Adding std op files

This commit is contained in:
sairajzero 2021-07-04 21:33:02 +05:30
parent f03119e746
commit 2183685b2d
6 changed files with 7837 additions and 0 deletions

436
src/floBlockchainAPI.js Normal file
View File

@ -0,0 +1,436 @@
'use strict';
/* FLO Blockchain Operator to send/receive data from blockchain using API calls*/
(function(GLOBAL){
const floBlockchainAPI = GLOBAL.floBlockchainAPI = {
util: {
serverList: floGlobals.apiURL[floGlobals.blockchain].slice(0),
curPos: floCrypto.randInt(0, floGlobals.apiURL[floGlobals.blockchain].length - 1),
fetch_retry: function(apicall) {
return new Promise((resolve, reject) => {
this.serverList.splice(this.curPos, 1);
this.curPos = floCrypto.randInt(0, this.serverList.length - 1)
this.fetch_api(apicall)
.then(result => resolve(result))
.catch(error => reject(error));
})
},
fetch_api: function(apicall) {
return new Promise((resolve, reject) => {
if (this.serverList.length === 0)
reject("No floSight server working")
else {
fetch(this.serverList[this.curPos] + apicall).then(response => {
if (response.ok)
response.json().then(data => resolve(data));
else {
this.fetch_retry(apicall)
.then(result => resolve(result))
.catch(error => reject(error));
}
}).catch(error => {
this.fetch_retry(apicall)
.then(result => resolve(result))
.catch(error => reject(error));
})
}
})
}
},
//Promised function to get data from API
promisedAPI: function(apicall) {
return new Promise((resolve, reject) => {
console.log(apicall)
this.util.fetch_api(apicall)
.then(result => resolve(result))
.catch(error => reject(error));
});
},
//Get balance for the given Address
getBalance: function(addr) {
return new Promise((resolve, reject) => {
this.promisedAPI(`api/addr/${addr}/balance`)
.then(balance => resolve(parseFloat(balance)))
.catch(error => reject(error));
});
},
//Write Data into blockchain
writeData: function(senderAddr, data, privKey, receiverAddr = floGlobals.adminID) {
return new Promise((resolve, reject) => {
if (typeof data != "string")
data = JSON.stringify(data);
this.sendTx(senderAddr, receiverAddr, floGlobals.sendAmt, privKey, data)
.then(txid => resolve(txid))
.catch(error => reject(error))
});
},
//Send Tx to blockchain
sendTx: function(senderAddr, receiverAddr, sendAmt, privKey, floData = '') {
return new Promise((resolve, reject) => {
if (!floCrypto.validateAddr(senderAddr))
reject(`Invalid address : ${senderAddr}`);
else if (!floCrypto.validateAddr(receiverAddr))
reject(`Invalid address : ${receiverAddr}`);
if (privKey.length < 1 || !floCrypto.verifyPrivKey(privKey, senderAddr))
reject("Invalid Private key!");
else if (typeof sendAmt !== 'number' || sendAmt <= 0)
reject(`Invalid sendAmt : ${sendAmt}`);
else {
var trx = bitjs.transaction();
var utxoAmt = 0.0;
var fee = floGlobals.fee;
this.promisedAPI(`api/addr/${senderAddr}/utxo`).then(utxos => {
for (var i = utxos.length - 1;
(i >= 0) && (utxoAmt < sendAmt + fee); i--) {
if (utxos[i].confirmations) {
trx.addinput(utxos[i].txid, utxos[i].vout, utxos[i]
.scriptPubKey)
utxoAmt += utxos[i].amount;
} else break;
}
if (utxoAmt < sendAmt + fee)
reject("Insufficient balance!");
else {
trx.addoutput(receiverAddr, sendAmt);
var change = utxoAmt - sendAmt - fee;
if (change > 0)
trx.addoutput(senderAddr, change);
trx.addflodata(floData.replace(/\n/g, ' '));
var signedTxHash = trx.sign(privKey, 1);
this.broadcastTx(signedTxHash)
.then(txid => resolve(txid))
.catch(error => reject(error))
}
}).catch(error => reject(error))
}
});
},
//merge all UTXOs of a given floID into a single UTXO
mergeUTXOs: function(floID, privKey, floData = '') {
return new Promise((resolve, reject) => {
if (!floCrypto.validateAddr(floID))
return reject(`Invalid floID`);
if (!floCrypto.verifyPrivKey(privKey, floID))
return reject("Invalid Private Key")
var trx = bitjs.transaction();
var utxoAmt = 0.0;
var fee = floGlobals.fee;
this.promisedAPI(`api/addr/${floID}/utxo`).then(utxos => {
for (var i = utxos.length - 1; i >= 0; i--) {
if (utxos[i].confirmations) {
trx.addinput(utxos[i].txid, utxos[i].vout, utxos[i]
.scriptPubKey)
utxoAmt += utxos[i].amount;
}
}
trx.addoutput(floID, utxoAmt - fee);
trx.addflodata(floData.replace(/\n/g, ' '));
var signedTxHash = trx.sign(privKey, 1);
this.broadcastTx(signedTxHash)
.then(txid => resolve(txid))
.catch(error => reject(error))
}).catch(error => reject(error))
})
},
/**Write data into blockchain from (and/or) to multiple floID
* @param {Array} senderPrivKeys List of sender private-keys
* @param {string} data FLO data of the txn
* @param {Array} receivers List of receivers
* @param {boolean} preserveRatio (optional) preserve ratio or equal contribution
* @return {Promise}
*/
