"); } else { return [num % 256].concat(bitjs.numToBytes(Math.floor(num / 256), bytes - 1)); } } bitjs.numToByteArray = function (num) { if (num <= 256) { return [num]; } else { return [num % 256].concat(bitjs.numToByteArray(Math.floor(num / 256))); } } bitjs.numToVarInt = function (num) { if (num < 253) { return [num]; } else if (num < 65536) { return [253].concat(bitjs.numToBytes(num, 2)); } else if (num < 4294967296) { return [254].concat(bitjs.numToBytes(num, 4)); } else { return [255].concat(bitjs.numToBytes(num, 8)); } } bitjs.bytesToNum = function (bytes) { if (bytes.length == 0) return 0; else return bytes[0] + 256 * bitjs.bytesToNum(bytes.slice(1)); } /* clone an object */ bitjs.clone = function (obj) { if (obj == null || typeof (obj) != 'object') return obj; var temp = new obj.constructor(); for (var key in obj) { if (obj.hasOwnProperty(key)) { temp[key] = bitjs.clone(obj[key]); } } return temp; } var B58 = bitjs.Base58 = { alphabet: "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz", validRegex: /^[1-9A-HJ-NP-Za-km-z]+$/, base: BigInteger.valueOf(58), /** * Convert a byte array to a base58-encoded string. * * Written by Mike Hearn for BitcoinJ. * Copyright (c) 2011 Google Inc. * * Ported to JavaScript by Stefan Thomas. */ encode: function (input) { var bi = BigInteger.fromByteArrayUnsigned(input); var chars = []; while (bi.compareTo(B58.base) >= 0) { var mod = bi.mod(B58.base); chars.unshift(B58.alphabet[mod.intValue()]); bi = bi.subtract(mod).divide(B58.base); } chars.unshift(B58.alphabet[bi.intValue()]); // Convert leading zeros too. for (var i = 0; i < input.length; i++) { if (input[i] == 0x00) { chars.unshift(B58.alphabet[0]); } else break; } return chars.join(''); }, /** * Convert a base58-encoded string to a byte array. * * Written by Mike Hearn for BitcoinJ. * Copyright (c) 2011 Google Inc. * * Ported to JavaScript by Stefan Thomas. */ decode: function (input) { var bi = BigInteger.valueOf(0); var leadingZerosNum = 0; for (var i = input.length - 1; i >= 0; i--) { var alphaIndex = B58.alphabet.indexOf(input[i]); if (alphaIndex < 0) { throw "Invalid character"; } bi = bi.add(BigInteger.valueOf(alphaIndex) .multiply(B58.base.pow(input.length - 1 - i))); // This counts leading zero bytes if (input[i] == "1") leadingZerosNum++; else leadingZerosNum = 0; } var bytes = bi.toByteArrayUnsigned(); // Add leading zeros while (leadingZerosNum-- > 0) bytes.unshift(0); return bytes; } } return bitjs; })(); /* Copyright (c) 2011 Stefan Thomas Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ //https://raw.github.com/bitcoinjs/bitcoinjs-lib/1a7fc9d063f864058809d06ef4542af40be3558f/src/bitcoin.js (function (exports) { var Bitcoin = exports; })( 'object' === typeof module ? module.exports : (window.Bitcoin = {}) ); //https://raw.github.com/bitcoinjs/bitcoinjs-lib/c952aaeb3ee472e3776655b8ea07299ebed702c7/src/base58.js (function (Bitcoin) { Bitcoin.Base58 = { alphabet: "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz", validRegex: /^[1-9A-HJ-NP-Za-km-z]+$/, base: BigInteger.valueOf(58), /** * Convert a byte array to a base58-encoded string. * * Written by Mike Hearn for BitcoinJ. * Copyright (c) 2011 Google Inc. * * Ported to JavaScript by Stefan Thomas. */ encode: function (input) { var bi = BigInteger.fromByteArrayUnsigned(input); var chars = []; while (bi.compareTo(B58.base) >= 0) { var mod = bi.mod(B58.base); chars.unshift(B58.alphabet[mod.intValue()]); bi = bi.subtract(mod).divide(B58.base); } chars.unshift(B58.alphabet[bi.intValue()]); // Convert leading zeros too. for (var i = 0; i < input.length; i++) { if (input[i] == 0x00) { chars.unshift(B58.alphabet[0]); } else break; } return chars.join(''); }, /** * Convert a base58-encoded string to a byte array. * * Written by Mike Hearn