btcwallet/lib.js
2022-11-24 03:43:14 +05:30

6999 lines
269 KiB
JavaScript

(function (GLOBAL) { //lib v1.3.2 (sub-set)
'use strict';
/* Utility Libraries required for Standard operations
* All credits for these codes belong to their respective creators, moderators and owners.
* For more info (including license and terms of use), please visit respective source.
*/
GLOBAL.securedMathRandom = (function () {
if (typeof require === 'function') {
const crypto = require('crypto');
return function () {
return crypto.randomBytes(4).readUInt32LE() / 0xffffffff;
}
} else if (GLOBAL.crypto && GLOBAL.crypto.getRandomValues) {
return function () {
return (GLOBAL.crypto.getRandomValues(new Uint32Array(1))[0] / 0xffffffff);
}
} else
throw Error('Unable to define securedMathRandom');
})();
//Crypto.js
(function () {
// Global Crypto object
var Crypto = GLOBAL.Crypto = {};
/*!
* Crypto-JS v2.5.4 Crypto.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
var base64map = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
// Crypto utilities
var util = Crypto.util = {
// Bit-wise rotate left
rotl: function (n, b) {
return (n << b) | (n >>> (32 - b));
},
// Bit-wise rotate right
rotr: function (n, b) {
return (n << (32 - b)) | (n >>> b);
},
// Swap big-endian to little-endian and vice versa
endian: function (n) {
// If number given, swap endian
if (n.constructor == Number) {
return util.rotl(n, 8) & 0x00FF00FF |
util.rotl(n, 24) & 0xFF00FF00;
}
// Else, assume array and swap all items
for (var i = 0; i < n.length; i++)
n[i] = util.endian(n[i]);
return n;
},
// Generate an array of any length of random bytes
randomBytes: function (n) {
for (var bytes = []; n > 0; n--)
bytes.push(Math.floor(securedMathRandom() * 256));
return bytes;
},
// Convert a byte array to big-endian 32-bit words
bytesToWords: function (bytes) {
for (var words = [], i = 0, b = 0; i < bytes.length; i++, b += 8)
words[b >>> 5] |= (bytes[i] & 0xFF) << (24 - b % 32);
return words;
},
// Convert big-endian 32-bit words to a byte array
wordsToBytes: function (words) {
for (var bytes = [], b = 0; b < words.length * 32; b += 8)
bytes.push((words[b >>> 5] >>> (24 - b % 32)) & 0xFF);
return bytes;
},
// Convert a byte array to a hex string
bytesToHex: function (bytes) {
for (var hex = [], i = 0; i < bytes.length; i++) {
hex.push((bytes[i] >>> 4).toString(16));
hex.push((bytes[i] & 0xF).toString(16));
}
return hex.join("");
},
// Convert a hex string to a byte array
hexToBytes: function (hex) {
for (var bytes = [], c = 0; c < hex.length; c += 2)
bytes.push(parseInt(hex.substr(c, 2), 16));
return bytes;
},
// Convert a byte array to a base-64 string
bytesToBase64: function (bytes) {
for (var base64 = [], i = 0; i < bytes.length; i += 3) {
var triplet = (bytes[i] << 16) | (bytes[i + 1] << 8) | bytes[i + 2];
for (var j = 0; j < 4; j++) {
if (i * 8 + j * 6 <= bytes.length * 8)
base64.push(base64map.charAt((triplet >>> 6 * (3 - j)) & 0x3F));
else base64.push("=");
}
}
return base64.join("");
},
// Convert a base-64 string to a byte array
base64ToBytes: function (base64) {
// Remove non-base-64 characters
base64 = base64.replace(/[^A-Z0-9+\/]/ig, "");
for (var bytes = [], i = 0, imod4 = 0; i < base64.length; imod4 = ++i % 4) {
if (imod4 == 0) continue;
bytes.push(((base64map.indexOf(base64.charAt(i - 1)) & (Math.pow(2, -2 * imod4 + 8) - 1)) << (imod4 * 2)) |
(base64map.indexOf(base64.charAt(i)) >>> (6 - imod4 * 2)));
}
return bytes;
}
};
// Crypto character encodings
var charenc = Crypto.charenc = {};
// UTF-8 encoding
var UTF8 = charenc.UTF8 = {
// Convert a string to a byte array
stringToBytes: function (str) {
return Binary.stringToBytes(unescape(encodeURIComponent(str)));
},
// Convert a byte array to a string
bytesToString: function (bytes) {
return decodeURIComponent(escape(Binary.bytesToString(bytes)));
}
};
// Binary encoding
var Binary = charenc.Binary = {
// Convert a string to a byte array
stringToBytes: function (str) {
for (var bytes = [], i = 0; i < str.length; i++)
bytes.push(str.charCodeAt(i) & 0xFF);
return bytes;
},
// Convert a byte array to a string
bytesToString: function (bytes) {
for (var str = [], i = 0; i < bytes.length; i++)
str.push(String.fromCharCode(bytes[i]));
return str.join("");
}
};
})();
//Adding SHA1 to fix basic PKBDF2
/*
* Crypto-JS v2.5.4
* http://code.google.com/p/crypto-js/
* (c) 2009-2012 by Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
// Public API
var SHA1 = C.SHA1 = function (message, options) {
var digestbytes = util.wordsToBytes(SHA1._sha1(message));
return options && options.asBytes ? digestbytes :
options && options.asString ? Binary.bytesToString(digestbytes) :
util.bytesToHex(digestbytes);
};
// The core
SHA1._sha1 = function (message) {
// Convert to byte array
if (message.constructor == String) message = UTF8.stringToBytes(message);
/* else, assume byte array already */
var m = util.bytesToWords(message),
l = message.length * 8,
w = [],
H0 = 1732584193,
H1 = -271733879,
H2 = -1732584194,
H3 = 271733878,
H4 = -1009589776;
// Padding
m[l >> 5] |= 0x80 << (24 - l % 32);
m[((l + 64 >>> 9) << 4) + 15] = l;
for (var i = 0; i < m.length; i += 16) {
var a = H0,
b = H1,
c = H2,
d = H3,
e = H4;
for (var j = 0; j < 80; j++) {
if (j < 16) w[j] = m[i + j];
else {
var n = w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16];
w[j] = (n << 1) | (n >>> 31);
}
var t = ((H0 << 5) | (H0 >>> 27)) + H4 + (w[j] >>> 0) + (
j < 20 ? (H1 & H2 | ~H1 & H3) + 1518500249 :
j < 40 ? (H1 ^ H2 ^ H3) + 1859775393 :
j < 60 ? (H1 & H2 | H1 & H3 | H2 & H3) - 1894007588 :
(H1 ^ H2 ^ H3) - 899497514);
H4 = H3;
H3 = H2;
H2 = (H1 << 30) | (H1 >>> 2);
H1 = H0;
H0 = t;
}
H0 += a;
H1 += b;
H2 += c;
H3 += d;
H4 += e;
}
return [H0, H1, H2, H3, H4];
};
// Package private blocksize
SHA1._blocksize = 16;
SHA1._digestsize = 20;
})();
//Added to make PKBDF2 work
/*
* Crypto-JS v2.5.4
* http://code.google.com/p/crypto-js/
* (c) 2009-2012 by Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
C.HMAC = function (hasher, message, key, options) {
// Convert to byte arrays
if (message.constructor == String) message = UTF8.stringToBytes(message);
if (key.constructor == String) key = UTF8.stringToBytes(key);
/* else, assume byte arrays already */
// Allow arbitrary length keys
if (key.length > hasher._blocksize * 4)
key = hasher(key, {
asBytes: true
});
// XOR keys with pad constants
var okey = key.slice(0),
ikey = key.slice(0);
for (var i = 0; i < hasher._blocksize * 4; i++) {
okey[i] ^= 0x5C;
ikey[i] ^= 0x36;
}
var hmacbytes = hasher(okey.concat(hasher(ikey.concat(message), {
asBytes: true
})), {
asBytes: true
});
return options && options.asBytes ? hmacbytes :
options && options.asString ? Binary.bytesToString(hmacbytes) :
util.bytesToHex(hmacbytes);
};
})();
//crypto-sha256-hmac.js
/*
* Crypto-JS v2.5.4
* http://code.google.com/p/crypto-js/
* (c) 2009-2012 by Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
var d = Crypto,
k = d.util,
g = d.charenc,
b = g.UTF8,
a = g.Binary,
c = [1116352408, 1899447441, 3049323471, 3921009573, 961987163, 1508970993, 2453635748, 2870763221,
3624381080, 310598401, 607225278, 1426881987, 1925078388, 2162078206, 2614888103, 3248222580,
3835390401, 4022224774, 264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986,
2554220882, 2821834349, 2952996808, 3210313671, 3336571891, 3584528711, 113926993, 338241895,
666307205, 773529912, 1294757372, 1396182291, 1695183700, 1986661051, 2177026350, 2456956037,
2730485921,
2820302411, 3259730800, 3345764771, 3516065817, 3600352804, 4094571909, 275423344, 430227734,
506948616, 659060556, 883997877, 958139571, 1322822218, 1537002063, 1747873779, 1955562222,
2024104815, 2227730452, 2361852424, 2428436474, 2756734187, 3204031479, 3329325298
],
e = d.SHA256 = function (b, c) {
var f = k.wordsToBytes(e._sha256(b));
return c && c.asBytes ? f : c && c.asString ? a.bytesToString(f) : k.bytesToHex(f)
};
e._sha256 = function (a) {
a.constructor == String && (a = b.stringToBytes(a));
var e = k.bytesToWords(a),
f = a.length * 8,
a = [1779033703, 3144134277,
1013904242, 2773480762, 1359893119, 2600822924, 528734635, 1541459225
],
d = [],
g, m, r, i, n, o, s, t, h, l, j;
e[f >> 5] |= 128 << 24 - f % 32;
e[(f + 64 >> 9 << 4) + 15] = f;
for (t = 0; t < e.length; t += 16) {
f = a[0];
g = a[1];
m = a[2];
r = a[3];
i = a[4];
n = a[5];
o = a[6];
s = a[7];
for (h = 0; h < 64; h++) {
h < 16 ? d[h] = e[h + t] : (l = d[h - 15], j = d[h - 2], d[h] = ((l << 25 | l >>> 7) ^
(l << 14 | l >>> 18) ^ l >>> 3) + (d[h - 7] >>> 0) + ((j << 15 | j >>> 17) ^
(j << 13 | j >>> 19) ^ j >>> 10) + (d[h - 16] >>> 0));
j = f & g ^ f & m ^ g & m;
var u = (f << 30 | f >>> 2) ^ (f << 19 | f >>> 13) ^ (f << 10 | f >>> 22);
l = (s >>> 0) + ((i << 26 | i >>> 6) ^ (i << 21 | i >>> 11) ^ (i << 7 | i >>> 25)) +
(i & n ^ ~i & o) + c[h] + (d[h] >>> 0);
j = u + j;
s = o;
o = n;
n = i;
i = r + l >>> 0;
r = m;
m = g;
g = f;
f = l + j >>> 0
}
a[0] += f;
a[1] += g;
a[2] += m;
a[3] += r;
a[4] += i;
a[5] += n;
a[6] += o;
a[7] += s
}
return a
};
e._blocksize = 16;
e._digestsize = 32
})();
(function () {
var d = Crypto,
k = d.util,
g = d.charenc,
b = g.UTF8,
a = g.Binary;
d.HMAC = function (c, e, d, g) {
e.constructor == String && (e = b.stringToBytes(e));
d.constructor == String && (d = b.stringToBytes(d));
d.length > c._blocksize * 4 && (d = c(d, {
asBytes: !0
}));
for (var f = d.slice(0), d = d.slice(0), q = 0; q < c._blocksize * 4; q++) f[q] ^= 92, d[q] ^=
54;
c = c(f.concat(c(d.concat(e), {
asBytes: !0
})), {
asBytes: !0
});
return g && g.asBytes ? c : g && g.asString ? a.bytesToString(c) : k.bytesToHex(c)
}
})();
})();
//ripemd160.js
(function () {
/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
/** @preserve
(c) 2012 by Cédric Mesnil. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Constants table
var zl = [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13
];
var zr = [
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
];
var sl = [
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6
];
var sr = [
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
];
var hl = [0x00000000, 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xA953FD4E];
var hr = [0x50A28BE6, 0x5C4DD124, 0x6D703EF3, 0x7A6D76E9, 0x00000000];
var bytesToWords = function (bytes) {
var words = [];
for (var i = 0, b = 0; i < bytes.length; i++, b += 8) {
words[b >>> 5] |= bytes[i] << (24 - b % 32);
}
return words;
};
var wordsToBytes = function (words) {
var bytes = [];
for (var b = 0; b < words.length * 32; b += 8) {
bytes.push((words[b >>> 5] >>> (24 - b % 32)) & 0xFF);
}
return bytes;
};
var processBlock = function (H, M, offset) {
// Swap endian
for (var i = 0; i < 16; i++) {
var offset_i = offset + i;
var M_offset_i = M[offset_i];
// Swap
M[offset_i] = (
(((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) |
(((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00)
);
}
// Working variables
var al, bl, cl, dl, el;
var ar, br, cr, dr, er;
ar = al = H[0];
br = bl = H[1];
cr = cl = H[2];
dr = dl = H[3];
er = el = H[4];
// Computation
var t;
for (var i = 0; i < 80; i += 1) {
t = (al + M[offset + zl[i]]) | 0;
if (i < 16) {
t += f1(bl, cl, dl) + hl[0];
} else if (i < 32) {
t += f2(bl, cl, dl) + hl[1];
} else if (i < 48) {
t += f3(bl, cl, dl) + hl[2];
} else if (i < 64) {
t += f4(bl, cl, dl) + hl[3];
} else { // if (i<80) {
t += f5(bl, cl, dl) + hl[4];
}
t = t | 0;
t = rotl(t, sl[i]);
t = (t + el) | 0;
al = el;
el = dl;
dl = rotl(cl, 10);
cl = bl;
bl = t;
t = (ar + M[offset + zr[i]]) | 0;
if (i < 16) {
t += f5(br, cr, dr) + hr[0];
} else if (i < 32) {
t += f4(br, cr, dr) + hr[1];
} else if (i < 48) {
t += f3(br, cr, dr) + hr[2];
} else if (i < 64) {
t += f2(br, cr, dr) + hr[3];
} else { // if (i<80) {
t += f1(br, cr, dr) + hr[4];
}
t = t | 0;
t = rotl(t, sr[i]);
t = (t + er) | 0;
ar = er;
er = dr;
dr = rotl(cr, 10);
cr = br;
br = t;
}
// Intermediate hash value
t = (H[1] + cl + dr) | 0;
H[1] = (H[2] + dl + er) | 0;
H[2] = (H[3] + el + ar) | 0;
H[3] = (H[4] + al + br) | 0;
H[4] = (H[0] + bl + cr) | 0;
H[0] = t;
};
function f1(x, y, z) {
return ((x) ^ (y) ^ (z));
}
function f2(x, y, z) {
return (((x) & (y)) | ((~x) & (z)));
}
function f3(x, y, z) {
return (((x) | (~(y))) ^ (z));
}
function f4(x, y, z) {
return (((x) & (z)) | ((y) & (~(z))));
}
function f5(x, y, z) {
return ((x) ^ ((y) | (~(z))));
}
function rotl(x, n) {
return (x << n) | (x >>> (32 - n));
}
GLOBAL.ripemd160 = function ripemd160(message) {
var H = [0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0];
var m = bytesToWords(message);
var nBitsLeft = message.length * 8;
var nBitsTotal = message.length * 8;
// Add padding
m[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
m[(((nBitsLeft + 64) >>> 9) << 4) + 14] = (
(((nBitsTotal << 8) | (nBitsTotal >>> 24)) & 0x00ff00ff) |
(((nBitsTotal << 24) | (nBitsTotal >>> 8)) & 0xff00ff00)
);
for (var i = 0; i < m.length; i += 16) {
processBlock(H, m, i);
}
// Swap endian
for (var i = 0; i < 5; i++) {
// Shortcut
var H_i = H[i];
// Swap
H[i] = (((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) |
(((H_i << 24) | (H_i >>> 8)) & 0xff00ff00);
}
var digestbytes = wordsToBytes(H);
return digestbytes;
}
})();
//BigInteger.js
(function () {
// Upstream 'BigInteger' here:
// Original Author: http://www-cs-students.stanford.edu/~tjw/jsbn/
// Follows 'jsbn' on Github: https://github.com/jasondavies/jsbn
// Review and Testing: https://github.com/cryptocoinjs/bigi/
/*!