writeDataMultiple: function(senderPrivKeys, data, receivers = [floGlobals.adminID], preserveRatio = true) {
return new Promise((resolve, reject) => {
if (!Array.isArray(senderPrivKeys))
return reject("Invalid senderPrivKeys: SenderPrivKeys must be Array")
if (!preserveRatio) {
let tmp = {};
let amount = (floGlobals.sendAmt * receivers.length) / senderPrivKeys.length;
senderPrivKeys.forEach(key => tmp[key] = amount);
senderPrivKeys = tmp
}
if (!Array.isArray(receivers))
return reject("Invalid receivers: Receivers must be Array")
else {
let tmp = {};
let amount = floGlobals.sendAmt;
receivers.forEach(floID => tmp[floID] = amount);
receivers = tmp
}
if (typeof data != "string")
data = JSON.stringify(data);
this.sendTxMultiple(senderPrivKeys, receivers, data)
.then(txid => resolve(txid))
.catch(error => reject(error))
})
},
/**Send Tx from (and/or) to multiple floID
* @param {Array or Object} senderPrivKeys List of sender private-key (optional: with coins to be sent)
* @param {Object} receivers List of receivers with respective amount to be sent
* @param {string} floData FLO data of the txn
* @return {Promise}
*/
sendTxMultiple: function(senderPrivKeys, receivers, floData = '') {
return new Promise((resolve, reject) => {
let senders = {},
preserveRatio;
//check for argument validations
try {
let invalids = {
InvalidSenderPrivKeys: [],
InvalidSenderAmountFor: [],
InvalidReceiverIDs: [],
InvalidReceiveAmountFor: []
}
let inputVal = 0,
outputVal = 0;
//Validate sender privatekeys (and send amount if passed)
//conversion when only privateKeys are passed (preserveRatio mode)
if (Array.isArray(senderPrivKeys)) {
senderPrivKeys.forEach(key => {
try {
if (!key)
invalids.InvalidSenderPrivKeys.push(key);
else {
let floID = floCrypto.getFloID(key);
senders[floID] = {
wif: key
}
}
} catch (error) {
invalids.InvalidSenderPrivKeys.push(key)
}
})
preserveRatio = true;
}
//conversion when privatekeys are passed with send amount
else {
for (let key in senderPrivKeys) {
try {
if (!key)
invalids.InvalidSenderPrivKeys.push(key);
else {
if (typeof senderPrivKeys[key] !== 'number' || senderPrivKeys[
key] <= 0)
invalids.InvalidSenderAmountFor.push(key)
else
inputVal += senderPrivKeys[key];
let floID = floCrypto.getFloID(key);
senders[floID] = {
wif: key,
coins: senderPrivKeys[key]
}
}
} catch (error) {
invalids.InvalidSenderPrivKeys.push(key)
}
}
preserveRatio = false;
}
//Validate the receiver IDs and receive amount
for (let floID in receivers) {
if (!floCrypto.validateAddr(floID))
invalids.InvalidReceiverIDs.push(floID)
if (typeof receivers[floID] !== 'number' || receivers[floID] <= 0)
invalids.InvalidReceiveAmountFor.push(floID)
else
outputVal += receivers[floID];
}
//Reject if any invalids are found
for (let i in invalids)
if (!invalids[i].length)
delete invalids[i];
if (Object.keys(invalids).length)
return reject(invalids);
//Reject if given inputVal and outputVal are not equal
if (!preserveRatio && inputVal != outputVal)
return reject(
`Input Amount (${inputVal}) not equal to Output Amount (${outputVal})`)
} catch (error) {
return reject(error)
}
//Get balance of senders
let promises = []
for (let floID in senders)
promises.push(this.getBalance(floID))
Promise.all(promises).then(results => {
let totalBalance = 0,
totalFee = floGlobals.fee,
balance = {};
//Divide fee among sender if not for preserveRatio
if (!preserveRatio)
var dividedFee = totalFee / Object.keys(senders).length;
//Check if balance of each sender is sufficient enough
let insufficient = [];
for (let floID in senders) {
balance[floID] = parseFloat(results.shift());
if (isNaN(balance[floID]) || (preserveRatio && balance[floID] <=
totalFee) || (!preserveRatio && balance[floID] < senders[floID]
.coins + dividedFee))
insufficient.push(floID)
totalBalance += balance[floID];
}
if (insufficient.length)
return reject({
InsufficientBalance: insufficient
})
//Calculate totalSentAmount and check if totalBalance is sufficient
let totalSendAmt = totalFee;
for (floID in receivers)
totalSendAmt += receivers[floID];
if (totalBalance < totalSendAmt)
return reject("Insufficient total Balance")
//Get the UTXOs of the senders
let promises = []
for (floID in senders)
promises.push(this.promisedAPI(`api/addr/${floID}/utxo`))
Promise.all(promises).then(results => {
let wifSeq = [];
var trx = bitjs.transaction();
for (floID in senders) {
let utxos = results.shift();
let sendAmt;
if (preserveRatio) {
let ratio = (balance[floID] / totalBalance);
sendAmt = totalSendAmt * ratio;
} else
sendAmt = senders[floID].coins + dividedFee;
let wif = senders[floID].wif;
let utxoAmt = 0.0;
for (let i = utxos.length - 1;
(i >= 0) && (utxoAmt < sendAmt); i--) {
if (utxos[i].confirmations) {