for BitcoinJ. * Copyright (c) 2011 Google Inc. * * Ported to JavaScript by Stefan Thomas. */ decode: function (input) { var bi = BigInteger.valueOf(0); var leadingZerosNum = 0; for (var i = input.length - 1; i >= 0; i--) { var alphaIndex = B58.alphabet.indexOf(input[i]); if (alphaIndex < 0) { throw "Invalid character"; } bi = bi.add(BigInteger.valueOf(alphaIndex) .multiply(B58.base.pow(input.length - 1 - i))); // This counts leading zero bytes if (input[i] == "1") leadingZerosNum++; else leadingZerosNum = 0; } var bytes = bi.toByteArrayUnsigned(); // Add leading zeros while (leadingZerosNum-- > 0) bytes.unshift(0); return bytes; } }; var B58 = Bitcoin.Base58; })( 'undefined' != typeof Bitcoin ? Bitcoin : module.exports ); //https://raw.github.com/bitcoinjs/bitcoinjs-lib/09e8c6e184d6501a0c2c59d73ca64db5c0d3eb95/src/address.js Bitcoin.Address = function (bytes) { if(server == mainnet) this.version = 0x23; // FLO mainnet public address else if(server == testnet) this.version = 0x73; // FLO testnet public address if ("string" == typeof bytes) { bytes = Bitcoin.Address.decodeString(bytes,this.version); } this.hash = bytes; }; Bitcoin.Address.networkVersion = 0x23; // (FLO mainnet 0x23, 35D), (Bitcoin Mainnet, 0x00, 0D) // *this has no effect * /** * Serialize this object as a standard Bitcoin address. * * Returns the address as a base58-encoded string in the standardized format. */ Bitcoin.Address.prototype.toString = function () { // Get a copy of the hash var hash = this.hash.slice(0); // Version hash.unshift(this.version); var checksum = Crypto.SHA256(Crypto.SHA256(hash, { asBytes: true }), { asBytes: true }); var bytes = hash.concat(checksum.slice(0, 4)); return Bitcoin.Base58.encode(bytes); }; Bitcoin.Address.prototype.getHashBase64 = function () { return Crypto.util.bytesToBase64(this.hash); }; /** * Parse a Bitcoin address contained in a string. */ Bitcoin.Address.decodeString = function (string,version) { var bytes = Bitcoin.Base58.decode(string); var hash = bytes.slice(0, 21); var checksum = Crypto.SHA256(Crypto.SHA256(hash, { asBytes: true }), { asBytes: true }); if (checksum[0] != bytes[21] || checksum[1] != bytes[22] || checksum[2] != bytes[23] || checksum[3] != bytes[24]) { throw "Checksum validation failed!"; } if (version != hash.shift()) { throw "Version " + hash.shift() + " not supported!"; } return hash; }; //https://raw.github.com/bitcoinjs/bitcoinjs-lib/e90780d3d3b8fc0d027d2bcb38b80479902f223e/src/ecdsa.js Bitcoin.ECDSA = (function () { var ecparams = EllipticCurve.getSECCurveByName("secp256k1"); var rng = new SecureRandom(); var P_OVER_FOUR = null; function implShamirsTrick(P, k, Q, l) { var m = Math.max(k.bitLength(), l.bitLength()); var Z = P.add2D(Q); var R = P.curve.getInfinity(); for (var i = m - 1; i >= 0; --i) { R = R.twice2D(); R.z = BigInteger.ONE; if (k.testBit(i)) { if (l.testBit(i)) { R = R.add2D(Z); } else { R = R.add2D(P); } } else { if (l.testBit(i)) { R = R.add2D(Q); } } } return R; }; var ECDSA = { getBigRandom: function (limit) { return new BigInteger(limit.bitLength(), rng) .mod(limit.subtract(BigInteger.ONE)) .add(BigInteger.ONE); }, sign: function (hash, priv) { var d = priv; var n = ecparams.getN(); var e = BigInteger.fromByteArrayUnsigned(hash); do { var k = ECDSA.getBigRandom(n); var G = ecparams.getG(); var Q = G.multiply(k); var r = Q.getX().toBigInteger().mod(n); } while (r.compareTo(BigInteger.ZERO) <= 0); var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n); return ECDSA.serializeSig(r, s); }, verify: function (hash, sig, pubkey) { var r, s; if (Bitcoin.Util.isArray(sig)) { var obj = ECDSA.parseSig(sig); r = obj.r; s = obj.s; } else if ("object" === typeof sig && sig.r && sig.s) { r = sig.r; s = sig.s; } else { throw "Invalid value for signature"; } var