* Basic JavaScript BN library - subset useful for RSA encryption. v1.4
*
* Copyright (c) 2005 Tom Wu
* All Rights Reserved.
* BSD License
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
*
* Copyright Stephan Thomas
* Copyright pointbiz
*/
// (public) Constructor function of Global BigInteger object
var BigInteger = GLOBAL.BigInteger = function BigInteger(a, b, c) {
if (!(this instanceof BigInteger))
return new BigInteger(a, b, c);
if (a != null)
if ("number" == typeof a) this.fromNumber(a, b, c);
else if (b == null && "string" != typeof a) this.fromString(a, 256);
else this.fromString(a, b);
};
// Bits per digit
var dbits;
// JavaScript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = ((canary & 0xffffff) == 0xefcafe);
// return new, unset BigInteger
function nbi() {
return new BigInteger(null);
}
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i, x, w, j, c, n) {
while (--n >= 0) {
var v = x * this[i++] + w[j] + c;
c = Math.floor(v / 0x4000000);
w[j++] = v & 0x3ffffff;
}
return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i, x, w, j, c, n) {
var xl = x & 0x7fff,
xh = x >> 15;
while (--n >= 0) {
var l = this[i] & 0x7fff;
var h = this[i++] >> 15;
var m = xh * l + h * xl;
l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
w[j++] = l & 0x3fffffff;
}
return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i, x, w, j, c, n) {
var xl = x & 0x3fff,
xh = x >> 14;
while (--n >= 0) {
var l = this[i] & 0x3fff;
var h = this[i++] >> 14;
var m = xh * l + h * xl;
l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
c = (l >> 28) + (m >> 14) + xh * h;
w[j++] = l & 0xfffffff;
}
return c;
}
if (j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
BigInteger.prototype.am = am2;
dbits = 30;
} else if (j_lm && (navigator.appName != "Netscape")) {
BigInteger.prototype.am = am1;
dbits = 26;
} else { // Mozilla/Netscape seems to prefer am3
BigInteger.prototype.am = am3;
dbits = 28;
}
BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1 << dbits) - 1);
BigInteger.prototype.DV = (1 << dbits);
var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2, BI_FP);
BigInteger.prototype.F1 = BI_FP - dbits;
BigInteger.prototype.F2 = 2 * dbits - BI_FP;
// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr, vv;
rr = "0".charCodeAt(0);
for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
rr = "a".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
rr = "A".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
function int2char(n) {
return BI_RM.charAt(n);
}
function intAt(s, i) {
var c = BI_RC[s.charCodeAt(i)];
return (c == null) ? -1 : c;
}
// return bigint initialized to value
function nbv(i) {
var r = nbi();
r.fromInt(i);
return r;
}
// returns bit length of the integer x
function nbits(x) {
var r = 1,
t;
if ((t = x >>> 16) != 0) {
x = t;
r += 16;
}
if ((t = x >> 8) != 0) {
x = t;
r += 8;
}
if ((t = x >> 4) != 0) {
x = t;
r += 4;
}
if ((t = x >> 2) != 0) {
x = t;
r += 2;
}
if ((t = x >> 1) != 0) {
x = t;
r += 1;
}
return r;
}
// (protected) copy this to r
BigInteger.prototype.copyTo = function (r) {
for (var i = this.t - 1; i >= 0; --i) r[i] = this[i];
r.t = this.t;
r.s = this.s;
};
// (protected) set from integer value x, -DV <= x < DV
BigInteger.prototype.fromInt = function (x) {
this.t = 1;
this.s = (x < 0) ? -1 : 0;
if (x > 0) this[0] = x;
else if (x < -1) this[0] = x + this.DV;
else this.t = 0;
};
// (protected) set from string and radix
BigInteger.prototype.fromString = function (s, b) {
var k;
if (b == 16) k = 4;
else if (b == 8) k = 3;
else if (b == 256) k = 8; // byte array
else if (b == 2) k = 1;
else if (b == 32) k = 5;
else if (b == 4) k = 2;
else {
this.fromRadix(s, b);
return;
}
this.t = 0;
this.s = 0;
var i = s.length,
mi = false,
sh = 0;
while (--i >= 0) {
var x = (k == 8) ? s[i] & 0xff : intAt(s, i);
if (x < 0) {
if (s.charAt(i) == "-") mi = true;
continue;
}
mi = false;
if (sh == 0)
this[this.t++] = x;
else if (sh + k > this.DB) {
this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh;
this[this.t++] = (x >> (this.DB - sh));
} else
this[this.t - 1] |= x << sh;
sh += k;
if (sh >= this.DB) sh -= this.DB;
}
if (k == 8 && (s[0] & 0x80) != 0) {
this.s = -1;
if (sh > 0) this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh;
}
this.clamp();
if (mi) BigInteger.ZERO.subTo(this, this);
};
// (protected) clamp off excess high words
BigInteger.prototype.clamp = function () {
var c = this.s & this.DM;
while (this.t > 0 && this[this.t - 1] == c) --this.t;
};
// (protected) r = this << n*DB
BigInteger.prototype.dlShiftTo = function (n, r) {
var i;
for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i];
for (i = n - 1; i >= 0; --i) r[i] = 0;
r.t = this.t + n;
r.s = this.s;
};
// (protected) r = this >> n*DB
BigInteger.prototype.drShiftTo = function (n, r) {
for (var i = n; i < this.t; ++i) r[i - n] = this[i];
r.t = Math.max(this.t - n, 0);
r.s = this.s;
};
// (protected) r = this << n
BigInteger.prototype.lShiftTo = function (n, r) {
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << cbs) - 1;
var ds = Math.floor(n / this.DB),
c = (this.s << bs) & this.DM,
i;
for (i = this.t - 1; i >= 0; --i) {
r[i + ds + 1] = (this[i] >> cbs) | c;
c = (this[i] & bm) << bs;
}
for (i = ds - 1; i >= 0; --i) r[i] = 0;
r[ds] = c;
r.t = this.t + ds + 1;
r.s = this.s;
r.clamp();
};
// (protected) r = this >> n
BigInteger.prototype.rShiftTo = function (n, r) {
r.s = this.s;
var ds = Math.floor(n / this.DB);
if (ds >= this.t) {
r.t = 0;
return;
}
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << bs) - 1;
r[0] = this[ds] >> bs;
for (var i = ds + 1; i < this.t; ++i) {
r[i - ds - 1] |= (this[i] & bm) << cbs;
r[i - ds] = this[i] >> bs;
}
if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs;
r.t = this.t - ds;
r.clamp();
};
// (protected) r = this - a
BigInteger.prototype.subTo = function (a, r) {
var i = 0,
c = 0,
m = Math.min(a.t, this.t);
while (i < m) {
c += this[i] - a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t) {
c -= a.s;
while (i < this.t) {
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
} else {
c += this.s;
while (i < a.t) {
c -= a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c -= a.s;
}
r.s = (c < 0) ? -1 : 0;
if (c < -1) r[i++] = this.DV + c;
else if (c > 0) r[i++] = c;
r.t = i;
r.clamp();
};
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
BigInteger.prototype.multiplyTo = function (a, r) {
var x = this.abs(),
y = a.abs();
var i = x.t;
r.t = i + y.t;
while (--i >= 0) r[i] = 0;
for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
r.s = 0;
r.clamp();
if (this.s != a.s) BigInteger.ZERO.subTo(r, r);
};
// (protected) r = this^2, r != this (HAC 14.16)
BigInteger.prototype.squareTo = function (r) {
var x = this.abs();
var i = r.t = 2 * x.t;
while (--i >= 0) r[i] = 0;
for (i = 0; i < x.t - 1; ++i) {
var c = x.am(i, x[i], r, 2 * i, 0, 1);
if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) {
r[i + x.t] -= x.DV;
r[i + x.t + 1] = 1;
}
}
if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
r.s = 0;
r.clamp();
};
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
BigInteger.prototype.divRemTo = function (m, q, r) {
var pm = m.abs();
if (pm.t <= 0) return;
var pt = this.abs();
if (pt.t < pm.t) {
if (q != null) q.fromInt(0);
if (r != null) this.copyTo(r);
return;
}
if (r == null) r = nbi();
var y = nbi(),
ts = this.s,
ms = m.s;
var nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus
if (nsh > 0) {
pm.lShiftTo(nsh, y);
pt.lShiftTo(nsh, r);
} else {
pm.copyTo(y);
pt.copyTo(r);
}
var ys = y.t;
var y0 = y[ys - 1];
if (y0 == 0) return;
var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0);
var d1 = this.FV / yt,
d2 = (1 << this.F1) / yt,
e = 1 << this.F2;
var i = r.t,
j = i - ys,
t = (q == null) ? nbi() : q;
y.dlShiftTo(j, t);
if (r.compareTo(t) >= 0) {
r[r.t++] = 1;
r.subTo(t, r);
}
BigInteger.ONE.dlShiftTo(ys, t);
t.subTo(y, y); // "negative" y so we can replace sub with am later
while (y.t < ys) y[y.t++] = 0;
while (--j >= 0) {
// Estimate quotient digit
var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out
y.dlShiftTo(j, t);
r.subTo(t, r);
while (r[i] < --qd) r.subTo(t, r);
}
}
if (q != null) {
r.drShiftTo(ys, q);
if (ts != ms) BigInteger.ZERO.subTo(q, q);
}
r.t = ys;
r.clamp();
if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder
if (ts < 0) BigInteger.ZERO.subTo(r, r);
};
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
BigInteger.prototype.invDigit = function () {
if (this.t < 1) return 0;
var x = this[0];
if ((x & 1) == 0) return 0;
var y = x & 3; // y == 1/x mod 2^2
y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4
y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8
y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y > 0) ? this.DV - y : -y;
};
// (protected) true iff this is even
BigInteger.prototype.isEven = function () {
return ((this.t > 0) ? (this[0] & 1) : this.s) == 0;
};
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
BigInteger.prototype.exp = function (e, z) {
if (e > 0xffffffff || e < 1) return BigInteger.ONE;
var r = nbi(),
r2 = nbi(),
g = z.convert(this),
i = nbits(e) - 1;
g.copyTo(r);
while (--i >= 0) {
z.sqrTo(r, r2);
if ((e & (1 << i)) > 0) z.mulTo(r2, g, r);
else {
var t = r;
r = r2;
r2 = t;
}
}
return z.revert(r);
};
// (public) return string representation in given radix
BigInteger.prototype.toString = function (b) {
if (this.s < 0) return "-" + this.negate().toString(b);
var k;
if (b == 16) k = 4;
else if (b == 8) k = 3;
else if (b == 2) k = 1;
else if (b == 32) k = 5;
else if (b == 4) k = 2;
else return this.toRadix(b);
var km = (1 << k) - 1,
d, m = false,
r = "",
i = this.t;
var p = this.DB - (i * this.DB) % k;
if (i-- > 0) {
if (p < this.DB && (d = this[i] >> p) > 0) {
m = true;
r = int2char(d);
}
while (i >= 0) {
if (p < k) {
d = (this[i] & ((1 << p) - 1)) << (k - p);
d |= this[--i] >> (p += this.DB - k);
} else {
d = (this[i] >> (p -= k)) & km;
if (p <= 0) {
p += this.DB;
--i;
}
}
if (d > 0) m = true;
if (m) r += int2char(d);
}
}
return m ? r : "0";
};
// (public) -this
BigInteger.prototype.negate = function () {
var r = nbi();
BigInteger.ZERO.subTo(this, r);
return r;
};
// (public) |this|
BigInteger.prototype.abs = function () {
return (this.s < 0) ? this.negate() : this;
};
// (public) return + if this > a, - if this < a, 0 if equal
BigInteger.prototype.compareTo = function (a) {
var r = this.s - a.s;
if (r != 0) return r;
var i = this.t;
r = i - a.t;
if (r != 0) return (this.s < 0) ? -r : r;
while (--i >= 0)
if ((r = this[i] - a[i]) != 0) return r;
return 0;
}
// (public) return the number of bits in "this"
BigInteger.prototype.bitLength = function () {
if (this.t <= 0) return 0;
return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM));
};
// (public) this mod a
BigInteger.prototype.mod = function (a) {
var r = nbi();
this.abs().divRemTo(a, null, r);
if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r);
return r;
}
// (public) this^e % m, 0 <= e < 2^32
BigInteger.prototype.modPowInt = function (e, m) {
var z;
if (e < 256 || m.isEven()) z = new Classic(m);
else z = new Montgomery(m);
return this.exp(e, z);
};
// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);
// Copyright (c) 2005-2009 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Extended JavaScript BN functions, required for RSA private ops.
// Version 1.1: new BigInteger("0", 10) returns "proper" zero
// Version 1.2: square() API, isProbablePrime fix
// return index of lowest 1-bit in x, x < 2^31
function lbit(x) {
if (x == 0) return -1;
var r = 0;
if ((x & 0xffff) == 0) {
x >>= 16;
r += 16;
}
if ((x & 0xff) == 0) {
x >>= 8;
r += 8;
}
if ((x & 0xf) == 0) {
x >>= 4;
r += 4;
}
if ((x & 3) == 0) {
x >>= 2;
r += 2;
}
if ((x & 1) == 0) ++r;
return r;
}
// return number of 1 bits in x
function cbit(x) {
var r = 0;
while (x != 0) {
x &= x - 1;
++r;
}
return r;
}
var lowprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89,
97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191,
193,
197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307,
311,
313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431,
433,
439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563,
569,
571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677,
683,
691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823,
827,
829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967,
971,
977, 983, 991, 997
];
var lplim = (1 << 26) / lowprimes[lowprimes.length - 1];
// (protected) return x s.t. r^x < DV
BigInteger.prototype.chunkSize = function (r) {
return Math.floor(Math.LN2 * this.DB / Math.log(r));
};
// (protected) convert to radix string
BigInteger.prototype.toRadix = function (b) {
if (b == null) b = 10;
if (this.signum() == 0 || b < 2 || b > 36) return "0";
var cs = this.chunkSize(b);
var a = Math.pow(b, cs);
var d = nbv(a),
y = nbi(),
z = nbi(),
r = "";
this.divRemTo(d, y, z);
while (y.signum() > 0) {
r = (a + z.intValue()).toString(b).substr(1) + r;
y.divRemTo(d, y, z);
}
return z.intValue().toString(b) + r;
};
// (protected) convert from radix string
BigInteger.prototype.fromRadix = function (s, b) {
this.fromInt(0);
if (b == null) b = 10;
var cs = this.chunkSize(b);
var d = Math.pow(b, cs),
mi = false,
j = 0,
w = 0;
for (var i = 0; i < s.length; ++i) {
var x = intAt(s, i);
if (x < 0) {
if (s.charAt(i) == "-" && this.signum() == 0) mi = true;
continue;
}
w = b * w + x;
if (++j >= cs) {
this.dMultiply(d);
this.dAddOffset(w, 0);
j = 0;
w = 0;
}
}
if (j > 0) {
this.dMultiply(Math.pow(b, j));
this.dAddOffset(w, 0);
}
if (mi) BigInteger.ZERO.subTo(this, this);
};
// (protected) alternate constructor
BigInteger.prototype.fromNumber = function (a, b, c) {
if ("number" == typeof b) {
// new BigInteger(int,int,RNG)
if (a < 2) this.fromInt(1);
else {
this.fromNumber(a, c);
if (!this.testBit(a - 1)) // force MSB set
this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this);
if (this.isEven()) this.dAddOffset(1, 0); // force odd
while (!this.isProbablePrime(b)) {
this.dAddOffset(2, 0);
if (this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a - 1), this);
}
}
} else {
// new BigInteger(int,RNG)
var x = new Array(),
t = a & 7;
x.length = (a >> 3) + 1;
b.nextBytes(x);
if (t > 0) x[0] &= ((1 << t) - 1);
else x[0] = 0;
this.fromString(x, 256);
}
};
// (protected) r = this op a (bitwise)
BigInteger.prototype.bitwiseTo = function (a, op, r) {
var i, f, m = Math.min(a.t, this.t);
for (i = 0; i < m; ++i) r[i] = op(this[i], a[i]);
if (a.t < this.t) {
f = a.s & this.DM;
for (i = m; i < this.t; ++i) r[i] = op(this[i], f);
r.t = this.t;
} else {
f = this.s & this.DM;
for (i = m; i < a.t; ++i) r[i] = op(f, a[i]);
r.t = a.t;
}
r.s = op(this.s, a.s);
r.clamp();
};
// (protected) this op (1<<n)
BigInteger.prototype.changeBit = function (n, op) {
var r = BigInteger.ONE.shiftLeft(n);
this.bitwiseTo(r, op, r);
return r;
};
// (protected) r = this + a
BigInteger.prototype.addTo = function (a, r) {
var i = 0,
c = 0,
m = Math.min(a.t, this.t);
while (i < m) {
c += this[i] + a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t) {
c += a.s;
while (i < this.t) {
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
} else {
c += this.s;
while (i < a.t) {
c += a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += a.s;
}
r.s = (c < 0) ? -1 : 0;
if (c > 0) r[i++] = c;
else if (c < -1) r[i++] = this.DV + c;
r.t = i;
r.clamp();
};
// (protected) this *= n, this >= 0, 1 < n < DV
BigInteger.prototype.dMultiply = function (n) {
this[this.t] = this.am(0, n - 1, this, 0, 0, this.t);
++this.t;
this.clamp();
};
// (protected) this += n << w words, this >= 0
BigInteger.prototype.dAddOffset = function (n, w) {
if (n == 0) return;
while (this.t <= w) this[this.t++] = 0;
this[w] += n;
while (this[w] >= this.DV) {
this[w] -= this.DV;
if (++w >= this.t) this[this.t++] = 0;
++this[w];
}
};
// (protected) r = lower n words of "this * a", a.t <= n
// "this" should be the larger one if appropriate.