trx.addinput(utxos[i].txid, utxos[i].vout, utxos[i]
.scriptPubKey)
wifSeq.push(wif);
utxoAmt += utxos[i].amount;
}
}
if (utxoAmt < sendAmt)
return reject("Insufficient balance:" + floID);
let change = (utxoAmt - sendAmt);
if (change > 0)
trx.addoutput(floID, change);
}
for (floID in receivers)
trx.addoutput(floID, receivers[floID]);
trx.addflodata(floData.replace(/\n/g, ' '));
for (let i = 0; i < wifSeq.length; i++)
trx.signinput(i, wifSeq[i], 1);
var signedTxHash = trx.serialize();
this.broadcastTx(signedTxHash)
.then(txid => resolve(txid))
.catch(error => reject(error))
}).catch(error => reject(error))
}).catch(error => reject(error))
})
},
//Broadcast signed Tx in blockchain using API
broadcastTx: function(signedTxHash) {
return new Promise((resolve, reject) => {
var request = new XMLHttpRequest();
var url = this.util.serverList[this.util.curPos] + 'api/tx/send';
console.log(url)
if (signedTxHash.length < 1)
reject("Empty Signature");
else {
var params = `{"rawtx":"${signedTxHash}"}`;
request.open('POST', url, true);
//Send the proper header information along with the request
request.setRequestHeader('Content-type', 'application/json');
request.onload = function() {
if (request.readyState == 4 && request.status == 200) {
console.log(request.response);
resolve(JSON.parse(request.response).txid.result);
} else
reject(request.responseText);
}
request.send(params);
}
})
},
//Read Txs of Address between from and to
readTxs: function(addr, from, to) {
return new Promise((resolve, reject) => {
this.promisedAPI(`api/addrs/${addr}/txs?from=${from}&to=${to}`)
.then(response => resolve(response))
.catch(error => reject(error))
});
},
//Read All Txs of Address (newest first)
readAllTxs: function(addr) {
return new Promise((resolve, reject) => {
this.promisedAPI(`api/addrs/${addr}/txs?from=0&to=1`).then(response => {
this.promisedAPI(`api/addrs/${addr}/txs?from=0&to=${response.totalItems}0`)
.then(response => resolve(response.items))
.catch(error => reject(error));
}).catch(error => reject(error))
});
},
/*Read flo Data from txs of given Address
options can be used to filter data
limit : maximum number of filtered data (default = 1000, negative = no limit)
ignoreOld : ignore old txs (default = 0)
sentOnly : filters only sent data
pattern : filters data that starts with a pattern
contains : filters data that contains a string
filter : custom filter funtion for floData (eg . filter: d => {return d[0] == '$'})
*/
readData: function(addr, options = {}) {
options.limit = options.limit | 0
options.ignoreOld = options.ignoreOld | 0
return new Promise((resolve, reject) => {
this.promisedAPI(`api/addrs/${addr}/txs?from=0&to=1`).then(response => {
var newItems = response.totalItems - options.ignoreOld;
this.promisedAPI(`api/addrs/${addr}/txs?from=0&to=${newItems*2}`).then(
response => {
if (options.limit <= 0)
options.limit = response.items.length;
var filteredData = [];
for (i = 0; i < (response.totalItems - options.ignoreOld) &&
filteredData.length < options.limit; i++) {
if (options.sentOnly && response.items[i].vin[0].addr !==
addr)
continue;
if (options.pattern) {
try {
let jsonContent = JSON.parse(response.items[i]
.floData)
if (!Object.keys(jsonContent).includes(options
.pattern))
continue;
} catch (error) {
continue;
}
}
if (options.filter && !options.filter(response.items[i].floData))
continue;
filteredData.push(response.items[i].floData);
}
resolve({
totalTxs: response.totalItems,
data: filteredData
});
}).catch(error => {
reject(error);
});
}).catch(error => {
reject(error);
});
});
}
}
})(typeof global !== "undefined" ? global : window)

274
src/floCrypto.js Normal file
View File

@ -0,0 +1,274 @@
'use strict';
(function(GLOBAL) {
var floCrypto = GLOBAL.floCrypto = {}
const p = BigInteger("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16);
const ecparams = EllipticCurve.getSECCurveByName("secp256k1");
function exponent1() {
return p.add(BigInteger.ONE).divide(BigInteger("4"))
}
function calculateY(x) {
let exp = exponent1();
// x is x value of public key in BigInteger format without 02 or 03 or 04 prefix
return x.modPow(BigInteger("3"), p).add(BigInteger("7")).mod(p).modPow(exp, p)
}
function getUncompressedPublicKey(compressedPublicKey) {
// Fetch x from compressedPublicKey
let pubKeyBytes = Crypto.util.hexToBytes(compressedPublicKey);
const prefix = pubKeyBytes.shift() // remove prefix
let prefix_modulus = prefix % 2;
pubKeyBytes.unshift(0) // add prefix 0
let x = new BigInteger(pubKeyBytes)
let xDecimalValue = x.toString()
// Fetch y
let y = calculateY(x);
let yDecimalValue = y.toString();
// verify y value
let resultBigInt = y.mod(BigInteger("2"));
let check = resultBigInt.toString() % 2;