Q; if (pubkey instanceof ec.PointFp) { Q = pubkey; } else if (Bitcoin.Util.isArray(pubkey)) { Q = EllipticCurve.PointFp.decodeFrom(ecparams.getCurve(), pubkey); } else { throw "Invalid format for pubkey value, must be byte array or ec.PointFp"; } var e = BigInteger.fromByteArrayUnsigned(hash); return ECDSA.verifyRaw(e, r, s, Q); }, verifyRaw: function (e, r, s, Q) { var n = ecparams.getN(); var G = ecparams.getG(); if (r.compareTo(BigInteger.ONE) < 0 || r.compareTo(n) >= 0) return false; if (s.compareTo(BigInteger.ONE) < 0 || s.compareTo(n) >= 0) return false; var c = s.modInverse(n); var u1 = e.multiply(c).mod(n); var u2 = r.multiply(c).mod(n); // TODO(!!!): For some reason Shamir's trick isn't working with // signed message verification!? Probably an implementation // error! //var point = implShamirsTrick(G, u1, Q, u2); var point = G.multiply(u1).add(Q.multiply(u2)); var v = point.getX().toBigInteger().mod(n); return v.equals(r); }, /** * Serialize a signature into DER format. * * Takes two BigIntegers representing r and s and returns a byte array. */ serializeSig: function (r, s) { var rBa = r.toByteArraySigned(); var sBa = s.toByteArraySigned(); var sequence = []; sequence.push(0x02); // INTEGER sequence.push(rBa.length); sequence = sequence.concat(rBa); sequence.push(0x02); // INTEGER sequence.push(sBa.length); sequence = sequence.concat(sBa); sequence.unshift(sequence.length); sequence.unshift(0x30); // SEQUENCE return sequence; }, /** * Parses a byte array containing a DER-encoded signature. * * This function will return an object of the form: * * { * r: BigInteger, * s: BigInteger * } */ parseSig: function (sig) { var cursor; if (sig[0] != 0x30) throw new Error("Signature not a valid DERSequence"); cursor = 2; if (sig[cursor] != 0x02) throw new Error("First element in signature must be a DERInteger"); ; var rBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]); cursor += 2 + sig[cursor + 1]; if (sig[cursor] != 0x02) throw new Error("Second element in signature must be a DERInteger"); var sBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]); cursor += 2 + sig[cursor + 1]; //if (cursor != sig.length) // throw new Error("Extra bytes in signature"); var r = BigInteger.fromByteArrayUnsigned(rBa); var s = BigInteger.fromByteArrayUnsigned(sBa); return { r: r, s: s }; }, parseSigCompact: function (sig) { if (sig.length !== 65) { throw "Signature has the wrong length"; } // Signature is prefixed with a type byte storing three bits of // information. var i = sig[0] - 27; if (i < 0 || i > 7) { throw "Invalid signature type"; } var n = ecparams.getN(); var r = BigInteger.fromByteArrayUnsigned(sig.slice(1, 33)).mod(n); var s = BigInteger.fromByteArrayUnsigned(sig.slice(33, 65)).mod(n); return { r: r, s: s, i: i }; }, /** * Recover a public key from a signature. * * See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public * Key Recovery Operation". * * http://www.secg.org/download/aid-780/sec1-v2.pdf */ recoverPubKey: function (r, s, hash, i) { // The recovery parameter i has two bits. i = i & 3; // The less significant bit specifies whether the y coordinate // of the compressed point is even or not. var isYEven = i & 1; // The more significant bit specifies whether we should use the // first or second candidate key. var isSecondKey = i >> 1; var n = ecparams.getN(); var G = ecparams.getG(); var curve = ecparams.getCurve(); var p = curve.getQ(); var a = curve.getA().toBigInteger(); var b = curve.getB().toBigInteger(); // We precalculate (p + 1) / 4 where p is if the field order if (!P_OVER_FOUR) { P_OVER_FOUR = p.add(BigInteger.ONE).divide(BigInteger.valueOf(4)); } // 1.1 Compute x var x = isSecondKey ? r.add(n) : r; // 1.3 Convert x to point var alpha = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(p); var