BigInteger.prototype.multiplyLowerTo = function (a, n, r) {
var i = Math.min(this.t + a.t, n);
r.s = 0; // assumes a,this >= 0
r.t = i;
while (i > 0) r[--i] = 0;
var j;
for (j = r.t - this.t; i < j; ++i) r[i + this.t] = this.am(0, a[i], r, i, 0, this.t);
for (j = Math.min(a.t, n); i < j; ++i) this.am(0, a[i], r, i, 0, n - i);
r.clamp();
};
// (protected) r = "this * a" without lower n words, n > 0
// "this" should be the larger one if appropriate.
BigInteger.prototype.multiplyUpperTo = function (a, n, r) {
--n;
var i = r.t = this.t + a.t - n;
r.s = 0; // assumes a,this >= 0
while (--i >= 0) r[i] = 0;
for (i = Math.max(n - this.t, 0); i < a.t; ++i)
r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n);
r.clamp();
r.drShiftTo(1, r);
};
// (protected) this % n, n < 2^26
BigInteger.prototype.modInt = function (n) {
if (n <= 0) return 0;
var d = this.DV % n,
r = (this.s < 0) ? n - 1 : 0;
if (this.t > 0)
if (d == 0) r = this[0] % n;
else
for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n;
return r;
};
// (protected) true if probably prime (HAC 4.24, Miller-Rabin)
BigInteger.prototype.millerRabin = function (t) {
var n1 = this.subtract(BigInteger.ONE);
var k = n1.getLowestSetBit();
if (k <= 0) return false;
var r = n1.shiftRight(k);
t = (t + 1) >> 1;
if (t > lowprimes.length) t = lowprimes.length;
var a = nbi();
for (var i = 0; i < t; ++i) {
//Pick bases at random, instead of starting at 2
a.fromInt(lowprimes[Math.floor(securedMathRandom() * lowprimes.length)]);
var y = a.modPow(r, this);
if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
var j = 1;
while (j++ < k && y.compareTo(n1) != 0) {
y = y.modPowInt(2, this);
if (y.compareTo(BigInteger.ONE) == 0) return false;
}
if (y.compareTo(n1) != 0) return false;
}
}
return true;
};
// (public)
BigInteger.prototype.clone = function () {
var r = nbi();
this.copyTo(r);
return r;
};
// (public) return value as integer
BigInteger.prototype.intValue = function () {
if (this.s < 0) {
if (this.t == 1) return this[0] - this.DV;
else if (this.t == 0) return -1;
} else if (this.t == 1) return this[0];
else if (this.t == 0) return 0;
// assumes 16 < DB < 32
return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0];
};
// (public) return value as byte
BigInteger.prototype.byteValue = function () {
return (this.t == 0) ? this.s : (this[0] << 24) >> 24;
};
// (public) return value as short (assumes DB>=16)
BigInteger.prototype.shortValue = function () {
return (this.t == 0) ? this.s : (this[0] << 16) >> 16;
};
// (public) 0 if this == 0, 1 if this > 0
BigInteger.prototype.signum = function () {
if (this.s < 0) return -1;
else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
else return 1;
};
// (public) convert to bigendian byte array
BigInteger.prototype.toByteArray = function () {
var i = this.t,
r = new Array();
r[0] = this.s;
var p = this.DB - (i * this.DB) % 8,
d, k = 0;
if (i-- > 0) {
if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p)
r[k++] = d | (this.s << (this.DB - p));
while (i >= 0) {
if (p < 8) {
d = (this[i] & ((1 << p) - 1)) << (8 - p);
d |= this[--i] >> (p += this.DB - 8);
} else {
d = (this[i] >> (p -= 8)) & 0xff;
if (p <= 0) {
p += this.DB;
--i;
}
}
if ((d & 0x80) != 0) d |= -256;
if (k == 0 && (this.s & 0x80) != (d & 0x80)) ++k;
if (k > 0 || d != this.s) r[k++] = d;
}
}
return r;
};
BigInteger.prototype.equals = function (a) {
return (this.compareTo(a) == 0);
};
BigInteger.prototype.min = function (a) {
return (this.compareTo(a) < 0) ? this : a;
};
BigInteger.prototype.max = function (a) {
return (this.compareTo(a) > 0) ? this : a;
};
// (public) this & a
function op_and(x, y) {
return x & y;
}
BigInteger.prototype.and = function (a) {
var r = nbi();
this.bitwiseTo(a, op_and, r);
return r;
};
// (public) this | a
function op_or(x, y) {
return x | y;
}
BigInteger.prototype.or = function (a) {
var r = nbi();
this.bitwiseTo(a, op_or, r);
return r;
};
// (public) this ^ a
function op_xor(x, y) {
return x ^ y;
}
BigInteger.prototype.xor = function (a) {
var r = nbi();
this.bitwiseTo(a, op_xor, r);
return r;
};
// (public) this & ~a
function op_andnot(x, y) {
return x & ~y;
}
BigInteger.prototype.andNot = function (a) {
var r = nbi();
this.bitwiseTo(a, op_andnot, r);
return r;
};
// (public) ~this
BigInteger.prototype.not = function () {
var r = nbi();
for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i];
r.t = this.t;
r.s = ~this.s;
return r;
};
// (public) this << n
BigInteger.prototype.shiftLeft = function (n) {
var r = nbi();
if (n < 0) this.rShiftTo(-n, r);
else this.lShiftTo(n, r);
return r;
};
// (public) this >> n
BigInteger.prototype.shiftRight = function (n) {
var r = nbi();
if (n < 0) this.lShiftTo(-n, r);
else this.rShiftTo(n, r);
return r;
};
// (public) returns index of lowest 1-bit (or -1 if none)
BigInteger.prototype.getLowestSetBit = function () {
for (var i = 0; i < this.t; ++i)
if (this[i] != 0) return i * this.DB + lbit(this[i]);
if (this.s < 0) return this.t * this.DB;
return -1;
};
// (public) return number of set bits
BigInteger.prototype.bitCount = function () {
var r = 0,
x = this.s & this.DM;
for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x);
return r;
};
// (public) true iff nth bit is set
BigInteger.prototype.testBit = function (n) {
var j = Math.floor(n / this.DB);
if (j >= this.t) return (this.s != 0);
return ((this[j] & (1 << (n % this.DB))) != 0);
};
// (public) this | (1<<n)
BigInteger.prototype.setBit = function (n) {
return this.changeBit(n, op_or);
};
// (public) this & ~(1<<n)
BigInteger.prototype.clearBit = function (n) {
return this.changeBit(n, op_andnot);
};
// (public) this ^ (1<<n)
BigInteger.prototype.flipBit = function (n) {
return this.changeBit(n, op_xor);
};
// (public) this + a
BigInteger.prototype.add = function (a) {
var r = nbi();
this.addTo(a, r);
return r;
};
// (public) this - a
BigInteger.prototype.subtract = function (a) {
var r = nbi();
this.subTo(a, r);
return r;
};
// (public) this * a
BigInteger.prototype.multiply = function (a) {
var r = nbi();
this.multiplyTo(a, r);
return r;
};
// (public) this / a
BigInteger.prototype.divide = function (a) {
var r = nbi();
this.divRemTo(a, r, null);
return r;
};
// (public) this % a
BigInteger.prototype.remainder = function (a) {
var r = nbi();
this.divRemTo(a, null, r);
return r;
};
// (public) [this/a,this%a]
BigInteger.prototype.divideAndRemainder = function (a) {
var q = nbi(),
r = nbi();
this.divRemTo(a, q, r);
return new Array(q, r);
};
// (public) this^e % m (HAC 14.85)
BigInteger.prototype.modPow = function (e, m) {
var i = e.bitLength(),
k, r = nbv(1),
z;
if (i <= 0) return r;
else if (i < 18) k = 1;
else if (i < 48) k = 3;
else if (i < 144) k = 4;
else if (i < 768) k = 5;
else k = 6;
if (i < 8)
z = new Classic(m);
else if (m.isEven())
z = new Barrett(m);
else
z = new Montgomery(m);
// precomputation
var g = new Array(),
n = 3,
k1 = k - 1,
km = (1 << k) - 1;
g[1] = z.convert(this);
if (k > 1) {
var g2 = nbi();
z.sqrTo(g[1], g2);
while (n <= km) {
g[n] = nbi();
z.mulTo(g2, g[n - 2], g[n]);
n += 2;
}
}
var j = e.t - 1,
w, is1 = true,
r2 = nbi(),
t;
i = nbits(e[j]) - 1;
while (j >= 0) {
if (i >= k1) w = (e[j] >> (i - k1)) & km;
else {
w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i);
if (j > 0) w |= e[j - 1] >> (this.DB + i - k1);
}
n = k;
while ((w & 1) == 0) {
w >>= 1;
--n;
}
if ((i -= n) < 0) {
i += this.DB;
--j;
}
if (is1) { // ret == 1, don't bother squaring or multiplying it
g[w].copyTo(r);
is1 = false;
} else {
while (n > 1) {
z.sqrTo(r, r2);
z.sqrTo(r2, r);
n -= 2;
}
if (n > 0) z.sqrTo(r, r2);
else {
t = r;
r = r2;
r2 = t;
}
z.mulTo(r2, g[w], r);
}
while (j >= 0 && (e[j] & (1 << i)) == 0) {
z.sqrTo(r, r2);
t = r;
r = r2;
r2 = t;
if (--i < 0) {
i = this.DB - 1;
--j;
}
}
}
return z.revert(r);
};
// (public) 1/this % m (HAC 14.61)
BigInteger.prototype.modInverse = function (m) {
var ac = m.isEven();
if (this.signum() === 0) throw new Error('division by zero');
if ((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
var u = m.clone(),
v = this.clone();
var a = nbv(1),
b = nbv(0),
c = nbv(0),
d = nbv(1);
while (u.signum() != 0) {
while (u.isEven()) {
u.rShiftTo(1, u);
if (ac) {
if (!a.isEven() || !b.isEven()) {
a.addTo(this, a);
b.subTo(m, b);
}
a.rShiftTo(1, a);
} else if (!b.isEven()) b.subTo(m, b);
b.rShiftTo(1, b);
}
while (v.isEven()) {
v.rShiftTo(1, v);
if (ac) {
if (!c.isEven() || !d.isEven()) {
c.addTo(this, c);
d.subTo(m, d);
}
c.rShiftTo(1, c);
} else if (!d.isEven()) d.subTo(m, d);
d.rShiftTo(1, d);
}
if (u.compareTo(v) >= 0) {
u.subTo(v, u);
if (ac) a.subTo(c, a);
b.subTo(d, b);
} else {
v.subTo(u, v);
if (ac) c.subTo(a, c);
d.subTo(b, d);
}
}
if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
while (d.compareTo(m) >= 0) d.subTo(m, d);
while (d.signum() < 0) d.addTo(m, d);
return d;
};
// (public) this^e
BigInteger.prototype.pow = function (e) {
return this.exp(e, new NullExp());
};
// (public) gcd(this,a) (HAC 14.54)
BigInteger.prototype.gcd = function (a) {
var x = (this.s < 0) ? this.negate() : this.clone();
var y = (a.s < 0) ? a.negate() : a.clone();
if (x.compareTo(y) < 0) {
var t = x;
x = y;
y = t;
}
var i = x.getLowestSetBit(),
g = y.getLowestSetBit();
if (g < 0) return x;
if (i < g) g = i;
if (g > 0) {
x.rShiftTo(g, x);
y.rShiftTo(g, y);
}
while (x.signum() > 0) {
if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x);
if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y);
if (x.compareTo(y) >= 0) {
x.subTo(y, x);
x.rShiftTo(1, x);
} else {
y.subTo(x, y);
y.rShiftTo(1, y);
}
}
if (g > 0) y.lShiftTo(g, y);
return y;
};
// (public) test primality with certainty >= 1-.5^t
BigInteger.prototype.isProbablePrime = function (t) {
var i, x = this.abs();
if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) {
for (i = 0; i < lowprimes.length; ++i)
if (x[0] == lowprimes[i]) return true;
return false;
}
if (x.isEven()) return false;
i = 1;
while (i < lowprimes.length) {
var m = lowprimes[i],
j = i + 1;
while (j < lowprimes.length && m < lplim) m *= lowprimes[j++];
m = x.modInt(m);
while (i < j)
if (m % lowprimes[i++] == 0) return false;
}
return x.millerRabin(t);
};
// JSBN-specific extension
// (public) this^2
BigInteger.prototype.square = function () {
var r = nbi();
this.squareTo(r);
return r;
};
// NOTE: BigInteger interfaces not implemented in jsbn:
// BigInteger(int signum, byte[] magnitude)
// double doubleValue()
// float floatValue()
// int hashCode()
// long longValue()
// static BigInteger valueOf(long val)
// Copyright Stephan Thomas (start) --- //
// https://raw.github.com/bitcoinjs/bitcoinjs-lib/07f9d55ccb6abd962efb6befdd37671f85ea4ff9/src/util.js
// BigInteger monkey patching
BigInteger.valueOf = nbv;
/**
* Returns a byte array representation of the big integer.
*
* This returns the absolute of the contained value in big endian
* form. A value of zero results in an empty array.
*/
BigInteger.prototype.toByteArrayUnsigned = function () {
var ba = this.abs().toByteArray();
if (ba.length) {
if (ba[0] == 0) {
ba = ba.slice(1);
}
return ba.map(function (v) {
return (v < 0) ? v + 256 : v;
});
} else {
// Empty array, nothing to do
return ba;
}
};
/**
* Turns a byte array into a big integer.
*
* This function will interpret a byte array as a big integer in big
* endian notation and ignore leading zeros.