if (prefix_modulus !== check)
yDecimalValue = y.negate().mod(p).toString();
return {
x: xDecimalValue,
y: yDecimalValue
};
}
function getSenderPublicKeyString() {
privateKey = ellipticCurveEncryption.senderRandom();
senderPublicKeyString = ellipticCurveEncryption.senderPublicString(privateKey);
return {
privateKey: privateKey,
senderPublicKeyString: senderPublicKeyString
}
}
function deriveSharedKeySender(receiverCompressedPublicKey, senderPrivateKey) {
try {
let receiverPublicKeyString = getUncompressedPublicKey(receiverCompressedPublicKey);
var senderDerivedKey = ellipticCurveEncryption.senderSharedKeyDerivation(
receiverPublicKeyString.x, receiverPublicKeyString.y, senderPrivateKey);
return senderDerivedKey;
} catch (error) {
return new Error(error);
}
}
function deriveReceiverSharedKey(senderPublicKeyString, receiverPrivateKey) {
return ellipticCurveEncryption.receiverSharedKeyDerivation(
senderPublicKeyString.XValuePublicString,
senderPublicKeyString.YValuePublicString, receiverPrivateKey);
}
function getReceiverPublicKeyString(privateKey) {
return ellipticCurveEncryption.receiverPublicString(privateKey);
}
function wifToDecimal(pk_wif, isPubKeyCompressed = false) {
let pk = Bitcoin.Base58.decode(pk_wif)
pk.shift()
pk.splice(-4, 4)
//If the private key corresponded to a compressed public key, also drop the last byte (it should be 0x01).
if (isPubKeyCompressed == true) pk.pop()
pk.unshift(0)
privateKeyDecimal = BigInteger(pk).toString()
privateKeyHex = Crypto.util.bytesToHex(pk)
return {
privateKeyDecimal: privateKeyDecimal,
privateKeyHex: privateKeyHex
}
}
//generate a random Interger within range
floCrypto.randInt = function(min, max) {
min = Math.ceil(min);
max = Math.floor(max);
return Math.floor(Math.random() * (max - min + 1)) + min;
}
//generate a random String within length (options : alphaNumeric chars only)
floCrypto.randString = function(length, alphaNumeric = true) {
var result = '';
if (alphaNumeric)
var characters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
else
var characters =
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_+-./*?@#&$<>=[]{}():';
for (var i = 0; i < length; i++)
result += characters.charAt(Math.floor(Math.random() * characters.length));
return result;
}
//Encrypt Data using public-key
floCrypto.encryptData = function(data, publicKeyHex) {
var senderECKeyData = getSenderPublicKeyString();
var senderDerivedKey = deriveSharedKeySender(
publicKeyHex, senderECKeyData.privateKey);
let senderKey = senderDerivedKey.XValue + senderDerivedKey.YValue;
let secret = Crypto.AES.encrypt(data, senderKey);
return {
secret: secret,
senderPublicKeyString: senderECKeyData.senderPublicKeyString
};
}
//Decrypt Data using private-key
floCrypto.decryptData = function(data, privateKeyHex) {
var receiverECKeyData = {};
if (typeof privateKeyHex !== "string") throw new Error("No private key found.");
let privateKey = wifToDecimal(privateKeyHex, true);
if (typeof privateKey.privateKeyDecimal !== "string") throw new Error(
"Failed to detremine your private key.");
receiverECKeyData.privateKey = privateKey.privateKeyDecimal;
var receiverDerivedKey = deriveReceiverSharedKey(
data.senderPublicKeyString, receiverECKeyData.privateKey);
let receiverKey = receiverDerivedKey.XValue + receiverDerivedKey.YValue;
let decryptMsg = Crypto.AES.decrypt(data.secret, receiverKey);
return decryptMsg;
}
//Sign data using private-key
floCrypto.signData = function(data, privateKeyHex) {
var key = new Bitcoin.ECKey(privateKeyHex);
if(key.priv === null)
return false;
key.setCompressed(true);
//var privateKeyArr = key.getBitcoinPrivateKeyByteArray();
//var privateKey = BigInteger.fromByteArrayUnsigned(privateKeyArr);
var messageHash = Crypto.SHA256(data);
var messageHashBigInteger = new BigInteger(messageHash);
var messageSign = Bitcoin.ECDSA.sign(messageHashBigInteger, key.priv);
var sighex = Crypto.util.bytesToHex(messageSign);
return sighex;
}
//Verify signatue of the data using public-key
floCrypto.verifySign = function(data, signatureHex, publicKeyHex) {
var msgHash = Crypto.SHA256(data);
var messageHashBigInteger = new BigInteger(msgHash);
var sigBytes = Crypto.util.hexToBytes(signatureHex);
var signature = Bitcoin.ECDSA.parseSig(sigBytes);
var publicKeyPoint = ecparams.getCurve().decodePointHex(publicKeyHex);
var verify = Bitcoin.ECDSA.verifyRaw(messageHashBigInteger,
signature.r, signature.s, publicKeyPoint);
return verify;
}
//Generates a new flo ID and returns private-key, public-key and floID
floCrypto.generateNewID = function() {
try {
var key = new Bitcoin.ECKey(false);
key.setCompressed(true);
return {
floID: key.getBitcoinAddress(),
pubKey: key.getPubKeyHex(),