beta = alpha.modPow(P_OVER_FOUR, p); var xorOdd = beta.isEven() ? (i % 2) : ((i + 1) % 2); // If beta is even, but y isn't or vice versa, then convert it, // otherwise we're done and y == beta. var y = (beta.isEven() ? !isYEven : isYEven) ? beta : p.subtract(beta); // 1.4 Check that nR is at infinity var R = new EllipticCurve.PointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y)); R.validate(); // 1.5 Compute e from M var e = BigInteger.fromByteArrayUnsigned(hash); var eNeg = BigInteger.ZERO.subtract(e).mod(n); // 1.6 Compute Q = r^-1 (sR - eG) var rInv = r.modInverse(n); var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv); Q.validate(); if (!ECDSA.verifyRaw(e, r, s, Q)) { throw "Pubkey recovery unsuccessful"; } var pubKey = new Bitcoin.ECKey(); pubKey.pub = Q; return pubKey; }, /** * Calculate pubkey extraction parameter. * * When extracting a pubkey from a signature, we have to * distinguish four different cases. Rather than putting this * burden on the verifier, Bitcoin includes a 2-bit value with the * signature. * * This function simply tries all four cases and returns the value * that resulted in a successful pubkey recovery. */ calcPubkeyRecoveryParam: function (address, r, s, hash) { for (var i = 0; i < 4; i++) { try { var pubkey = Bitcoin.ECDSA.recoverPubKey(r, s, hash, i); if (pubkey.getBitcoinAddress().toString() == address) { return i; } } catch (e) { } } throw "Unable to find valid recovery factor"; } }; return ECDSA; })(); Bitcoin.KeyPool = (function () { var KeyPool = function () { this.keyArray = []; this.push = function (item) { if (item == null || item.priv == null) return; var doAdd = true; // prevent duplicates from being added to the array for (var index in this.keyArray) { var currentItem = this.keyArray[index]; if (currentItem != null && currentItem.priv != null && item.getBitcoinAddress() == currentItem.getBitcoinAddress()) { doAdd = false; break; } } if (doAdd) this.keyArray.push(item); }; this.reset = function () { this.keyArray = []; }; this.getArray = function () { // copy array return this.keyArray.slice(0); }; this.setArray = function (ka) { this.keyArray = ka; }; this.length = function () { return this.keyArray.length; }; this.toString = function () { var keyPoolString = "# = " + this.length() + "\n"; var pool = this.getArray(); for (var index in pool) { var item = pool[index]; if (Bitcoin.Util.hasMethods(item, 'getBitcoinAddress', 'toString')) { if (item != null) { keyPoolString += "\"" + item.getBitcoinAddress() + "\"" + ", \"" + item.toString("wif") + "\"\n"; } } } return keyPoolString; }; return this; }; return new KeyPool(); })(); Bitcoin.Bip38Key = (function () { var Bip38 = function (address, encryptedKey) { this.address = address; this.priv = encryptedKey; }; Bip38.prototype.getBitcoinAddress = function () { return this.address; }; Bip38.prototype.toString = function () { return this.priv; }; return Bip38; })(); //https://raw.github.com/pointbiz/bitcoinjs-lib/9b2f94a028a7bc9bed94e0722563e9ff1d8e8db8/src/eckey.js Bitcoin.ECKey = (function () { var ECDSA = Bitcoin.ECDSA; var KeyPool = Bitcoin.KeyPool; var ecparams = EllipticCurve.getSECCurveByName("secp256k1"); var ECKey = function (input) { if (!input) { // Generate new key var n = ecparams.getN(); this.priv = ECDSA.getBigRandom(n); } else if (input instanceof BigInteger) { // Input is a private key value this.priv = input; } else if (Bitcoin.Util.isArray(input)) { // Prepend zero byte to prevent interpretation as negative integer this.priv = BigInteger.fromByteArrayUnsigned(input); } else if ("string" == typeof input) { var bytes = null; try{ // This part is edited for FLO. FLO WIF are always compressed WIF. FLO WIF (private key) starts with R for mainnet and c for