*/
BigInteger.fromByteArrayUnsigned = function (ba) {
if (!ba.length) {
return ba.valueOf(0);
} else if (ba[0] & 0x80) {
// Prepend a zero so the BigInteger class doesn't mistake this
// for a negative integer.
return new BigInteger([0].concat(ba));
} else {
return new BigInteger(ba);
}
};
/**
* Converts big integer to signed byte representation.
*
* The format for this value uses a the most significant bit as a sign
* bit. If the most significant bit is already occupied by the
* absolute value, an extra byte is prepended and the sign bit is set
* there.
*
* Examples:
*
* 0 => 0x00
* 1 => 0x01
* -1 => 0x81
* 127 => 0x7f
* -127 => 0xff
* 128 => 0x0080
* -128 => 0x8080
* 255 => 0x00ff
* -255 => 0x80ff
* 16300 => 0x3fac
* -16300 => 0xbfac
* 62300 => 0x00f35c
* -62300 => 0x80f35c
*/
BigInteger.prototype.toByteArraySigned = function () {
var val = this.abs().toByteArrayUnsigned();
var neg = this.compareTo(BigInteger.ZERO) < 0;
if (neg) {
if (val[0] & 0x80) {
val.unshift(0x80);
} else {
val[0] |= 0x80;
}
} else {
if (val[0] & 0x80) {
val.unshift(0x00);
}
}
return val;
};
/**
* Parse a signed big integer byte representation.
*
* For details on the format please see BigInteger.toByteArraySigned.
*/
BigInteger.fromByteArraySigned = function (ba) {
// Check for negative value
if (ba[0] & 0x80) {
// Remove sign bit
ba[0] &= 0x7f;
return BigInteger.fromByteArrayUnsigned(ba).negate();
} else {
return BigInteger.fromByteArrayUnsigned(ba);
}
};
// Copyright Stephan Thomas (end) --- //
// ****** REDUCTION ******* //
// Modular reduction using "classic" algorithm
var Classic = GLOBAL.Classic = function Classic(m) {
this.m = m;
}
Classic.prototype.convert = function (x) {
if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
else return x;
};
Classic.prototype.revert = function (x) {
return x;
};
Classic.prototype.reduce = function (x) {
x.divRemTo(this.m, null, x);
};
Classic.prototype.mulTo = function (x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
};
Classic.prototype.sqrTo = function (x, r) {
x.squareTo(r);
this.reduce(r);
};
// Montgomery reduction
var Montgomery = GLOBAL.Montgomery = function Montgomery(m) {
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp & 0x7fff;
this.mph = this.mp >> 15;
this.um = (1 << (m.DB - 15)) - 1;
this.mt2 = 2 * m.t;
}
// xR mod m
Montgomery.prototype.convert = function (x) {
var r = nbi();
x.abs().dlShiftTo(this.m.t, r);
r.divRemTo(this.m, null, r);
if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r);
return r;
}
// x/R mod m
Montgomery.prototype.revert = function (x) {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
};
// x = x/R mod m (HAC 14.32)
Montgomery.prototype.reduce = function (x) {
while (x.t <= this.mt2) // pad x so am has enough room later
x[x.t++] = 0;
for (var i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x[i]*mp mod DV
var j = x[i] & 0x7fff;
var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM;
// use am to combine the multiply-shift-add into one call
j = i + this.m.t;
x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
// propagate carry
while (x[j] >= x.DV) {
x[j] -= x.DV;
x[++j]++;
}
}
x.clamp();
x.drShiftTo(this.m.t, x);
if (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
};
// r = "xy/R mod m"; x,y != r
Montgomery.prototype.mulTo = function (x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
};
// r = "x^2/R mod m"; x != r
Montgomery.prototype.sqrTo = function (x, r) {
x.squareTo(r);
this.reduce(r);
};
// A "null" reducer
var NullExp = GLOBAL.NullExp = function NullExp() { }
NullExp.prototype.convert = function (x) {
return x;
};
NullExp.prototype.revert = function (x) {
return x;
};
NullExp.prototype.mulTo = function (x, y, r) {
x.multiplyTo(y, r);
};
NullExp.prototype.sqrTo = function (x, r) {
x.squareTo(r);
};
// Barrett modular reduction
var Barrett = GLOBAL.Barrett = function Barrett(m) {
// setup Barrett
this.r2 = nbi();
this.q3 = nbi();
BigInteger.ONE.dlShiftTo(2 * m.t, this.r2);
this.mu = this.r2.divide(m);
this.m = m;
}
Barrett.prototype.convert = function (x) {
if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m);
else if (x.compareTo(this.m) < 0) return x;
else {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
};
Barrett.prototype.revert = function (x) {
return x;
};
// x = x mod m (HAC 14.42)
Barrett.prototype.reduce = function (x) {
x.drShiftTo(this.m.t - 1, this.r2);
if (x.t > this.m.t + 1) {
x.t = this.m.t + 1;
x.clamp();
}
this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3);
this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2);
while (x.compareTo(this.r2) < 0) x.dAddOffset(1, this.m.t + 1);
x.subTo(this.r2, x);
while (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
};
// r = x*y mod m; x,y != r
Barrett.prototype.mulTo = function (x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
};
// r = x^2 mod m; x != r
Barrett.prototype.sqrTo = function (x, r) {
x.squareTo(r);
this.reduce(r);
};
// BigInteger interfaces not implemented in jsbn:
// BigInteger(int signum, byte[] magnitude)
// double doubleValue()
// float floatValue()
// int hashCode()
// long longValue()
// static BigInteger valueOf(long val)
})();
//ellipticcurve.js
(function () {
/*!
* Basic Javascript Elliptic Curve implementation
* Ported loosely from BouncyCastle's Java EC code
* Only Fp curves implemented for now
*
* Copyright Tom Wu, bitaddress.org BSD License.
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
*/
// Constructor function of Global EllipticCurve object
var ec = GLOBAL.EllipticCurve = function () { };
// ----------------
// ECFieldElementFp constructor
// q instanceof BigInteger
// x instanceof BigInteger
ec.FieldElementFp = function (q, x) {
this.x = x;
// TODO if(x.compareTo(q) >= 0) error
this.q = q;
};
ec.FieldElementFp.prototype.equals = function (other) {
if (other == this) return true;
return (this.q.equals(other.q) && this.x.equals(other.x));
};
ec.FieldElementFp.prototype.toBigInteger = function () {
return this.x;
};
ec.FieldElementFp.prototype.negate = function () {
return new ec.FieldElementFp(this.q, this.x.negate().mod(this.q));
};
ec.FieldElementFp.prototype.add = function (b) {
return new ec.FieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q));
};
ec.FieldElementFp.prototype.subtract = function (b) {
return new ec.FieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q));
};
ec.FieldElementFp.prototype.multiply = function (b) {
return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q));
};
ec.FieldElementFp.prototype.square = function () {
return new ec.FieldElementFp(this.q, this.x.square().mod(this.q));
};
ec.FieldElementFp.prototype.divide = function (b) {
return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(
this.q));
};
ec.FieldElementFp.prototype.getByteLength = function () {
return Math.floor((this.toBigInteger().bitLength() + 7) / 8);
};
// D.1.4 91
/**
* return a sqrt root - the routine verifies that the calculation
* returns the right value - if none exists it returns null.
*
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
* Ported to JavaScript by bitaddress.org
*/
ec.FieldElementFp.prototype.sqrt = function () {
if (!this.q.testBit(0)) throw new Error("even value of q");
// p mod 4 == 3
if (this.q.testBit(1)) {
// z = g^(u+1) + p, p = 4u + 3
var z = new ec.FieldElementFp(this.q, this.x.modPow(this.q.shiftRight(2).add(BigInteger.ONE),
this.q));
return z.square().equals(this) ? z : null;
}
// p mod 4 == 1
var qMinusOne = this.q.subtract(BigInteger.ONE);
var legendreExponent = qMinusOne.shiftRight(1);
if (!(this.x.modPow(legendreExponent, this.q).equals(BigInteger.ONE))) return null;
var u = qMinusOne.shiftRight(2);
var k = u.shiftLeft(1).add(BigInteger.ONE);
var Q = this.x;
var fourQ = Q.shiftLeft(2).mod(this.q);
var U, V;
do {
var rand = new SecureRandom();
var P;
do {
P = new BigInteger(this.q.bitLength(), rand);
}
while (P.compareTo(this.q) >= 0 || !(P.multiply(P).subtract(fourQ).modPow(legendreExponent,
this.q).equals(qMinusOne)));
var result = ec.FieldElementFp.fastLucasSequence(this.q, P, Q, k);
U = result[0];
V = result[1];
if (V.multiply(V).mod(this.q).equals(fourQ)) {
// Integer division by 2, mod q
if (V.testBit(0)) {
V = V.add(this.q);
}
V = V.shiftRight(1);
return new ec.FieldElementFp(this.q, V);
}
}
while (U.equals(BigInteger.ONE) || U.equals(qMinusOne));
return null;
};
/*!
* Crypto-JS 2.5.4 BlockModes.js
* contribution from Simon Greatrix
*/
(function (C) {
// Create pad namespace
var C_pad = C.pad = {};
// Calculate the number of padding bytes required.
function _requiredPadding(cipher, message) {
var blockSizeInBytes = cipher._blocksize * 4;
var reqd = blockSizeInBytes - message.length % blockSizeInBytes;
return reqd;
}
// Remove padding when the final byte gives the number of padding bytes.
var _unpadLength = function (cipher, message, alg, padding) {
var pad = message.pop();
if (pad == 0) {
throw new Error("Invalid zero-length padding specified for " + alg +
". Wrong cipher specification or key used?");
}
var maxPad = cipher._blocksize * 4;
if (pad > maxPad) {
throw new Error("Invalid padding length of " + pad +
" specified for " + alg +
". Wrong cipher specification or key used?");
}
for (var i = 1; i < pad; i++) {
var b = message.pop();
if (padding != undefined && padding != b) {
throw new Error("Invalid padding byte of 0x" + b.toString(16) +
" specified for " + alg +
". Wrong cipher specification or key used?");
}
}
};
// No-operation padding, used for stream ciphers
C_pad.NoPadding = {
pad: function (cipher, message) { },
unpad: function (cipher, message) { }
};
// Zero Padding.
//
// If the message is not an exact number of blocks, the final block is
// completed with 0x00 bytes. There is no unpadding.
C_pad.ZeroPadding = {
pad: function (cipher, message) {
var blockSizeInBytes = cipher._blocksize * 4;
var reqd = message.length % blockSizeInBytes;
if (reqd != 0) {
for (reqd = blockSizeInBytes - reqd; reqd > 0; reqd--) {
message.push(0x00);
}
}
},
unpad: function (cipher, message) {
while (message[message.length - 1] == 0) {
message.pop();
}
}
};
// ISO/IEC 7816-4 padding.
//
// Pads the plain text with an 0x80 byte followed by as many 0x00
// bytes are required to complete the block.
C_pad.iso7816 = {
pad: function (cipher, message) {
var reqd = _requiredPadding(cipher, message);
message.push(0x80);
for (; reqd > 1; reqd--) {
message.push(0x00);
}
},
unpad: function (cipher, message) {
var padLength;
for (padLength = cipher._blocksize * 4; padLength > 0; padLength--) {
var b = message.pop();
if (b == 0x80) return;
if (b != 0x00) {
throw new Error("ISO-7816 padding byte must be 0, not 0x" + b.toString(16) +
". Wrong cipher specification or key used?");
}
}
throw new Error(
"ISO-7816 padded beyond cipher block size. Wrong cipher specification or key used?"
);
}
};
// ANSI X.923 padding
//
// The final block is padded with zeros except for the last byte of the
// last block which contains the number of padding bytes.
C_pad.ansix923 = {
pad: function (cipher, message) {
var reqd = _requiredPadding(cipher, message);
for (var i = 1; i < reqd; i++) {
message.push(0x00);
}
message.push(reqd);
},
unpad: function (cipher, message) {
_unpadLength(cipher, message, "ANSI X.923", 0);
}
};
// ISO 10126
//
// The final block is padded with random bytes except for the last
// byte of the last block which contains the number of padding bytes.
C_pad.iso10126 = {
pad: function (cipher, message) {
var reqd = _requiredPadding(cipher, message);
for (var i = 1; i < reqd; i++) {
message.push(Math.floor(securedMathRandom() * 256));
}
message.push(reqd);
},
unpad: function (cipher, message) {
_unpadLength(cipher, message, "ISO 10126", undefined);
}
};
// PKCS7 padding
//
// PKCS7 is described in RFC 5652. Padding is in whole bytes. The
// value of each added byte is the number of bytes that are added,
// i.e. N bytes, each of value N are added.
C_pad.pkcs7 = {
pad: function (cipher, message) {
var reqd = _requiredPadding(cipher, message);
for (var i = 0; i < reqd; i++) {
message.push(reqd);
}
},
unpad: function (cipher, message) {
_unpadLength(cipher, message, "PKCS 7", message[message.length - 1]);
}
};
// Create mode namespace
var C_mode = C.mode = {};
/**
* Mode base "class".
*/
var Mode = C_mode.Mode = function (padding) {
if (padding) {
this._padding = padding;
}
};
Mode.prototype = {
encrypt: function (cipher, m, iv) {
this._padding.pad(cipher, m);
this._doEncrypt(cipher, m, iv);
},
decrypt: function (cipher, m, iv) {
this._doDecrypt(cipher, m, iv);
this._padding.unpad(cipher, m);
},
// Default padding
_padding: C_pad.iso7816
};
/**
* Electronic Code Book mode.
*
* ECB applies the cipher directly against each block of the input.
*
* ECB does not require an initialization vector.
*/
var ECB = C_mode.ECB = function () {
// Call parent constructor
Mode.apply(this, arguments);
};
// Inherit from Mode
var ECB_prototype = ECB.prototype = new Mode;
// Concrete steps for Mode template
ECB_prototype._doEncrypt = function (cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// Encrypt each block
for (var offset = 0; offset < m.length; offset += blockSizeInBytes) {
cipher._encryptblock(m, offset);
}
};
ECB_prototype._doDecrypt = function (cipher, c, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// Decrypt each block
for (var offset = 0; offset < c.length; offset += blockSizeInBytes) {
cipher._decryptblock(c, offset);
}
};
// ECB never uses an IV
ECB_prototype.fixOptions = function (options) {
options.iv = [];
};
/**
* Cipher block chaining
*
* The first block is XORed with the IV. Subsequent blocks are XOR with the
* previous cipher output.
*/
var CBC = C_mode.CBC = function () {
// Call parent constructor
Mode.apply(this, arguments);
};
// Inherit from Mode
var CBC_prototype = CBC.prototype = new Mode;
// Concrete steps for Mode template
CBC_prototype._doEncrypt = function (cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// Encrypt each block
for (var offset = 0; offset < m.length; offset += blockSizeInBytes) {
if (offset == 0) {
// XOR first block using IV
for (var i = 0; i < blockSizeInBytes; i++)
m[i] ^= iv[i];
} else {
// XOR this block using previous crypted block
for (var i = 0; i < blockSizeInBytes; i++)
m[offset + i] ^= m[offset + i - blockSizeInBytes];
}
// Encrypt block
cipher._encryptblock(m, offset);
}
};
CBC_prototype._doDecrypt = function (cipher, c, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// At the start, the previously crypted block is the IV
var prevCryptedBlock = iv;
// Decrypt each block
for (var offset = 0; offset < c.length; offset += blockSizeInBytes) {
// Save this crypted block
var thisCryptedBlock = c.slice(offset, offset + blockSizeInBytes);
// Decrypt block
cipher._decryptblock(c, offset);
// XOR decrypted block using previous crypted block
for (var i = 0; i < blockSizeInBytes; i++) {
c[offset + i] ^= prevCryptedBlock[i];
}
prevCryptedBlock = thisCryptedBlock;
}
};
/**
* Cipher feed back
*
* The cipher output is XORed with the plain text to produce the cipher output,
* which is then fed back into the cipher to produce a bit pattern to XOR the
* next block with.
*
* This is a stream cipher mode and does not require padding.