privKey: key.getBitcoinWalletImportFormat()
}
} catch (e) {
console.error(e);
}
}
//Returns public-key from private-key
floCrypto.getPubKeyHex = function(privateKeyHex) {
if (!privateKeyHex)
return null;
var key = new Bitcoin.ECKey(privateKeyHex);
if (key.priv == null)
return null;
key.setCompressed(true);
return key.getPubKeyHex();
}
//Returns flo-ID from public-key or private-key
floCrypto.getFloID = function(keyHex) {
if (!keyHex)
return null;
try {
var key = new Bitcoin.ECKey(keyHex);
if (key.priv == null)
key.setPub(keyHex);
return key.getBitcoinAddress();
} catch (e) {
return null;
}
}
//Verify the private-key for the given public-key or flo-ID
floCrypto.verifyPrivKey = function(privateKeyHex, publicHex_ID) {
if (!privateKeyHex || !publicHex_ID)
return false;
try {
var key = new Bitcoin.ECKey(privateKeyHex);
if (key.priv == null)
return false;
key.setCompressed(true);
if (publicHex_ID === key.getBitcoinAddress())
return true;
else if (publicHex_ID === key.getPubKeyHex())
return true;
else
return false;
} catch (e) {
console.error(e);
}
}
//Check if the given Address is valid or not
floCrypto.validateAddr = function(inpAddr) {
if (!inpAddr)
return false;
try {
var addr = new Bitcoin.Address(inpAddr);
return true;
} catch {
return false;
}
}
//Split the str using shamir's Secret and Returns the shares
floCrypto.createShamirsSecretShares = function(str, total_shares, threshold_limit) {
try {
if (str.length > 0) {
var strHex = shamirSecretShare.str2hex(str);
return shamirSecretShare.share(strHex, total_shares, threshold_limit);
}
return false;
} catch {
return false
}
}
//Verifies the shares and str
floCrypto.verifyShamirsSecret = function(sharesArray, str) {
if(str == false)
return false;
try {
if (sharesArray.length > 0) {
var comb = shamirSecretShare.combine(sharesArray.slice(0, sharesArray.length));
return (shamirSecretShare.hex2str(comb) === str ? true : false)
}
return false;
} catch {
return false;
}
}
//Returns the retrived secret by combining the shamirs shares
floCrypto.retrieveShamirSecret = function(sharesArray) {
try {
if (sharesArray.length > 0) {
var comb = shamirSecretShare.combine(sharesArray.slice(0, sharesArray.length));
return shamirSecretShare.hex2str(comb);
}
return false;
} catch {
return false;
}
}
})(typeof global !== "undefined" ? global : window)

33
src/floGlobals.js Normal file
View File

@ -0,0 +1,33 @@
const floGlobals = {
//Required for all
blockchain: "FLO",
//Required for blockchain API operators
apiURL: {
FLO: ['https://explorer.mediciland.com/', 'https://livenet.flocha.in/', 'https://flosight.duckdns.org/', 'http://livenet-explorer.floexperiments.com'],
FLO_TEST: ['https://testnet-flosight.duckdns.org', 'https://testnet.flocha.in/']
},
SNStorageID: "FNaN9McoBAEFUjkRmNQRYLmBF8SpS7Tgfk",
//sendAmt: 0.001,
//fee: 0.0005,
//Required for Supernode operations
supernodes: {}, //each supnernode must be stored as floID : {uri:<uri>,pubKey:<publicKey>}
defaultDisk : "General",
appList:{},
appSubAdmins:{},
serveList : [],
storedList : [],
backupNodes : [],
supernodeConfig : {}
/* List of supernode configurations (all blockchain controlled by SNStorageID)
backupDepth - (Interger) Number of backup nodes
refreshDelay - (Interger) Count of requests for triggering read-blockchain and autodelete
deleteDelay - (Interger) Maximum duration (milliseconds) an unauthorised data is stored
errorFeedback - (Boolean) Send error (if any) feedback to the requestor
delayDelta - (Interger) Maximum allowed delay from the data-time
*/
}
if('object' === typeof module) module.export = floGlobals;

111
src/kBucket.js Normal file
View File

@ -0,0 +1,111 @@
'use strict';
require('./lib/BuildKBucket')
(function(GLOBAL) {
var kBucket = GLOBAL.kBucket = {}
var SNKB, SNCO;
function decodeID(floID) {
let k = bitjs.Base58.decode(floID)
k.shift()
k.splice(-4, 4)
const decodedId = Crypto.util.bytesToHex(k);
const nodeIdBigInt = new BigInteger(decodedId, 16);
const nodeIdBytes = nodeIdBigInt.toByteArrayUnsigned();
const nodeIdNewInt8Array = new Uint8Array(nodeIdBytes);
return nodeIdNewInt8Array;
}
function distanceOf(floID) {
let decodedId = decodeID(floID);
return SNKB.distance(SNKB.localNodeId, decodedId);
}
function constructKB(list, refID) {
let KB = new BuildKBucket({
localNodeId: decodeID(refID)
});
list.forEach(id => KB.add({
id: decodeID(id),
floID: floID
}));
return KB;
}
kBucket.launch = function(masterID, superNodeList) {
return new Promise((resolve, reject) => {
try {
//let superNodeList = Object.keys(floGlobals.supernodes);
//let masterID = floGlobals.SNStorageID;
SNKB = constructKB(superNodeList, masterID);
SNCO = superNodeList.map(sn => [distanceOf(sn), sn])