testnet. if((server == mainnet && /^R[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{51}$/.test(input)) || (server == testnet && /^c[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{51}$/.test(input))) { bytes = ECKey.decodeCompressedWalletImportFormat(input); this.compressed = true; } /* if (ECKey.isWalletImportFormat(input)) { bytes = ECKey.decodeWalletImportFormat(input); } else if (ECKey.isCompressedWalletImportFormat(input)) { bytes = ECKey.decodeCompressedWalletImportFormat(input); this.compressed = true; } else if (ECKey.isMiniFormat(input)) { bytes = Crypto.SHA256(input, { asBytes: true }); } else if (ECKey.isHexFormat(input)) { bytes = Crypto.util.hexToBytes(input); } else if (ECKey.isBase64Format(input)) { bytes = Crypto.util.base64ToBytes(input); } */ } catch (exc1) { this.setError(exc1); } if (ECKey.isBase6Format(input)) { this.priv = new BigInteger(input, 6); } else if (bytes == null || bytes.length != 32) { this.priv = null; } else { // Prepend zero byte to prevent interpretation as negative integer this.priv = BigInteger.fromByteArrayUnsigned(bytes); } } this.compressed = (this.compressed == undefined) ? !!ECKey.compressByDefault : this.compressed; try { // check not zero if (this.priv != null && BigInteger.ZERO.compareTo(this.priv) == 0) this.setError("Error: BigInteger equal to zero."); // valid range [0x1, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364140]) var hexKeyRangeLimit = "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364140"; var rangeLimitBytes = Crypto.util.hexToBytes(hexKeyRangeLimit); var limitBigInt = BigInteger.fromByteArrayUnsigned(rangeLimitBytes); if (this.priv != null && limitBigInt.compareTo(this.priv) < 0) this.setError("Error: BigInteger outside of curve range.") if (this.priv != null) { KeyPool.push(this); } } catch (exc2) { this.setError(exc2); } }; if(server == mainnet) ECKey.privateKeyPrefix = 0xA3; //(Bitcoin mainnet 0x80 testnet 0xEF) (FLO mainnet 0xA3 163 D) else if(server == testnet) ECKey.privateKeyPrefix = 0xEF; //FLO testnet /** * Whether public keys should be returned compressed by default. */ ECKey.compressByDefault = false; /** * Set whether the public key should be returned compressed or not. */ ECKey.prototype.setError = function (err) { this.error = err; this.priv = null; return this; }; /** * Set whether the public key should be returned compressed or not. */ ECKey.prototype.setCompressed = function (v) { this.compressed = !!v; if (this.pubPoint) this.pubPoint.compressed = this.compressed; return this; }; /* * Return public key as a byte array in DER encoding */ ECKey.prototype.getPub = function () { if (this.compressed) { if (this.pubComp) return this.pubComp; return this.pubComp = this.getPubPoint().getEncoded(1); } else { if (this.pubUncomp) return this.pubUncomp; return this.pubUncomp = this.getPubPoint().getEncoded(0); } }; /** * Return public point as ECPoint object. */ ECKey.prototype.getPubPoint = function () { if (!this.pubPoint) { this.pubPoint = ecparams.getG().multiply(this.priv); this.pubPoint.compressed = this.compressed; } return this.pubPoint; }; ECKey.prototype.getPubKeyHex = function () { if (this.compressed) { if (this.pubKeyHexComp) return this.pubKeyHexComp; return this.pubKeyHexComp = Crypto.util.bytesToHex(this.getPub()).toString().toUpperCase(); } else { if (this.pubKeyHexUncomp) return this.pubKeyHexUncomp; return this.pubKeyHexUncomp = Crypto.util.bytesToHex(this.getPub()).toString().toUpperCase(); } }; /** * Get the pubKeyHash for this key. * * This is calculated as RIPE160(SHA256([encoded pubkey])) and returned as * a byte array. */ ECKey.prototype.getPubKeyHash = function () { if (this.compressed) { if (this.pubKeyHashComp) return this.pubKeyHashComp; return this.pubKeyHashComp = Bitcoin.Util.sha256ripe160(this.getPub()); } else { if (this.pubKeyHashUncomp) return this.pubKeyHashUncomp; return this.pubKeyHashUncomp = Bitcoin.Util.sha256ripe160(this.getPub()); } }; ECKey.prototype.getBitcoinAddress = function () { var hash = this.getPubKeyHash(); var addr = new Bitcoin.Address(hash); return addr.toString(); }; /* * Takes a public point as a hex string or byte array */ ECKey.prototype.setPub = function (pub) { // byte array if (Bitcoin.Util.isArray(pub)) { pub = Crypto.util.bytesToHex(pub).toString().toUpperCase(); } var ecPoint = ecparams.getCurve().decodePointHex(pub); this.setCompressed(ecPoint.compressed); this.pubPoint = ecPoint; return this; }; // Sipa Private Key Wallet Import Format ECKey.prototype.getBitcoinWalletImportFormat = function () { var bytes = this.getBitcoinPrivateKeyByteArray(); if (bytes == null) return ""; bytes.unshift(ECKey.privateKeyPrefix); // prepend 0x80 byte if (this.compressed) bytes.push(0x01); // append 0x01 byte for compressed format var checksum = Crypto.SHA256(Crypto.SHA256(bytes, { asBytes: true }), { asBytes: true }); bytes = bytes.concat(checksum.slice(0, 4)); var privWif = Bitcoin.Base58.encode(bytes); return privWif; }; // Private Key Hex Format ECKey.prototype.getBitcoinHexFormat = function () { return Crypto.util.bytesToHex(this.getBitcoinPrivateKeyByteArray()).toString().toUpperCase(); }; // Private Key Base64 Format ECKey.prototype.getBitcoinBase64Format = function () { return Crypto.util.bytesToBase64(this.getBitcoinPrivateKeyByteArray()); }; ECKey.prototype.getBitcoinPrivateKeyByteArray = function () { if (this.priv == null) return null; // Get a copy of private key as a byte array var bytes = this.priv.toByteArrayUnsigned(); // zero pad if private key is less than 32 bytes while (bytes.length < 32) bytes.unshift(0x00); return bytes; }; ECKey.prototype.toString = function (format) { format = format || ""; if (format.toString().toLowerCase() == "base64" || format.toString().toLowerCase() == "b64") { return this.getBitcoinBase64Format(); } // Wallet Import Format else if (format.toString().toLowerCase() == "wif") { return this.getBitcoinWalletImportFormat(); } else { return this.getBitcoinHexFormat(); } }; ECKey.prototype.sign = function (hash) { return ECDSA.sign(hash, this.priv); }; ECKey.prototype.verify = function (hash, sig) { return ECDSA.verify(hash, sig, this.getPub()); }; /** * Parse a wallet import format private key contained in a string. */ ECKey.decodeWalletImportFormat = function (privStr) { var bytes = Bitcoin.Base58.decode(privStr); var hash = bytes.slice(0, 33); var checksum = Crypto.SHA256(Crypto.SHA256(hash, { asBytes: true }), { asBytes: true }); if (checksum[0] != bytes[33] || checksum[1] != bytes[34] || checksum[2] != bytes[35] || checksum[3] != bytes[36]) { throw "Checksum validation failed!"; } var version = hash.shift(); if (version != ECKey.privateKeyPrefix) { throw "Version " + version + " not supported!"; } return hash; }; /** * Parse a compressed wallet import format private key contained in a string. */ ECKey.decodeCompressedWalletImportFormat = function (privStr) { var bytes = Bitcoin.Base58.decode(privStr); var hash = bytes.slice(0, 34); var checksum = Crypto.SHA256(Crypto.SHA256(hash, { asBytes: true }), { asBytes: true }); if (checksum[0] != bytes[34] || checksum[1] != bytes[35] || checksum[2] != bytes[36] || checksum[3] != bytes[37]) { throw "Checksum validation failed!"; } var version = hash.shift(); if (version != ECKey.privateKeyPrefix) { throw "Version " + version + " not supported!"; } hash.pop(); return hash; }; // 64 characters [0-9A-F] ECKey.isHexFormat = function (key) { key = key.toString(); return /^[A-Fa-f0-9]{64}$/.test(key); }; // 51 characters base58, always starts with a '5' ECKey.isWalletImportFormat = function (key) { key = key.toString(); return (ECKey.privateKeyPrefix == 0x80) ? (/^5[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{50}$/.test(key)) : (/^R[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{50}$/.test(key)); }; // 52 characters base58 ECKey.isCompressedWalletImportFormat = function (key) { key = key.toString(); return (ECKey.privateKeyPrefix == 0x80) ? (/^[LK][123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{51}$/.test(key)) : (/^R[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{51}$/.test(key)); }; // 44 characters ECKey.isBase64Format = function (key) { key = key.toString(); return (/^[ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789=+\/]{44}$/.test(key)); }; // 99 characters, 1=1, if using dice convert 6 to 0 ECKey.isBase6Format = function (key) { key = key.toString(); return (/^[012345]{99}$/.test(key)); }; // 22, 26 or 30 characters, always starts with an 'S' ECKey.isMiniFormat = function (key) { key = key.toString(); var validChars22 = /^S[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{21}$/.test(key); var validChars26 = /^S[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{25}$/.test(key); var validChars30 = /^S[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{29}$/.test(key); var testBytes = Crypto.SHA256(key + "?", { asBytes: true }); return ((testBytes[0] === 0x00 || testBytes[0] === 0x01) && (validChars22 || validChars26 || validChars30)); }; return ECKey; })(); //https://raw.github.com/bitcoinjs/bitcoinjs-lib/09e8c6e184d6501a0c2c59d73ca64db5c0d3eb95/src/util.js // Bitcoin utility functions Bitcoin.Util = { /** * Cross-browser compatibility version of Array.isArray. */ isArray: Array.isArray || function (o) { return Object.prototype.toString.call(o) === '[object Array]'; }, /** * Create an array of a certain length filled with a specific value. */ makeFilledArray: function (len, val) { var array = []; var i = 0; while (i < len) { array[i++] = val; } return array; }, /** * Turn an integer into a "var_int". * * "var_int" is a variable length integer used by Bitcoin's binary format. * * Returns a byte array. */ numToVarInt: function (i) { if (i < 0xfd) { // unsigned char return [i]; } else if (i <= 1 << 16) { // unsigned short (LE) return [0xfd, i >>> 8, i & 255]; } else if (i <= 1 << 32) { // unsigned int (LE) return [0xfe].concat(Crypto.util.wordsToBytes([i])); } else { // unsigned long long (LE) return [0xff].concat(Crypto.util.wordsToBytes([i >>> 32, i])); } }, /** * Parse a Bitcoin value byte array, returning a BigInteger. */ valueToBigInt: function (valueBuffer) { if (valueBuffer instanceof BigInteger) return valueBuffer; // Prepend zero byte to prevent interpretation as negative integer return BigInteger.fromByteArrayUnsigned(valueBuffer); }, /** * Format a Bitcoin value as a string. * * Takes a BigInteger or byte-array and returns that amount of Bitcoins in a * nice standard formatting. * * Examples: * 12.3555 * 0.1234 * 900.99998888 * 34.00 */ formatValue: function (valueBuffer) { var value = this.valueToBigInt(valueBuffer).toString(); var integerPart = value.length > 8 ? value.substr(0, value.length - 8) : '0'; var decimalPart = value.length > 8 ? value.substr(value.length - 8) : value; while (decimalPart.length < 8) decimalPart = "0" + decimalPart; decimalPart = decimalPart.replace(/0*$/, ''); while (decimalPart.length < 2) decimalPart += "0"; return integerPart + "." + decimalPart; }, /** * Parse a floating point string as a Bitcoin value. * * Keep in mind that parsing user input is messy. You should always display * the parsed value back to the user to make sure we understood his input * correctly. */ parseValue: function (valueString) { // TODO: Detect other number formats (e.g. comma as decimal separator) var