*/
var CFB = C_mode.CFB = function () {
// Call parent constructor
Mode.apply(this, arguments);
};
// Inherit from Mode
var CFB_prototype = CFB.prototype = new Mode;
// Override padding
CFB_prototype._padding = C_pad.NoPadding;
// Concrete steps for Mode template
CFB_prototype._doEncrypt = function (cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4,
keystream = iv.slice(0);
// Encrypt each byte
for (var i = 0; i < m.length; i++) {
var j = i % blockSizeInBytes;
if (j == 0) cipher._encryptblock(keystream, 0);
m[i] ^= keystream[j];
keystream[j] = m[i];
}
};
CFB_prototype._doDecrypt = function (cipher, c, iv) {
var blockSizeInBytes = cipher._blocksize * 4,
keystream = iv.slice(0);
// Encrypt each byte
for (var i = 0; i < c.length; i++) {
var j = i % blockSizeInBytes;
if (j == 0) cipher._encryptblock(keystream, 0);
var b = c[i];
c[i] ^= keystream[j];
keystream[j] = b;
}
};
/**
* Output feed back
*
* The cipher repeatedly encrypts its own output. The output is XORed with the
* plain text to produce the cipher text.
*
* This is a stream cipher mode and does not require padding.
*/
var OFB = C_mode.OFB = function () {
// Call parent constructor
Mode.apply(this, arguments);
};
// Inherit from Mode
var OFB_prototype = OFB.prototype = new Mode;
// Override padding
OFB_prototype._padding = C_pad.NoPadding;
// Concrete steps for Mode template
OFB_prototype._doEncrypt = function (cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4,
keystream = iv.slice(0);
// Encrypt each byte
for (var i = 0; i < m.length; i++) {
// Generate keystream
if (i % blockSizeInBytes == 0)
cipher._encryptblock(keystream, 0);
// Encrypt byte
m[i] ^= keystream[i % blockSizeInBytes];
}
};
OFB_prototype._doDecrypt = OFB_prototype._doEncrypt;
/**
* Counter
* @author Gergely Risko
*
* After every block the last 4 bytes of the IV is increased by one
* with carry and that IV is used for the next block.
*
* This is a stream cipher mode and does not require padding.
*/
var CTR = C_mode.CTR = function () {
// Call parent constructor
Mode.apply(this, arguments);
};
// Inherit from Mode
var CTR_prototype = CTR.prototype = new Mode;
// Override padding
CTR_prototype._padding = C_pad.NoPadding;
CTR_prototype._doEncrypt = function (cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
var counter = iv.slice(0);
for (var i = 0; i < m.length;) {
// do not lose iv
var keystream = counter.slice(0);
// Generate keystream for next block
cipher._encryptblock(keystream, 0);
// XOR keystream with block
for (var j = 0; i < m.length && j < blockSizeInBytes; j++, i++) {
m[i] ^= keystream[j];
}
// Increase counter
if (++(counter[blockSizeInBytes - 1]) == 256) {
counter[blockSizeInBytes - 1] = 0;
if (++(counter[blockSizeInBytes - 2]) == 256) {
counter[blockSizeInBytes - 2] = 0;
if (++(counter[blockSizeInBytes - 3]) == 256) {
counter[blockSizeInBytes - 3] = 0;
++(counter[blockSizeInBytes - 4]);
}
}
}
}
};
CTR_prototype._doDecrypt = CTR_prototype._doEncrypt;
})(Crypto);
/*!
* Crypto-JS v2.5.4 PBKDF2.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
C.PBKDF2 = function (password, salt, keylen, options) {
// Convert to byte arrays
if (password.constructor == String) password = UTF8.stringToBytes(password);
if (salt.constructor == String) salt = UTF8.stringToBytes(salt);
/* else, assume byte arrays already */
// Defaults
var hasher = options && options.hasher || C.SHA1,
iterations = options && options.iterations || 1;
// Pseudo-random function
function PRF(password, salt) {
return C.HMAC(hasher, salt, password, {
asBytes: true
});
}
// Generate key
var derivedKeyBytes = [],
blockindex = 1;
while (derivedKeyBytes.length < keylen) {
var block = PRF(password, salt.concat(util.wordsToBytes([blockindex])));
for (var u = block, i = 1; i < iterations; i++) {
u = PRF(password, u);
for (var j = 0; j < block.length; j++) block[j] ^= u[j];
}
derivedKeyBytes = derivedKeyBytes.concat(block);
blockindex++;
}
// Truncate excess bytes
derivedKeyBytes.length = keylen;
return options && options.asBytes ? derivedKeyBytes :
options && options.asString ? Binary.bytesToString(derivedKeyBytes) :
util.bytesToHex(derivedKeyBytes);
};
})();
/*
* Copyright (c) 2010-2011 Intalio Pte, All Rights Reserved
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// https://github.com/cheongwy/node-scrypt-js
(function () {
var MAX_VALUE = 2147483647;
var workerUrl = null;
//function scrypt(byte[] passwd, byte[] salt, int N, int r, int p, int dkLen)
/*
* N = Cpu cost
* r = Memory cost
* p = parallelization cost
*
*/
GLOBAL.Crypto_scrypt = function (passwd, salt, N, r, p, dkLen, callback) {
if (N == 0 || (N & (N - 1)) != 0) throw Error("N must be > 0 and a power of 2");
if (N > MAX_VALUE / 128 / r) throw Error("Parameter N is too large");
if (r > MAX_VALUE / 128 / p) throw Error("Parameter r is too large");
var PBKDF2_opts = {
iterations: 1,
hasher: Crypto.SHA256,
asBytes: true
};
var B = Crypto.PBKDF2(passwd, salt, p * 128 * r, PBKDF2_opts);
try {
var i = 0;
var worksDone = 0;
var makeWorker = function () {
if (!workerUrl) {
var code = '(' + scryptCore.toString() + ')()';
var blob;
try {
blob = new Blob([code], {
type: "text/javascript"
});
} catch (e) {
GLOBAL.BlobBuilder = GLOBAL.BlobBuilder || GLOBAL.WebKitBlobBuilder ||
GLOBAL.MozBlobBuilder ||
GLOBAL.MSBlobBuilder;
blob = new BlobBuilder();
blob.append(code);
blob = blob.getBlob("text/javascript");
}
workerUrl = URL.createObjectURL(blob);
}
var worker = new Worker(workerUrl);
worker.onmessage = function (event) {
var Bi = event.data[0],
Bslice = event.data[1];
worksDone++;
if (i < p) {
worker.postMessage([N, r, p, B, i++]);
}
var length = Bslice.length,
destPos = Bi * 128 * r,
srcPos = 0;
while (length--) {
B[destPos++] = Bslice[srcPos++];
}
if (worksDone == p) {
callback(Crypto.PBKDF2(passwd, B, dkLen, PBKDF2_opts));
}
};
return worker;
};
var workers = [makeWorker(), makeWorker()];
workers[0].postMessage([N, r, p, B, i++]);
if (p > 1) {
workers[1].postMessage([N, r, p, B, i++]);
}
} catch (e) {
GLOBAL.setTimeout(function () {
scryptCore();
callback(Crypto.PBKDF2(passwd, B, dkLen, PBKDF2_opts));
}, 0);
}
// using this function to enclose everything needed to create a worker (but also invokable directly for synchronous use)
function scryptCore() {
var XY = [],
V = [];
if (typeof B === 'undefined') {
onmessage = function (event) {
var data = event.data;
var N = data[0],
r = data[1],
p = data[2],
B = data[3],
i = data[4];
var Bslice = [];
arraycopy32(B, i * 128 * r, Bslice, 0, 128 * r);
smix(Bslice, 0, r, N, V, XY);
postMessage([i, Bslice]);
};
} else {
for (var i = 0; i < p; i++) {
smix(B, i * 128 * r, r, N, V, XY);
}
}
function smix(B, Bi, r, N, V, XY) {
var Xi = 0;
var Yi = 128 * r;
var i;
arraycopy32(B, Bi, XY, Xi, Yi);
for (i = 0; i < N; i++) {
arraycopy32(XY, Xi, V, i * Yi, Yi);
blockmix_salsa8(XY, Xi, Yi, r);
}
for (i = 0; i < N; i++) {
var j = integerify(XY, Xi, r) & (N - 1);
blockxor(V, j * Yi, XY, Xi, Yi);
blockmix_salsa8(XY, Xi, Yi, r);
}
arraycopy32(XY, Xi, B, Bi, Yi);
}
function blockmix_salsa8(BY, Bi, Yi, r) {
var X = [];
var i;
arraycopy32(BY, Bi + (2 * r - 1) * 64, X, 0, 64);
for (i = 0; i < 2 * r; i++) {
blockxor(BY, i * 64, X, 0, 64);
salsa20_8(X);
arraycopy32(X, 0, BY, Yi + (i * 64), 64);
}
for (i = 0; i < r; i++) {
arraycopy32(BY, Yi + (i * 2) * 64, BY, Bi + (i * 64), 64);
}
for (i = 0; i < r; i++) {
arraycopy32(BY, Yi + (i * 2 + 1) * 64, BY, Bi + (i + r) * 64, 64);
}
}
function R(a, b) {
return (a << b) | (a >>> (32 - b));
}
function salsa20_8(B) {
var B32 = new Array(32);
var x = new Array(32);
var i;
for (i = 0; i < 16; i++) {
B32[i] = (B[i * 4 + 0] & 0xff) << 0;
B32[i] |= (B[i * 4 + 1] & 0xff) << 8;
B32[i] |= (B[i * 4 + 2] & 0xff) << 16;
B32[i] |= (B[i * 4 + 3] & 0xff) << 24;
}
arraycopy(B32, 0, x, 0, 16);
for (i = 8; i > 0; i -= 2) {
x[4] ^= R(x[0] + x[12], 7);
x[8] ^= R(x[4] + x[0], 9);
x[12] ^= R(x[8] + x[4], 13);
x[0] ^= R(x[12] + x[8], 18);
x[9] ^= R(x[5] + x[1], 7);
x[13] ^= R(x[9] + x[5], 9);
x[1] ^= R(x[13] + x[9], 13);
x[5] ^= R(x[1] + x[13], 18);
x[14] ^= R(x[10] + x[6], 7);
x[2] ^= R(x[14] + x[10], 9);
x[6] ^= R(x[2] + x[14], 13);
x[10] ^= R(x[6] + x[2], 18);
x[3] ^= R(x[15] + x[11], 7);
x[7] ^= R(x[3] + x[15], 9);
x[11] ^= R(x[7] + x[3], 13);
x[15] ^= R(x[11] + x[7], 18);
x[1] ^= R(x[0] + x[3], 7);
x[2] ^= R(x[1] + x[0], 9);
x[3] ^= R(x[2] + x[1], 13);
x[0] ^= R(x[3] + x[2], 18);
x[6] ^= R(x[5] + x[4], 7);
x[7] ^= R(x[6] + x[5], 9);
x[4] ^= R(x[7] + x[6], 13);
x[5] ^= R(x[4] + x[7], 18);
x[11] ^= R(x[10] + x[9], 7);
x[8] ^= R(x[11] + x[10], 9);
x[9] ^= R(x[8] + x[11], 13);
x[10] ^= R(x[9] + x[8], 18);
x[12] ^= R(x[15] + x[14], 7);
x[13] ^= R(x[12] + x[15], 9);
x[14] ^= R(x[13] + x[12], 13);
x[15] ^= R(x[14] + x[13], 18);
}
for (i = 0; i < 16; ++i) B32[i] = x[i] + B32[i];
for (i = 0; i < 16; i++) {
var bi = i * 4;
B[bi + 0] = (B32[i] >> 0 & 0xff);
B[bi + 1] = (B32[i] >> 8 & 0xff);
B[bi + 2] = (B32[i] >> 16 & 0xff);
B[bi + 3] = (B32[i] >> 24 & 0xff);
}
}
function blockxor(S, Si, D, Di, len) {
var i = len >> 6;
while (i--) {
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
}
}
function integerify(B, bi, r) {
var n;
bi += (2 * r - 1) * 64;
n = (B[bi + 0] & 0xff) << 0;
n |= (B[bi + 1] & 0xff) << 8;
n |= (B[bi + 2] & 0xff) << 16;
n |= (B[bi + 3] & 0xff) << 24;
return n;
}
function arraycopy(src, srcPos, dest, destPos, length) {
while (length--) {
dest[destPos++] = src[srcPos++];
}
}
function arraycopy32(src, srcPos, dest, destPos, length) {
var i = length >> 5;
while (i--) {
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
}
}
} // scryptCore
}; // GLOBAL.Crypto_scrypt
})();
/*!
* Crypto-JS v2.5.4 AES.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8;
// Precomputed SBOX
var SBOX = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
];
// Compute inverse SBOX lookup table
for (var INVSBOX = [], i = 0; i < 256; i++) INVSBOX[SBOX[i]] = i;
// Compute multiplication in GF(2^8) lookup tables
var MULT2 = [],
MULT3 = [],
MULT9 = [],
MULTB = [],
MULTD = [],
MULTE = [];
function xtime(a, b) {
for (var result = 0, i = 0; i < 8; i++) {
if (b & 1) result ^= a;
var hiBitSet = a & 0x80;
a = (a << 1) & 0xFF;
if (hiBitSet) a ^= 0x1b;
b >>>= 1;
}
return result;
}
for (var i = 0; i < 256; i++) {
MULT2[i] = xtime(i, 2);
MULT3[i] = xtime(i, 3);
MULT9[i] = xtime(i, 9);
MULTB[i] = xtime(i, 0xB);
MULTD[i] = xtime(i, 0xD);
MULTE[i] = xtime(i, 0xE);
}
// Precomputed RCon lookup
var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
// Inner state
var state = [
[],
[],
[],
[]
],
keylength,
nrounds,
keyschedule;
var AES = C.AES = {
/**
* Public API
*/
encrypt: function (message, password, options) {
options = options || {};
// Determine mode
var mode = options.mode || new C.mode.OFB;
// Allow mode to override options
if (mode.fixOptions) mode.fixOptions(options);
var
// Convert to bytes if message is a string
m = (
message.constructor == String ?
UTF8.stringToBytes(message) :
message
),
// Generate random IV
iv = options.iv || util.randomBytes(AES._blocksize * 4),
// Generate key
k = (
password.constructor == String ?
// Derive key from pass-phrase
C.PBKDF2(password, iv, 32, {
asBytes: true
}) :
// else, assume byte array representing cryptographic key
password
);
// Encrypt
AES._init(k);
mode.encrypt(AES, m, iv);
// Return ciphertext
m = options.iv ? m : iv.concat(m);
return (options && options.asBytes) ? m : util.bytesToBase64(m);
},
decrypt: function (ciphertext, password, options) {
options = options || {};
// Determine mode
var mode = options.mode || new C.mode.OFB;
// Allow mode to override options
if (mode.fixOptions) mode.fixOptions(options);
var
// Convert to bytes if ciphertext is a string
c = (
ciphertext.constructor == String ?
util.base64ToBytes(ciphertext) :
ciphertext
),
// Separate IV and message
iv = options.iv || c.splice(0, AES._blocksize * 4),
// Generate key
k = (
password.constructor == String ?