.sort((a, b) => a[0] - b[0])
.map(a => a[1])
resolve('Supernode KBucket formed');
} catch (error) {
reject(error);
}
});
}
kBucket.innerNodes = function(id1, id2) {
if (!SNCO.includes(id1) || !SNCO.includes(id2))
throw Error('Given nodes are not supernode');
let iNodes = []
for (let i = SNCO.indexOf(id1) + 1; SNCO[i] != id2; i++) {
if (i < SNCO.length)
iNodes.push(SNCO[i])
else i = -1
}
return iNodes
}
kBucket.outterNodes = function(id1, id2) {
if (!SNCO.includes(id1) || !SNCO.includes(id2))
throw Error('Given nodes are not supernode');
let oNodes = []
for (let i = SNCO.indexOf(id2) + 1; SNCO[i] != id1; i++) {
if (i < SNCO.length)
oNodes.push(SNCO[i])
else i = -1
}
return oNodes
}
kBucket.prevNode = function(id, N = 1) {
let n = N || SNCO.length;
if (!SNCO.includes(id))
throw Error('Given node is not supernode');
let pNodes = []
for (let i = 0, j = SNCO.indexOf(id) - 1; i < n; j--) {
if (j == SNCO.indexOf(id))
break;
else if (j > -1)
pNodes[i++] = SNCO[j]
else j = SNCO.length
}
return (N == 1 ? pNodes[0] : pNodes)
}
kBucket.nextNode = function(id, N = 1) {
let n = N || SNCO.length;
if (!SNCO.includes(id))
throw Error('Given node is not supernode');
let nNodes = []
for (let i = 0, j = SNCO.indexOf(id) + 1; i < n; j++) {
if (j == SNCO.indexOf(id))
break;
else if (j < SNCO.length)
nNodes[i++] = SNCO[j]
else j = -1
}
return (N == 1 ? nNodes[0] : nNodes)
}
kBucket.closestNode = function(id, N = 1) {
let decodedId = decodeID(id);
let n = N || SNCO.length;
let cNodes = SNKB.closest(decodedId, n)
.map(k => k.floID)
return (N == 1 ? cNodes[0] : cNodes)
}
})(typeof global !== "undefined" ? global : window)

6578
src/lib.js Normal file

File diff suppressed because it is too large Load Diff

405
src/lib/BuildKBucket.js Normal file
View File

@ -0,0 +1,405 @@
'use strict';
/*Kademlia DHT K-bucket implementation as a binary tree.*/
(function(GLOBAL) {
/**
* Implementation of a Kademlia DHT k-bucket used for storing
* contact (peer node) information.
*
* @extends EventEmitter
*/
GLOBAL.BuildKBucket = function BuildKBucket(options = {}) {
/**
* `options`:
* `distance`: Function
* `function (firstId, secondId) { return distance }` An optional
* `distance` function that gets two `id` Uint8Arrays
* and return distance (as number) between them.
* `arbiter`: Function (Default: vectorClock arbiter)
* `function (incumbent, candidate) { return contact; }` An optional
* `arbiter` function that givent two `contact` objects with the same `id`
* returns the desired object to be used for updating the k-bucket. For
* more details, see [arbiter function](#arbiter-function).
* `localNodeId`: Uint8Array An optional Uint8Array representing the local node id.
* If not provided, a local node id will be created via `randomBytes(20)`.
* `metadata`: Object (Default: {}) Optional satellite data to include
* with the k-bucket. `metadata` property is guaranteed not be altered by,
* it is provided as an explicit container for users of k-bucket to store
* implementation-specific data.
* `numberOfNodesPerKBucket`: Integer (Default: 20) The number of nodes
* that a k-bucket can contain before being full or split.
* `numberOfNodesToPing`: Integer (Default: 3) The number of nodes to
* ping when a bucket that should not be split becomes full. KBucket will
* emit a `ping` event that contains `numberOfNodesToPing` nodes that have
* not been contacted the longest.
*
* @param {Object=} options optional
*/
this.localNodeId = options.localNodeId || window.crypto.getRandomValues(new Uint8Array(20))
this.numberOfNodesPerKBucket = options.numberOfNodesPerKBucket || 20
this.numberOfNodesToPing = options.numberOfNodesToPing || 3
this.distance = options.distance || this.distance
// use an arbiter from options or vectorClock arbiter by default
this.arbiter = options.arbiter || this.arbiter
this.metadata = Object.assign({}, options.metadata)
this.createNode = function() {
return {
contacts: [],
dontSplit: false,
left: null,
right: null
}
}
this.ensureInt8 = function(name, val) {
if (!(val instanceof Uint8Array)) {
throw new TypeError(name + ' is not a Uint8Array')
}
}
/**
* @param {Uint8Array} array1
* @param {Uint8Array} array2
* @return {Boolean}
*/
this.arrayEquals = function(array1, array2) {
if (array1 === array2) {
return true
}
if (array1.length !== array2.length) {
return false
}
for (let i = 0, length = array1.length; i < length; ++i) {
if (array1[i] !== array2[i]) {
return false
}
}
return true
}
this.ensureInt8('option.localNodeId as parameter 1', this.localNodeId)
this.root = this.createNode()
/**
* Default arbiter function for contacts with the same id. Uses
* contact.vectorClock to select which contact to update the k-bucket with.