valueComp = valueString.split('.'); var integralPart = valueComp[0]; var fractionalPart = valueComp[1] || "0"; while (fractionalPart.length < 8) fractionalPart += "0"; fractionalPart = fractionalPart.replace(/^0+/g, ''); var value = BigInteger.valueOf(parseInt(integralPart)); value = value.multiply(BigInteger.valueOf(100000000)); value = value.add(BigInteger.valueOf(parseInt(fractionalPart))); return value; }, /** * Calculate RIPEMD160(SHA256(data)). * * Takes an arbitrary byte array as inputs and returns the hash as a byte * array. */ sha256ripe160: function (data) { return ripemd160(Crypto.SHA256(data, { asBytes: true }), { asBytes: true }); }, // double sha256 dsha256: function (data) { return Crypto.SHA256(Crypto.SHA256(data, { asBytes: true }), { asBytes: true }); }, // duck typing method hasMethods: function(obj /*, method list as strings */){ var i = 1, methodName; while((methodName = arguments[i++])){ if(typeof obj[methodName] != 'function') { return false; } } return true; } }; function ajax(method, uri){ var request = new XMLHttpRequest(); var url = `${server}/${uri}` console.log(url) var result; request.open(method,url , false); request.onload = function () { if (request.readyState == 4 && request.status == 200) result = this.response; else { console.log('error'); result = false; } }; request.send(); console.log(result); return result; } function validateAddr(inputtxt) { try{ var addr = new Bitcoin.Address(inputtxt); return true; }catch{ return false; } } function verifyWIF(wif,addr){ try { var key = new Bitcoin.ECKey(wif); if(key.priv == null){ return false; } key.setCompressed(true); var bitcoinAddress = key.getBitcoinAddress(); if (addr == bitcoinAddress) return true; else return false; } catch (e) { // browser does not have sufficient JavaScript support to generate a bitcoin address alert(e); console.log("error"); } } function registerID(sender,onionAddr) { var receiver = "F6LUnwRRjFuEW97Y4av31eLqqVMK9FrgE2"; var trx = bitjs.transaction(); var utxoAmt = 0.0; var x = sendAmt+fee; var response = ajax("GET",`api/addr/${sender}/utxo`); var utxos = JSON.parse(response); for(var x = utxos.length-1; x >= 0; x--){ if(utxoAmt < sendAmt+fee){ trx.addinput(utxos[x].txid, utxos[x].vout, utxos[x].scriptPubKey); utxoAmt += utxos[x].amount; }else break; } console.log(utxoAmt+":"+(sendAmt+fee)); if(utxoAmt < sendAmt+fee){ alert("Insufficient balance!"); return; } trx.addoutput(receiver, sendAmt); console.log(receiver+":"+ sendAmt); var change = utxoAmt-sendAmt-fee; if(change>0) trx.addoutput(sender, change); console.log(sender+":"+ change); var username = prompt("Enter your name :"); var data = {FLO_chat:{onionAddr:onionAddr, name: username}}; var sendFloData = JSON.stringify(data);; trx.addflodata(sendFloData); console.log(sendFloData); var wif = prompt("Enter private key :"); if (wif.length<1||!verifyWIF(wif,sender)){ alert("Invalid Private key!"); return; } var signedTxHash = trx.sign(wif, 1); console.log(signedTxHash); return broadcastTx(signedTxHash); } function broadcastTx(signedTxHash) { var http = new XMLHttpRequest(); var url = `${server}/api/tx/send`; if (signedTxHash.length < 1) { alert("Empty Signature"); return false; } var params = `{"rawtx":"${signedTxHash}"}`; var result; http.open('POST', url, false); //Send the proper header information along with the request http.setRequestHeader('Content-type', 'application/json'); http.onreadystatechange = function () { //Call a function when the state changes. if (http.readyState == 4 && http.status == 200) { console.log(http.response); var txid = JSON.parse(http.response).txid.result; alert("Transaction successful! txid : " + txid); result = true; } else { console.log(http.responseText); result = false; } } http.send(params); return result; }