// Derive key from pass-phrase
C.PBKDF2(password, iv, 32, {
asBytes: true
}) :
// else, assume byte array representing cryptographic key
password
);
// Decrypt
AES._init(k);
mode.decrypt(AES, c, iv);
// Return plaintext
return (options && options.asBytes) ? c : UTF8.bytesToString(c);
},
/**
* Package private methods and properties
*/
_blocksize: 4,
_encryptblock: function (m, offset) {
// Set input
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = m[offset + col * 4 + row];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[col][row];
}
for (var round = 1; round < nrounds; round++) {
// Sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = SBOX[state[row][col]];
}
// Shift rows
state[1].push(state[1].shift());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].unshift(state[3].pop());
// Mix columns
for (var col = 0; col < 4; col++) {
var s0 = state[0][col],
s1 = state[1][col],
s2 = state[2][col],
s3 = state[3][col];
state[0][col] = MULT2[s0] ^ MULT3[s1] ^ s2 ^ s3;
state[1][col] = s0 ^ MULT2[s1] ^ MULT3[s2] ^ s3;
state[2][col] = s0 ^ s1 ^ MULT2[s2] ^ MULT3[s3];
state[3][col] = MULT3[s0] ^ s1 ^ s2 ^ MULT2[s3];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[round * 4 + col][row];
}
}
// Sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = SBOX[state[row][col]];
}
// Shift rows
state[1].push(state[1].shift());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].unshift(state[3].pop());
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[nrounds * 4 + col][row];
}
// Set output
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
m[offset + col * 4 + row] = state[row][col];
}
},
_decryptblock: function (c, offset) {
// Set input
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = c[offset + col * 4 + row];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[nrounds * 4 + col][row];
}
for (var round = 1; round < nrounds; round++) {
// Inv shift rows
state[1].unshift(state[1].pop());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].push(state[3].shift());
// Inv sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = INVSBOX[state[row][col]];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[(nrounds - round) * 4 + col][row];
}
// Inv mix columns
for (var col = 0; col < 4; col++) {
var s0 = state[0][col],
s1 = state[1][col],
s2 = state[2][col],
s3 = state[3][col];
state[0][col] = MULTE[s0] ^ MULTB[s1] ^ MULTD[s2] ^ MULT9[s3];
state[1][col] = MULT9[s0] ^ MULTE[s1] ^ MULTB[s2] ^ MULTD[s3];
state[2][col] = MULTD[s0] ^ MULT9[s1] ^ MULTE[s2] ^ MULTB[s3];
state[3][col] = MULTB[s0] ^ MULTD[s1] ^ MULT9[s2] ^ MULTE[s3];
}
}
// Inv shift rows
state[1].unshift(state[1].pop());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].push(state[3].shift());
// Inv sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = INVSBOX[state[row][col]];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[col][row];
}
// Set output
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
c[offset + col * 4 + row] = state[row][col];
}
},
/**
* Private methods
*/
_init: function (k) {
keylength = k.length / 4;
nrounds = keylength + 6;
AES._keyexpansion(k);
},
// Generate a key schedule
_keyexpansion: function (k) {
keyschedule = [];
for (var row = 0; row < keylength; row++) {
keyschedule[row] = [
k[row * 4],
k[row * 4 + 1],
k[row * 4 + 2],
k[row * 4 + 3]
];
}
for (var row = keylength; row < AES._blocksize * (nrounds + 1); row++) {
var temp = [
keyschedule[row - 1][0],
keyschedule[row - 1][1],
keyschedule[row - 1][2],
keyschedule[row - 1][3]
];
if (row % keylength == 0) {
// Rot word
temp.push(temp.shift());
// Sub word
temp[0] = SBOX[temp[0]];
temp[1] = SBOX[temp[1]];
temp[2] = SBOX[temp[2]];
temp[3] = SBOX[temp[3]];
temp[0] ^= RCON[row / keylength];
} else if (keylength > 6 && row % keylength == 4) {
// Sub word
temp[0] = SBOX[temp[0]];
temp[1] = SBOX[temp[1]];
temp[2] = SBOX[temp[2]];
temp[3] = SBOX[temp[3]];
}
keyschedule[row] = [
keyschedule[row - keylength][0] ^ temp[0],
keyschedule[row - keylength][1] ^ temp[1],
keyschedule[row - keylength][2] ^ temp[2],
keyschedule[row - keylength][3] ^ temp[3]
];
}
}
};
})();
/*
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
* Ported to JavaScript by bitaddress.org
*/
ec.FieldElementFp.fastLucasSequence = function (p, P, Q, k) {
// TODO Research and apply "common-multiplicand multiplication here"
var n = k.bitLength();
var s = k.getLowestSetBit();
var Uh = BigInteger.ONE;
var Vl = BigInteger.TWO;
var Vh = P;
var Ql = BigInteger.ONE;
var Qh = BigInteger.ONE;
for (var j = n - 1; j >= s + 1; --j) {
Ql = Ql.multiply(Qh).mod(p);
if (k.testBit(j)) {
Qh = Ql.multiply(Q).mod(p);
Uh = Uh.multiply(Vh).mod(p);
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
Vh = Vh.multiply(Vh).subtract(Qh.shiftLeft(1)).mod(p);
} else {
Qh = Ql;
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
Vh = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
}
}
Ql = Ql.multiply(Qh).mod(p);
Qh = Ql.multiply(Q).mod(p);
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
Ql = Ql.multiply(Qh).mod(p);
for (var j = 1; j <= s; ++j) {
Uh = Uh.multiply(Vl).mod(p);
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
Ql = Ql.multiply(Ql).mod(p);
}
return [Uh, Vl];
};
// ----------------
// ECPointFp constructor
ec.PointFp = function (curve, x, y, z, compressed) {
this.curve = curve;
this.x = x;
this.y = y;
// Projective coordinates: either zinv == null or z * zinv == 1
// z and zinv are just BigIntegers, not fieldElements
if (z == null) {
this.z = BigInteger.ONE;
} else {
this.z = z;
}
this.zinv = null;
// compression flag
this.compressed = !!compressed;
};
ec.PointFp.prototype.getX = function () {
if (this.zinv == null) {
this.zinv = this.z.modInverse(this.curve.q);
}
var r = this.x.toBigInteger().multiply(this.zinv);
this.curve.reduce(r);
return this.curve.fromBigInteger(r);
};
ec.PointFp.prototype.getY = function () {
if (this.zinv == null) {
this.zinv = this.z.modInverse(this.curve.q);
}
var r = this.y.toBigInteger().multiply(this.zinv);
this.curve.reduce(r);
return this.curve.fromBigInteger(r);
};
ec.PointFp.prototype.equals = function (other) {
if (other == this) return true;
if (this.isInfinity()) return other.isInfinity();
if (other.isInfinity()) return this.isInfinity();
var u, v;
// u = Y2 * Z1 - Y1 * Z2
u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(
this.curve.q);
if (!u.equals(BigInteger.ZERO)) return false;
// v = X2 * Z1 - X1 * Z2
v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(
this.curve.q);
return v.equals(BigInteger.ZERO);
};
ec.PointFp.prototype.isInfinity = function () {
if ((this.x == null) && (this.y == null)) return true;
return this.z.equals(BigInteger.ZERO) && !this.y.toBigInteger().equals(BigInteger.ZERO);
};
ec.PointFp.prototype.negate = function () {
return new ec.PointFp(this.curve, this.x, this.y.negate(), this.z);
};
ec.PointFp.prototype.add = function (b) {
if (this.isInfinity()) return b;
if (b.isInfinity()) return this;
// u = Y2 * Z1 - Y1 * Z2
var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(
this.curve.q);
// v = X2 * Z1 - X1 * Z2
var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(
this.curve.q);
if (BigInteger.ZERO.equals(v)) {
if (BigInteger.ZERO.equals(u)) {
return this.twice(); // this == b, so double
}
return this.curve.getInfinity(); // this = -b, so infinity
}
var THREE = new BigInteger("3");
var x1 = this.x.toBigInteger();
var y1 = this.y.toBigInteger();
var x2 = b.x.toBigInteger();
var y2 = b.y.toBigInteger();
var v2 = v.square();
var v3 = v2.multiply(v);
var x1v2 = x1.multiply(v2);
var zu2 = u.square().multiply(this.z);
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q);
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(
b.z).add(u.multiply(v3)).mod(this.curve.q);
// z3 = v^3 * z1 * z2
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q);
return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3),
z3);
};
ec.PointFp.prototype.twice = function () {
if (this.isInfinity()) return this;
if (this.y.toBigInteger().signum() == 0) return this.curve.getInfinity();
// TODO: optimized handling of constants
var THREE = new BigInteger("3");
var x1 = this.x.toBigInteger();
var y1 = this.y.toBigInteger();
var y1z1 = y1.multiply(this.z);
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q);
var a = this.curve.a.toBigInteger();
// w = 3 * x1^2 + a * z1^2
var w = x1.square().multiply(THREE);
if (!BigInteger.ZERO.equals(a)) {
w = w.add(this.z.square().multiply(a));
}
w = w.mod(this.curve.q);
//this.curve.reduce(w);
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(
this.curve.q);
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(
y1sqz1).subtract(w.square().multiply(w)).mod(this.curve.q);
// z3 = 8 * (y1 * z1)^3
var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q);
return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3),
z3);
};
// Simple NAF (Non-Adjacent Form) multiplication algorithm
// TODO: modularize the multiplication algorithm
ec.PointFp.prototype.multiply = function (k) {
if (this.isInfinity()) return this;
if (k.signum() == 0) return this.curve.getInfinity();
var e = k;
var h = e.multiply(new BigInteger("3"));
var neg = this.negate();
var R = this;
var i;
for (i = h.bitLength() - 2; i > 0; --i) {
R = R.twice();
var hBit = h.testBit(i);
var eBit = e.testBit(i);
if (hBit != eBit) {
R = R.add(hBit ? this : neg);
}
}
return R;
};
// Compute this*j + x*k (simultaneous multiplication)
ec.PointFp.prototype.multiplyTwo = function (j, x, k) {
var i;
if (j.bitLength() > k.bitLength())
i = j.bitLength() - 1;
else
i = k.bitLength() - 1;
var R = this.curve.getInfinity();
var both = this.add(x);
while (i >= 0) {
R = R.twice();
if (j.testBit(i)) {
if (k.testBit(i)) {
R = R.add(both);
} else {
R = R.add(this);
}
} else {
if (k.testBit(i)) {
R = R.add(x);
}
}
--i;
}
return R;
};
// patched by bitaddress.org and Casascius for use with Bitcoin.ECKey
// patched by coretechs to support compressed public keys
ec.PointFp.prototype.getEncoded = function (compressed) {
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
var len = 32; // integerToBytes will zero pad if integer is less than 32 bytes. 32 bytes length is required by the Bitcoin protocol.
var enc = ec.integerToBytes(x, len);
// when compressed prepend byte depending if y point is even or odd
if (compressed) {
if (y.isEven()) {
enc.unshift(0x02);
} else {
enc.unshift(0x03);
}
} else {
enc.unshift(0x04);
enc = enc.concat(ec.integerToBytes(y, len)); // uncompressed public key appends the bytes of the y point
}
return enc;
};
ec.PointFp.decodeFrom = function (curve, enc) {
var type = enc[0];
var dataLen = enc.length - 1;
// Extract x and y as byte arrays
var xBa = enc.slice(1, 1 + dataLen / 2);
var yBa = enc.slice(1 + dataLen / 2, 1 + dataLen);
// Prepend zero byte to prevent interpretation as negative integer
xBa.unshift(0);
yBa.unshift(0);
// Convert to BigIntegers
var x = new BigInteger(xBa);
var y = new BigInteger(yBa);
// Return point
return new ec.PointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y));
};
ec.PointFp.prototype.add2D = function (b) {
if (this.isInfinity()) return b;
if (b.isInfinity()) return this;
if (this.x.equals(b.x)) {
if (this.y.equals(b.y)) {
// this = b, i.e. this must be doubled
return this.twice();
}
// this = -b, i.e. the result is the point at infinity
return this.curve.getInfinity();
}
var x_x = b.x.subtract(this.x);
var y_y = b.y.subtract(this.y);
var gamma = y_y.divide(x_x);
var x3 = gamma.square().subtract(this.x).subtract(b.x);
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
return new ec.PointFp(this.curve, x3, y3);
};
ec.PointFp.prototype.twice2D = function () {
if (this.isInfinity()) return this;
if (this.y.toBigInteger().signum() == 0) {
// if y1 == 0, then (x1, y1) == (x1, -y1)
// and hence this = -this and thus 2(x1, y1) == infinity
return this.curve.getInfinity();
}
var TWO = this.curve.fromBigInteger(BigInteger.valueOf(2));
var THREE = this.curve.fromBigInteger(BigInteger.valueOf(3));
var gamma = this.x.square().multiply(THREE).add(this.curve.a).divide(this.y.multiply(TWO));
var x3 = gamma.square().subtract(this.x.multiply(TWO));
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
return new ec.PointFp(this.curve, x3, y3);
};
ec.PointFp.prototype.multiply2D = function (k) {
if (this.isInfinity()) return this;
if (k.signum() == 0) return this.curve.getInfinity();
var e = k;
var h = e.multiply(new BigInteger("3"));
var neg = this.negate();
var R = this;
var i;
for (i = h.bitLength() - 2; i > 0; --i) {
R = R.twice();
var hBit = h.testBit(i);
var eBit = e.testBit(i);
if (hBit != eBit) {
R = R.add2D(hBit ? this : neg);
}
}
return R;
};
ec.PointFp.prototype.isOnCurve = function () {
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
var a = this.curve.getA().toBigInteger();
var b = this.curve.getB().toBigInteger();
var n = this.curve.getQ();
var lhs = y.multiply(y).mod(n);
var rhs = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(n);
return lhs.equals(rhs);
};
ec.PointFp.prototype.toString = function () {
return '(' + this.getX().toBigInteger().toString() + ',' + this.getY().toBigInteger().toString() +
')';
};
/**
* Validate an elliptic curve point.
*
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
*/
ec.PointFp.prototype.validate = function () {
var n = this.curve.getQ();
// Check Q != O
if (this.isInfinity()) {
throw new Error("Point is at infinity.");
}
// Check coordinate bounds
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
if (x.compareTo(BigInteger.ONE) < 0 || x.compareTo(n.subtract(BigInteger.ONE)) > 0) {
throw new Error('x coordinate out of bounds');
}
if (y.compareTo(BigInteger.ONE) < 0 || y.compareTo(n.subtract(BigInteger.ONE)) > 0) {
throw new Error('y coordinate out of bounds');
}
// Check y^2 = x^3 + ax + b (mod n)
if (!this.isOnCurve()) {
throw new Error("Point is not on the curve.");
}
// Check nQ = 0 (Q is a scalar multiple of G)
if (this.multiply(n).isInfinity()) {
// TODO: This check doesn't work - fix.
throw new Error("Point is not a scalar multiple of G.");
}
return true;
};
// ----------------
// ECCurveFp constructor
ec.CurveFp = function (q, a, b) {
this.q = q;
this.a = this.fromBigInteger(a);
this.b = this.fromBigInteger(b);
this.infinity = new ec.PointFp(this, null, null);
this.reducer = new Barrett(this.q);
}
ec.CurveFp.prototype.getQ = function () {
return this.q;
};
ec.CurveFp.prototype.getA = function () {
return this.a;
};
ec.CurveFp.prototype.getB = function () {
return this.b;
};
ec.CurveFp.prototype.equals = function (other) {
if (other == this) return true;
return (this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b));
};
ec.CurveFp.prototype.getInfinity = function () {
return this.infinity;
};
ec.CurveFp.prototype.fromBigInteger = function (x) {
return new ec.FieldElementFp(this.q, x);
};
ec.CurveFp.prototype.reduce = function (x) {
this.reducer.reduce(x);
};
// for now, work with hex strings because they're easier in JS
// compressed support added by bitaddress.org
ec.CurveFp.prototype.decodePointHex = function (s) {
var firstByte = parseInt(s.substr(0, 2), 16);
switch (firstByte) { // first byte
case 0:
return this.infinity;
case 2: // compressed
case 3: // compressed
var yTilde = firstByte & 1;
var xHex = s.substr(2, s.length - 2);
var X1 = new BigInteger(xHex, 16);
return this.decompressPoint(yTilde, X1);
case 4: // uncompressed
case 6: // hybrid
case 7: // hybrid
var len = (s.length - 2) / 2;
var xHex = s.substr(2, len);
var yHex = s.substr(len + 2, len);
return new ec.PointFp(this,
this.fromBigInteger(new BigInteger(xHex, 16)),
this.fromBigInteger(new BigInteger(yHex, 16)));
default: // unsupported
return null;
}
};
ec.CurveFp.prototype.encodePointHex = function (p) {
if (p.isInfinity()) return "00";
var xHex = p.getX().toBigInteger().toString(16);
var yHex = p.getY().toBigInteger().toString(16);
var oLen = this.getQ().toString(16).length;
if ((oLen % 2) != 0) oLen++;
while (xHex.length < oLen) {
xHex = "0" + xHex;
}
while (yHex.length < oLen) {
yHex = "0" + yHex;
}
return "04" + xHex + yHex;
};
/*
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
* Ported to JavaScript by bitaddress.org
*
* Number yTilde
* BigInteger X1
*/
ec.CurveFp.prototype.decompressPoint = function (yTilde, X1) {
var x = this.fromBigInteger(X1);
var alpha = x.multiply(x.square().add(this.getA())).add(this.getB());
var beta = alpha.sqrt();
// if we can't find a sqrt we haven't got a point on the curve - run!