* Contact with larger vectorClock field will be selected. If vectorClock is
* the same, candidat will be selected.
*
* @param {Object} incumbent Contact currently stored in the k-bucket.
* @param {Object} candidate Contact being added to the k-bucket.
* @return {Object} Contact to updated the k-bucket with.
*/
this.arbiter = function(incumbent, candidate) {
return incumbent.vectorClock > candidate.vectorClock ? incumbent : candidate
}
/**
* Default distance function. Finds the XOR
* distance between firstId and secondId.
*
* @param {Uint8Array} firstId Uint8Array containing first id.
* @param {Uint8Array} secondId Uint8Array containing second id.
* @return {Number} Integer The XOR distance between firstId
* and secondId.
*/
this.distance = function(firstId, secondId) {
let distance = 0
let i = 0
const min = Math.min(firstId.length, secondId.length)
const max = Math.max(firstId.length, secondId.length)
for (; i < min; ++i) {
distance = distance * 256 + (firstId[i] ^ secondId[i])
}
for (; i < max; ++i) distance = distance * 256 + 255
return distance
}
/**
* Adds a contact to the k-bucket.
*
* @param {Object} contact the contact object to add
*/
this.add = function(contact) {
this.ensureInt8('contact.id', (contact || {}).id)
let bitIndex = 0
let node = this.root
while (node.contacts === null) {
// this is not a leaf node but an inner node with 'low' and 'high'
// branches; we will check the appropriate bit of the identifier and
// delegate to the appropriate node for further processing
node = this._determineNode(node, contact.id, bitIndex++)
}
// check if the contact already exists
const index = this._indexOf(node, contact.id)
if (index >= 0) {
this._update(node, index, contact)
return this
}
if (node.contacts.length < this.numberOfNodesPerKBucket) {
node.contacts.push(contact)
return this
}
// the bucket is full
if (node.dontSplit) {
// we are not allowed to split the bucket
// we need to ping the first this.numberOfNodesToPing
// in order to determine if they are alive
// only if one of the pinged nodes does not respond, can the new contact
// be added (this prevents DoS flodding with new invalid contacts)
return this
}
this._split(node, bitIndex)
return this.add(contact)
}
/**
* Get the n closest contacts to the provided node id. "Closest" here means:
* closest according to the XOR metric of the contact node id.
*
* @param {Uint8Array} id Contact node id
* @param {Number=} n Integer (Default: Infinity) The maximum number of
* closest contacts to return
* @return {Array} Array Maximum of n closest contacts to the node id
*/
this.closest = function(id, n = Infinity) {
this.ensureInt8('id', id)
if ((!Number.isInteger(n) && n !== Infinity) || n <= 0) {
throw new TypeError('n is not positive number')
}
let contacts = []
for (let nodes = [this.root], bitIndex = 0; nodes.length > 0 && contacts.length < n;) {
const node = nodes.pop()
if (node.contacts === null) {
const detNode = this._determineNode(node, id, bitIndex++)
nodes.push(node.left === detNode ? node.right : node.left)
nodes.push(detNode)
} else {
contacts = contacts.concat(node.contacts)
}
}
return contacts
.map(a => [this.distance(a.id, id), a])
.sort((a, b) => a[0] - b[0])
.slice(0, n)
.map(a => a[1])
}
/**
* Counts the total number of contacts in the tree.
*
* @return {Number} The number of contacts held in the tree
*/
this.count = function() {
// return this.toArray().length
let count = 0
for (const nodes = [this.root]; nodes.length > 0;) {
const node = nodes.pop()
if (node.contacts === null) nodes.push(node.right, node.left)
else count += node.contacts.length
}
return count
}
/**
* Determines whether the id at the bitIndex is 0 or 1.
* Return left leaf if `id` at `bitIndex` is 0, right leaf otherwise
*
* @param {Object} node internal object that has 2 leafs: left and right
* @param {Uint8Array} id Id to compare localNodeId with.
* @param {Number} bitIndex Integer (Default: 0) The bit index to which bit
* to check in the id Uint8Array.
* @return {Object} left leaf if id at bitIndex is 0, right leaf otherwise.
*/
this._determineNode = function(node, id, bitIndex) {
// *NOTE* remember that id is a Uint8Array and has granularity of
// bytes (8 bits), whereas the bitIndex is the bit index (not byte)
// id's that are too short are put in low bucket (1 byte = 8 bits)
// (bitIndex >> 3) finds how many bytes the bitIndex describes
// bitIndex % 8 checks if we have extra bits beyond byte multiples
// if number of bytes is <= no. of bytes described by bitIndex and there
// are extra bits to consider, this means id has less bits than what
// bitIndex describes, id therefore is too short, and will be put in low
// bucket
const bytesDescribedByBitIndex = bitIndex >> 3
const bitIndexWithinByte = bitIndex % 8
if ((id.length <= bytesDescribedByBitIndex) && (bitIndexWithinByte !== 0)) {
return node.left
}
const byteUnderConsideration = id[bytesDescribedByBitIndex]
// byteUnderConsideration is an integer from 0 to 255 represented by 8 bits
// where 255 is 11111111 and 0 is 00000000
// in order to find out whether the bit at bitIndexWithinByte is set
// we construct (1 << (7 - bitIndexWithinByte)) which will consist
// of all bits being 0, with only one bit set to 1
// for example, if bitIndexWithinByte is 3, we will construct 00010000 by
// (1 << (7 - 3)) -> (1 << 4) -> 16
if (byteUnderConsideration & (1 << (7 - bitIndexWithinByte))) {
return node.right
}
return node.left
}
/**
* Get a contact by its exact ID.
* If this is a leaf, loop through the bucket contents and return the correct
* contact if we have it or null if not. If this is an inner node, determine
* which branch of the tree to traverse and repeat.
*
* @param {Uint8Array} id The ID of the contact to fetch.
* @return {Object|Null} The contact if available, otherwise null
*/
this.get = function(id) {
this.ensureInt8('id', id)
let bitIndex = 0
let node = this.root
while (node.contacts === null) {
node = this._determineNode(node, id, bitIndex++)
}
// index of uses contact id for matching
const index = this._indexOf(node, id)
return index >= 0 ? node.contacts[index] : null
}
/**
* Returns the index of the contact with provided
* id if it exists, returns -1 otherwise.
*
* @param {Object} node internal object that has 2 leafs: left and right
* @param {Uint8Array} id Contact node id.
* @return {Number} Integer Index of contact with provided id if it
* exists, -1 otherwise.
*/
this._indexOf = function(node, id) {
for (let i = 0; i < node.contacts.length; ++i) {
if (this.arrayEquals(node.contacts[i].id, id)) return i
}
return -1
}
/**
* Removes contact with the provided id.
*
* @param {Uint8Array} id The ID of the contact to remove.
* @return {Object} The k-bucket itself.
*/
this.remove = function(id) {
this.ensureInt8('the id as parameter 1', id)
let bitIndex = 0
let node = this.root
while (node.contacts === null) {
node = this._determineNode(node, id, bitIndex++)
}
const index = this._indexOf(node, id)
if (index >= 0) {
const contact = node.contacts.splice(index, 1)[0]
}
return this
}
/**
* Splits the node, redistributes contacts to the new nodes, and marks the
* node that was split as an inner node of the binary tree of nodes by
* setting this.root.contacts = null
*
* @param {Object} node node for splitting
* @param {Number} bitIndex the bitIndex to which byte to check in the
* Uint8Array for navigating the binary tree
*/
this._split = function(node, bitIndex) {
node.left = this.createNode()
node.right = this.createNode()
// redistribute existing contacts amongst the two newly created nodes
for (const contact of node.contacts) {
this._determineNode(node, contact.id, bitIndex).contacts.push(contact)
}
node.contacts = null // mark as inner tree node
// don't split the "far away" node
// we check where the local node would end up and mark the other one as
// "dontSplit" (i.e. "far away")
const detNode = this._determineNode(node, this.localNodeId, bitIndex)
const otherNode = node.left === detNode ? node.right : node.left
otherNode.dontSplit = true
}
/**
* Returns all the contacts contained in the tree as an array.
* If this is a leaf, return a copy of the bucket. `slice` is used so that we
* don't accidentally leak an internal reference out that might be
* accidentally misused. If this is not a leaf, return the union of the low
* and high branches (themselves also as arrays).
*
* @return {Array} All of the contacts in the tree, as an array
*/
this.toArray = function() {
let result = []
for (const nodes = [this.root]; nodes.length > 0;) {
const node = nodes.pop()
if (node.contacts === null) nodes.push(node.right, node.left)
else result = result.concat(node.contacts)
}
return result
}
/**
* Updates the contact selected by the arbiter.
* If the selection is our old contact and the candidate is some new contact
* then the new contact is abandoned (not added).
* If the selection is our old contact and the candidate is our old contact
* then we are refreshing the contact and it is marked as most recently
* contacted (by being moved to the right/end of the bucket array).
* If the selection is our new contact, the old contact is removed and the new
* contact is marked as most recently contacted.
*
* @param {Object} node internal object that has 2 leafs: left and right
* @param {Number} index the index in the bucket where contact exists
* (index has already been computed in a previous
* calculation)
* @param {Object} contact The contact object to update.
*/
this._update = function(node, index, contact) {
// sanity check
if (!this.arrayEquals(node.contacts[index].id, contact.id)) {
throw new Error('wrong index for _update')
}
const incumbent = node.contacts[index]
const selection = this.arbiter(incumbent, contact)
// if the selection is our old contact and the candidate is some new
// contact, then there is nothing to do
if (selection === incumbent && incumbent !== contact) return
node.contacts.splice(index, 1) // remove old contact
node.contacts.push(selection) // add more recent contact version
}
}
})(typeof global !== "undefined" ? global : window)