if (beta == null) throw new Error("Invalid point compression");
var betaValue = beta.toBigInteger();
var bit0 = betaValue.testBit(0) ? 1 : 0;
if (bit0 != yTilde) {
// Use the other root
beta = this.fromBigInteger(this.getQ().subtract(betaValue));
}
return new ec.PointFp(this, x, beta, null, true);
};
ec.fromHex = function (s) {
return new BigInteger(s, 16);
};
ec.integerToBytes = function (i, len) {
var bytes = i.toByteArrayUnsigned();
if (len < bytes.length) {
bytes = bytes.slice(bytes.length - len);
} else
while (len > bytes.length) {
bytes.unshift(0);
}
return bytes;
};
// Named EC curves
// ----------------
// X9ECParameters constructor
ec.X9Parameters = function (curve, g, n, h) {
this.curve = curve;
this.g = g;
this.n = n;
this.h = h;
}
ec.X9Parameters.prototype.getCurve = function () {
return this.curve;
};
ec.X9Parameters.prototype.getG = function () {
return this.g;
};
ec.X9Parameters.prototype.getN = function () {
return this.n;
};
ec.X9Parameters.prototype.getH = function () {
return this.h;
};
// secp256k1 is the Curve used by Bitcoin
ec.secNamedCurves = {
// used by Bitcoin
"secp256k1": function () {
// p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1
var p = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F");
var a = BigInteger.ZERO;
var b = ec.fromHex("7");
var n = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141");
var h = BigInteger.ONE;
var curve = new ec.CurveFp(p, a, b);
var G = curve.decodePointHex("04" +
"79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798" +
"483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8");
return new ec.X9Parameters(curve, G, n, h);
}
};
// secp256k1 called by Bitcoin's ECKEY
ec.getSECCurveByName = function (name) {
if (ec.secNamedCurves[name] == undefined) return null;
return ec.secNamedCurves[name]();
}
})();
//sha512.js
(function () {
/*
A JavaScript implementation of the SHA family of hashes, as defined in FIPS
PUB 180-2 as well as the corresponding HMAC implementation as defined in
FIPS PUB 198a
Copyright Brian Turek 2008-2012
Distributed under the BSD License
See http://caligatio.github.com/jsSHA/ for more information
Several functions taken from Paul Johnson
*/
function n(a) {
throw a;
}
var q = null;
function s(a, b) {
this.a = a;
this.b = b
}
function u(a, b) {
var d = [],
h = (1 << b) - 1,
f = a.length * b,
g;
for (g = 0; g < f; g += b) d[g >>> 5] |= (a.charCodeAt(g / b) & h) << 32 - b - g % 32;
return {
value: d,
binLen: f
}
}
function x(a) {
var b = [],
d = a.length,
h, f;
0 !== d % 2 && n("String of HEX type must be in byte increments");
for (h = 0; h < d; h += 2) f = parseInt(a.substr(h, 2), 16), isNaN(f) && n("String of HEX type contains invalid characters"), b[h >>> 3] |= f << 24 - 4 * (h % 8);
return {
value: b,
binLen: 4 * d
}
}
function B(a) {
var b = [],
d = 0,
h, f, g, k, m; - 1 === a.search(/^[a-zA-Z0-9=+\/]+$/) && n("Invalid character in base-64 string");
h = a.indexOf("=");
a = a.replace(/\=/g, ""); - 1 !== h && h < a.length && n("Invalid '=' found in base-64 string");
for (f = 0; f < a.length; f += 4) {
m = a.substr(f, 4);
for (g = k = 0; g < m.length; g += 1) h = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".indexOf(m[g]), k |= h << 18 - 6 * g;
for (g = 0; g < m.length - 1; g += 1) b[d >> 2] |= (k >>> 16 - 8 * g & 255) << 24 - 8 * (d % 4), d += 1
}
return {
value: b,
binLen: 8 * d
}
}
function E(a, b) {
var d = "",
h = 4 * a.length,
f, g;
for (f = 0; f < h; f += 1) g = a[f >>> 2] >>> 8 * (3 - f % 4), d += "0123456789abcdef".charAt(g >>> 4 & 15) + "0123456789abcdef".charAt(g & 15);
return b.outputUpper ? d.toUpperCase() : d
}
function F(a, b) {
var d = "",
h = 4 * a.length,
f, g, k;
for (f = 0; f < h; f += 3) {
k = (a[f >>> 2] >>> 8 * (3 - f % 4) & 255) << 16 | (a[f + 1 >>> 2] >>> 8 * (3 - (f + 1) % 4) & 255) << 8 | a[f + 2 >>> 2] >>> 8 * (3 - (f + 2) % 4) & 255;
for (g = 0; 4 > g; g += 1) d = 8 * f + 6 * g <= 32 * a.length ? d + "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".charAt(k >>> 6 * (3 - g) & 63) : d + b.b64Pad
}
return d
}
function G(a) {
var b = {
outputUpper: !1,
b64Pad: "="
};
try {
a.hasOwnProperty("outputUpper") && (b.outputUpper = a.outputUpper), a.hasOwnProperty("b64Pad") && (b.b64Pad = a.b64Pad)
} catch (d) { }
"boolean" !== typeof b.outputUpper && n("Invalid outputUpper formatting option");
"string" !== typeof b.b64Pad && n("Invalid b64Pad formatting option");
return b
}
function H(a, b) {
var d = q,
d = new s(a.a, a.b);
return d = 32 >= b ? new s(d.a >>> b | d.b << 32 - b & 4294967295, d.b >>> b | d.a << 32 - b & 4294967295) : new s(d.b >>> b - 32 | d.a << 64 - b & 4294967295, d.a >>> b - 32 | d.b << 64 - b & 4294967295)
}
function I(a, b) {
var d = q;
return d = 32 >= b ? new s(a.a >>> b, a.b >>> b | a.a << 32 - b & 4294967295) : new s(0, a.a >>> b - 32)
}
function J(a, b, d) {
return new s(a.a & b.a ^ ~a.a & d.a, a.b & b.b ^ ~a.b & d.b)
}
function U(a, b, d) {
return new s(a.a & b.a ^ a.a & d.a ^ b.a & d.a, a.b & b.b ^ a.b & d.b ^ b.b & d.b)
}
function V(a) {
var b = H(a, 28),
d = H(a, 34);
a = H(a, 39);
return new s(b.a ^ d.a ^ a.a, b.b ^ d.b ^ a.b)
}
function W(a) {
var b = H(a, 14),
d = H(a, 18);
a = H(a, 41);
return new s(b.a ^ d.a ^ a.a, b.b ^ d.b ^ a.b)
}
function X(a) {
var b = H(a, 1),
d = H(a, 8);
a = I(a, 7);
return new s(b.a ^ d.a ^ a.a, b.b ^ d.b ^ a.b)
}
function Y(a) {
var b = H(a, 19),
d = H(a, 61);
a = I(a, 6);
return new s(b.a ^ d.a ^ a.a, b.b ^ d.b ^ a.b)
}
function Z(a, b) {
var d, h, f;
d = (a.b & 65535) + (b.b & 65535);
h = (a.b >>> 16) + (b.b >>> 16) + (d >>> 16);
f = (h & 65535) << 16 | d & 65535;
d = (a.a & 65535) + (b.a & 65535) + (h >>> 16);
h = (a.a >>> 16) + (b.a >>> 16) + (d >>> 16);
return new s((h & 65535) << 16 | d & 65535, f)
}
function aa(a, b, d, h) {
var f, g, k;
f = (a.b & 65535) + (b.b & 65535) + (d.b & 65535) + (h.b & 65535);
g = (a.b >>> 16) + (b.b >>> 16) + (d.b >>> 16) + (h.b >>> 16) + (f >>> 16);
k = (g & 65535) << 16 | f & 65535;
f = (a.a & 65535) + (b.a & 65535) + (d.a & 65535) + (h.a & 65535) + (g >>> 16);
g = (a.a >>> 16) + (b.a >>> 16) + (d.a >>> 16) + (h.a >>> 16) + (f >>> 16);
return new s((g & 65535) << 16 | f & 65535, k)
}
function ba(a, b, d, h, f) {
var g, k, m;
g = (a.b & 65535) + (b.b & 65535) + (d.b & 65535) + (h.b & 65535) + (f.b & 65535);
k = (a.b >>> 16) + (b.b >>> 16) + (d.b >>> 16) + (h.b >>> 16) + (f.b >>> 16) + (g >>> 16);
m = (k & 65535) << 16 | g & 65535;
g = (a.a & 65535) + (b.a & 65535) + (d.a & 65535) + (h.a & 65535) + (f.a & 65535) + (k >>> 16);
k = (a.a >>> 16) + (b.a >>> 16) + (d.a >>> 16) + (h.a >>> 16) + (f.a >>> 16) + (g >>> 16);
return new s((k & 65535) << 16 | g & 65535, m)
}
function $(a, b, d) {
var h, f, g, k, m, j, A, C, K, e, L, v, l, M, t, p, y, z, r, N, O, P, Q, R, c, S, w = [],
T, D;
"SHA-384" === d || "SHA-512" === d ? (L = 80, h = (b + 128 >>> 10 << 5) + 31, M = 32, t = 2, c = s, p = Z, y = aa, z = ba, r = X, N = Y, O = V, P = W, R = U, Q = J, S = [new c(1116352408, 3609767458), new c(1899447441, 602891725), new c(3049323471, 3964484399), new c(3921009573, 2173295548), new c(961987163, 4081628472), new c(1508970993, 3053834265), new c(2453635748, 2937671579), new c(2870763221, 3664609560), new c(3624381080, 2734883394), new c(310598401, 1164996542), new c(607225278, 1323610764),
new c(1426881987, 3590304994), new c(1925078388, 4068182383), new c(2162078206, 991336113), new c(2614888103, 633803317), new c(3248222580, 3479774868), new c(3835390401, 2666613458), new c(4022224774, 944711139), new c(264347078, 2341262773), new c(604807628, 2007800933), new c(770255983, 1495990901), new c(1249150122, 1856431235), new c(1555081692, 3175218132), new c(1996064986, 2198950837), new c(2554220882, 3999719339), new c(2821834349, 766784016), new c(2952996808, 2566594879), new c(3210313671, 3203337956), new c(3336571891,
1034457026), new c(3584528711, 2466948901), new c(113926993, 3758326383), new c(338241895, 168717936), new c(666307205, 1188179964), new c(773529912, 1546045734), new c(1294757372, 1522805485), new c(1396182291, 2643833823), new c(1695183700, 2343527390), new c(1986661051, 1014477480), new c(2177026350, 1206759142), new c(2456956037, 344077627), new c(2730485921, 1290863460), new c(2820302411, 3158454273), new c(3259730800, 3505952657), new c(3345764771, 106217008), new c(3516065817, 3606008344), new c(3600352804, 1432725776), new c(4094571909,
1467031594), new c(275423344, 851169720), new c(430227734, 3100823752), new c(506948616, 1363258195), new c(659060556, 3750685593), new c(883997877, 3785050280), new c(958139571, 3318307427), new c(1322822218, 3812723403), new c(1537002063, 2003034995), new c(1747873779, 3602036899), new c(1955562222, 1575990012), new c(2024104815, 1125592928), new c(2227730452, 2716904306), new c(2361852424, 442776044), new c(2428436474, 593698344), new c(2756734187, 3733110249), new c(3204031479, 2999351573), new c(3329325298, 3815920427), new c(3391569614,
3928383900), new c(3515267271, 566280711), new c(3940187606, 3454069534), new c(4118630271, 4000239992), new c(116418474, 1914138554), new c(174292421, 2731055270), new c(289380356, 3203993006), new c(460393269, 320620315), new c(685471733, 587496836), new c(852142971, 1086792851), new c(1017036298, 365543100), new c(1126000580, 2618297676), new c(1288033470, 3409855158), new c(1501505948, 4234509866), new c(1607167915, 987167468), new c(1816402316, 1246189591)
], e = "SHA-384" === d ? [new c(3418070365, 3238371032), new c(1654270250, 914150663),
new c(2438529370, 812702999), new c(355462360, 4144912697), new c(1731405415, 4290775857), new c(41048885895, 1750603025), new c(3675008525, 1694076839), new c(1203062813, 3204075428)
] : [new c(1779033703, 4089235720), new c(3144134277, 2227873595), new c(1013904242, 4271175723), new c(2773480762, 1595750129), new c(1359893119, 2917565137), new c(2600822924, 725511199), new c(528734635, 4215389547), new c(1541459225, 327033209)]) : n("Unexpected error in SHA-2 implementation");
a[b >>> 5] |= 128 << 24 - b % 32;
a[h] = b;
T = a.length;
for (v = 0; v <
T; v += M) {
b = e[0];
h = e[1];
f = e[2];
g = e[3];
k = e[4];
m = e[5];
j = e[6];
A = e[7];
for (l = 0; l < L; l += 1) w[l] = 16 > l ? new c(a[l * t + v], a[l * t + v + 1]) : y(N(w[l - 2]), w[l - 7], r(w[l - 15]), w[l - 16]), C = z(A, P(k), Q(k, m, j), S[l], w[l]), K = p(O(b), R(b, h, f)), A = j, j = m, m = k, k = p(g, C), g = f, f = h, h = b, b = p(C, K);
e[0] = p(b, e[0]);
e[1] = p(h, e[1]);
e[2] = p(f, e[2]);
e[3] = p(g, e[3]);
e[4] = p(k, e[4]);
e[5] = p(m, e[5]);
e[6] = p(j, e[6]);
e[7] = p(A, e[7])
}
"SHA-384" === d ? D = [e[0].a, e[0].b, e[1].a, e[1].b, e[2].a, e[2].b, e[3].a, e[3].b, e[4].a, e[4].b, e[5].a, e[5].b] : "SHA-512" === d ? D = [e[0].a, e[0].b,
e[1].a, e[1].b, e[2].a, e[2].b, e[3].a, e[3].b, e[4].a, e[4].b, e[5].a, e[5].b, e[6].a, e[6].b, e[7].a, e[7].b
] : n("Unexpected error in SHA-2 implementation");
return D
}
GLOBAL.jsSHA = function (a, b, d) {
var h = q,
f = q,
g = 0,
k = [0],
m = 0,
j = q,
m = "undefined" !== typeof d ? d : 8;
8 === m || 16 === m || n("charSize must be 8 or 16");
"HEX" === b ? (0 !== a.length % 2 && n("srcString of HEX type must be in byte increments"), j = x(a), g = j.binLen, k = j.value) : "ASCII" === b || "TEXT" === b ? (j = u(a, m), g = j.binLen, k = j.value) : "B64" === b ? (j = B(a), g = j.binLen, k = j.value) : n("inputFormat must be HEX, TEXT, ASCII, or B64");
this.getHash = function (a, b, d) {
var e = q,
m = k.slice(),
j = "";
switch (b) {
case "HEX":
e = E;
break;
case "B64":
e = F;
break;
default:
n("format must be HEX or B64")
}
"SHA-384" ===
a ? (q === h && (h = $(m, g, a)), j = e(h, G(d))) : "SHA-512" === a ? (q === f && (f = $(m, g, a)), j = e(f, G(d))) : n("Chosen SHA variant is not supported");
return j
};
this.getHMAC = function (a, b, d, e, f) {
var h, l, j, t, p, y = [],
z = [],
r = q;
switch (e) {
case "HEX":
h = E;
break;
case "B64":
h = F;
break;
default:
n("outputFormat must be HEX or B64")
}
"SHA-384" === d ? (j = 128, p = 384) : "SHA-512" === d ? (j = 128, p = 512) : n("Chosen SHA variant is not supported");
"HEX" === b ? (r = x(a), t = r.binLen, l = r.value) : "ASCII" === b || "TEXT" === b ? (r = u(a, m), t = r.binLen, l = r.value) : "B64" === b ? (r = B(a),
t = r.binLen, l = r.value) : n("inputFormat must be HEX, TEXT, ASCII, or B64");
a = 8 * j;
b = j / 4 - 1;
j < t / 8 ? (l = $(l, t, d), l[b] &= 4294967040) : j > t / 8 && (l[b] &= 4294967040);
for (j = 0; j <= b; j += 1) y[j] = l[j] ^ 909522486, z[j] = l[j] ^ 1549556828;
d = $(z.concat($(y.concat(k), a + g, d)), a + p, d);
return h(d, G(f))
}
};
})();
//coin.js
(function () {
/*
Coinjs 0.01 beta by OutCast3k{at}gmail.com
A bitcoin framework.
http://github.com/OutCast3k/coinjs or http://coinb.in/coinjs
*/
var coinjs = GLOBAL.coinjs = function () { };
/* public vars */
coinjs.pub = 0x00;
coinjs.priv = 0x80;
coinjs.multisig = 0x05;
coinjs.hdkey = {
'prv': 0x0488ade4,
'pub': 0x0488b21e
};
coinjs.bech32 = {
'charset': 'qpzry9x8gf2tvdw0s3jn54khce6mua7l',
'version': 0,
'hrp': 'bc'
};
coinjs.compressed = false;
/* other vars */
coinjs.developer = '33tht1bKDgZVxb39MnZsWa8oxHXHvUYE4G'; //bitcoin
/* bit(coinb.in) api vars
coinjs.hostname = ((document.location.hostname.split(".")[(document.location.hostname.split(".")).length - 1]) == 'onion') ? 'coinbin3ravkwb24f7rmxx6w3snkjw45jhs5lxbh3yfeg3vpt6janwqd.onion' : 'coinb.in';
coinjs.host = ('https:' == document.location.protocol ? 'https://' : 'http://') + coinjs.hostname + '/api/';
coinjs.uid = '1';
coinjs.key = '12345678901234567890123456789012';
*/
/* start of address functions */
/* generate a private and public keypair, with address and WIF address */
coinjs.newKeys = function (input) {
var privkey = (input) ? Crypto.SHA256(input) : this.newPrivkey();
var pubkey = this.newPubkey(privkey);
return {
'privkey': privkey,
'pubkey': pubkey,
'address': this.pubkey2address(pubkey),
'wif': this.privkey2wif(privkey),
'compressed': this.compressed
};
}
/* generate a new random private key */
coinjs.newPrivkey = function () {
var x = GLOBAL.location;
x += (GLOBAL.screen.height * GLOBAL.screen.width * GLOBAL.screen.colorDepth);
x += coinjs.random(64);
x += (GLOBAL.screen.availHeight * GLOBAL.screen.availWidth * GLOBAL.screen.pixelDepth);
x += navigator.language;
x += GLOBAL.history.length;
x += coinjs.random(64);
x += navigator.userAgent;
x += 'coinb.in';
x += (Crypto.util.randomBytes(64)).join("");
x += x.length;
var dateObj = new Date();
x += dateObj.getTimezoneOffset();
x += coinjs.random(64);
x += (document.getElementById("entropybucket")) ? document.getElementById("entropybucket").innerHTML : '';
x += x + '' + x;
var r = x;
for (let i = 0; i < (x).length / 25; i++) {
r = Crypto.SHA256(r.concat(x));
}
var checkrBigInt = new BigInteger(r);
var orderBigInt = new BigInteger("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141");
while (checkrBigInt.compareTo(orderBigInt) >= 0 || checkrBigInt.equals(BigInteger.ZERO) || checkrBigInt.equals(BigInteger.ONE)) {
r = Crypto.SHA256(r.concat(x));
checkrBigInt = new BigInteger(r);
}
return r;
}
/* generate a public key from a private key */
coinjs.newPubkey = function (hash) {
var privateKeyBigInt = BigInteger.fromByteArrayUnsigned(Crypto.util.hexToBytes(hash));
var curve = EllipticCurve.getSECCurveByName("secp256k1");
var curvePt = curve.getG().multiply(privateKeyBigInt);
var x = curvePt.getX().toBigInteger();
var y = curvePt.getY().toBigInteger();
var publicKeyBytes = EllipticCurve.integerToBytes(x, 32);
publicKeyBytes = publicKeyBytes.concat(EllipticCurve.integerToBytes(y, 32));
publicKeyBytes.unshift(0x04);
if (coinjs.compressed == true) {
var publicKeyBytesCompressed = EllipticCurve.integerToBytes(x, 32)
if (y.isEven()) {
publicKeyBytesCompressed.unshift(0x02)
} else {
publicKeyBytesCompressed.unshift(0x03)
}
return Crypto.util.bytesToHex(publicKeyBytesCompressed);
} else {
return Crypto.util.bytesToHex(publicKeyBytes);
}
}
/* provide a public key and return address */
coinjs.pubkey2address = function (h, byte) {
var r = ripemd160(Crypto.SHA256(Crypto.util.hexToBytes(h), {
asBytes: true
}));
r.unshift(byte || coinjs.pub);
var hash = Crypto.SHA256(Crypto.SHA256(r, {
asBytes: true
}), {
asBytes: true
});
var checksum = hash.slice(0, 4);
return coinjs.base58encode(r.concat(checksum));
}
/* provide a scripthash and return address */
coinjs.scripthash2address = function (h) {
var x = Crypto.util.hexToBytes(h);
x.unshift(coinjs.pub);
var r = x;
r = Crypto.SHA256(Crypto.SHA256(r, {
asBytes: true
}), {
asBytes: true
});
var checksum = r.slice(0, 4);
return coinjs.base58encode(x.concat(checksum));
}
/* new multisig address, provide the pubkeys AND required signatures to release the funds */
coinjs.pubkeys2MultisigAddress = function (pubkeys, required) {
var s = coinjs.script();
s.writeOp(81 + (required * 1) - 1); //OP_1
for (var i = 0; i < pubkeys.length; ++i) {
s.writeBytes(Crypto.util.hexToBytes(pubkeys[i]));
}
s.writeOp(81 + pubkeys.length - 1); //OP_1
s.writeOp(174); //OP_CHECKMULTISIG
var x = ripemd160(Crypto.SHA256(s.buffer, {
asBytes: true
}), {
asBytes: true
});
x.unshift(coinjs.multisig);
var r = x;
r = Crypto.SHA256(Crypto.SHA256(r, {
asBytes: true
}), {
asBytes: true
});
var checksum = r.slice(0, 4);
var redeemScript = Crypto.util.bytesToHex(s.buffer);
var address = coinjs.base58encode(x.concat(checksum));
if (s.buffer.length > 520) { // too large
address = 'invalid';
redeemScript = 'invalid';
}
return {
'address': address,
'redeemScript': redeemScript,
'size': s.buffer.length
};
}
//Return a Bech32 address for the multisig. Format is same as above
coinjs.pubkeys2MultisigAddressBech32 = function (pubkeys, required) {
var r = coinjs.pubkeys2MultisigAddress(pubkeys, required);
var program = Crypto.SHA256(Crypto.util.hexToBytes(r.redeemScript), {
asBytes: true
});
var address = coinjs.bech32_encode(coinjs.bech32.hrp, [coinjs.bech32.version].concat(coinjs.bech32_convert(program, 8, 5, true)));
return {
'address': address,
'redeemScript': r.redeemScript,
'size': r.size
};
}
/* new time locked address, provide the pubkey and time necessary to unlock the funds.
when time is greater than 500000000, it should be a unix timestamp (seconds since epoch),
otherwise it should be the block height required before this transaction can be released.
may throw a string on failure!
*/
coinjs.simpleHodlAddress = function (pubkey, checklocktimeverify) {
if (checklocktimeverify < 0) {
throw "Parameter for OP_CHECKLOCKTIMEVERIFY is negative.";
}
var s = coinjs.script();
if (checklocktimeverify <= 16 && checklocktimeverify >= 1) {
s.writeOp(0x50 + checklocktimeverify); //OP_1 to OP_16 for minimal encoding
} else {
s.writeBytes(coinjs.numToScriptNumBytes(checklocktimeverify));
}
s.writeOp(177); //OP_CHECKLOCKTIMEVERIFY
s.writeOp(117); //OP_DROP
s.writeBytes(Crypto.util.hexToBytes(pubkey));
s.writeOp(172); //OP_CHECKSIG
var x = ripemd160(Crypto.SHA256(s.buffer, {
asBytes: true
}), {
asBytes: true
});
x.unshift(coinjs.multisig);
var r = x;
r = Crypto.SHA256(Crypto.SHA256(r, {
asBytes: true
}), {
asBytes: true
});
var checksum = r.slice(0, 4);
var redeemScript = Crypto.util.bytesToHex(s.buffer);
var address = coinjs.base58encode(x.concat(checksum));
return {
'address': address,
'redeemScript': redeemScript
};
}
/* create a new segwit address */
coinjs.segwitAddress = function (pubkey) {
var keyhash = [0x00, 0x14].concat(ripemd160(Crypto.SHA256(Crypto.util.hexToBytes(pubkey), {
asBytes: true
}), {
asBytes: true
}));
var x = ripemd160(Crypto.SHA256(keyhash, {
asBytes: true
}), {
asBytes: true
});
x.unshift(coinjs.multisig);
var r = x;
r = Crypto.SHA256(Crypto.SHA256(r, {
asBytes: true
}), {
asBytes: true
});
var checksum = r.slice(0, 4);
var address = coinjs.base58encode(x.concat(checksum));
return {
'address': address,
'type': 'segwit',
'redeemscript': Crypto.util.bytesToHex(keyhash)
};
}
/* create a new segwit bech32 encoded address */
coinjs.bech32Address = function (pubkey) {
var program = ripemd160(Crypto.SHA256(Crypto.util.hexToBytes(pubkey), {
asBytes: true
}), {
asBytes: true
});
var address = coinjs.bech32_encode(coinjs.bech32.hrp, [coinjs.bech32.version].concat(coinjs.bech32_convert(program, 8, 5, true)));
return {
'address': address,
'type': 'bech32',
'redeemscript': Crypto.util.bytesToHex(program)
};
}
coinjs.multisigBech32Address = function (raw_redeemscript) {
var program = Crypto.SHA256(Crypto.util.hexToBytes(raw_redeemscript), {
asBytes: true
});
var address = coinjs.bech32_encode(coinjs.bech32.hrp, [coinjs.bech32.version].concat(coinjs.bech32_convert(program, 8, 5, true)));
return {
'address': address,
'type': 'multisigBech32',
'redeemscript': Crypto.util.bytesToHex(program)
};
}
/* extract the redeemscript from a bech32 address */
coinjs.bech32redeemscript = function (address) {
var r = false;
var decode = coinjs.bech32_decode(address);
if (decode) {
decode.data.shift();
return Crypto.util.bytesToHex(coinjs.bech32_convert(decode.data, 5, 8, false));
}
return r;
}
/* provide a privkey and return an WIF */
coinjs.privkey2wif = function (h) {
var r = Crypto.util.hexToBytes(h);
if (coinjs.compressed == true) {
r.push(0x01);
}
r.unshift(coinjs.priv);
var hash = Crypto.SHA256(Crypto.SHA256(r, {
asBytes: true
}), {
asBytes: true
});
var checksum = hash.slice(0, 4);
return coinjs.base58encode(r.concat(checksum));
}
/* convert a wif key back to a private key */
coinjs.wif2privkey = function (wif) {
var compressed = false;
var decode = coinjs.base58decode(wif);
var key = decode.slice(0, decode.length - 4);
key = key.slice(1, key.length);
if (key.length >= 33 && key[key.length - 1] == 0x01) {
key = key.slice(0, key.length - 1);
compressed = true;
}
return {
'privkey': Crypto.util.bytesToHex(key),
'compressed': compressed
};
}
/* convert a wif to a pubkey */
coinjs.wif2pubkey = function (wif) {
var compressed = coinjs.compressed;
var r = coinjs.wif2privkey(wif);
coinjs.compressed = r['compressed'];
var pubkey = coinjs.newPubkey(r['privkey']);
coinjs.compressed = compressed;
return {
'pubkey': pubkey,
'compressed': r['compressed']
};
}
/* convert a wif to a address */
coinjs.wif2address = function (wif) {
var r = coinjs.wif2pubkey(wif);
return {
'address': coinjs.pubkey2address(r['pubkey']),
'compressed': r['compressed']
};
}
/* decode or validate an address and return the hash */
coinjs.addressDecode = function (addr) {
try {
var bytes = coinjs.base58decode(addr);
var front = bytes.slice(0, bytes.length - 4);
var back = bytes.slice(bytes.length - 4);
var checksum = Crypto.SHA256(Crypto.SHA256(front, {
asBytes: true
}), {
asBytes: true
}).slice(0, 4);
if (checksum + "" == back + "") {
var o = {};
o.bytes = front.slice(1);
o.version = front[0];
if (o.version == coinjs.pub) { // standard address
o.type = 'standard';
} else if (o.version == coinjs.multisig) { // multisig address
o.type = 'multisig';
} else if (o.version == coinjs.multisigBech32) { // multisigBech32 added
o.type = 'multisigBech32';
} else if (o.version == coinjs.priv) { // wifkey
o.type = 'wifkey';
} else if (o.version == 42) { // stealth address
o.type = 'stealth';
o.option = front[1];
if (o.option != 0) {
alert("Stealth Address option other than 0 is currently not supported!");
return false;
};
o.scankey = Crypto.util.bytesToHex(front.slice(2, 35));
o.n = front[35];
if (o.n > 1) {
alert("Stealth Multisig is currently not supported!");
return false;
};
o.spendkey = Crypto.util.bytesToHex(front.slice(36, 69));
o.m = front[69];
o.prefixlen = front[70];
if (o.prefixlen > 0) {
alert("Stealth Address Prefixes are currently not supported!");
return false;
};
o.prefix = front.slice(71);
} else { // everything else
o.type = 'other'; // address is still valid but unknown version
}
return o;
} else {
throw "Invalid checksum";
}
} catch (e) {
let bech32rs = coinjs.bech32redeemscript(addr);
if (bech32rs && bech32rs.length == 40) {
return {
'type': 'bech32',
'redeemscript': bech32rs
};
} else if (bech32rs && bech32rs.length == 64) {
return {
'type': 'multisigBech32',
'redeemscript': bech32rs
};
} else {
return false;
}
}
}
/* retreive the balance from a given address */
coinjs.addressBalance = function (address, callback) {
coinjs.ajax(coinjs.host + '?uid=' + coinjs.uid + '&key=' + coinjs.key + '&setmodule=addresses&request=bal&address=' + address + '&r=' + Math.random(), callback, "GET");
}
/* decompress an compressed public key */
coinjs.pubkeydecompress = function (pubkey) {
if ((typeof (pubkey) == 'string') && pubkey.match(/^[a-f0-9]+$/i)) {
var curve = EllipticCurve.getSECCurveByName("secp256k1");
try {
var pt = curve.curve.decodePointHex(pubkey);
var x = pt.getX().toBigInteger();
var y = pt.getY().toBigInteger();
var publicKeyBytes = EllipticCurve.integerToBytes(x, 32);
publicKeyBytes = publicKeyBytes.concat(EllipticCurve.integerToBytes(y, 32));
publicKeyBytes.unshift(0x04);
return Crypto.util.bytesToHex(publicKeyBytes);
} catch (e) {
// console.log(e);
return false;
}
}
return false;
}
coinjs.bech32_polymod = function (values) {
var chk = 1;
var BECH32_GENERATOR = [0x3b6a57b2, 0x26508e6d, 0x1ea119fa, 0x3d4233dd, 0x2a1462b3];
for (var p = 0; p < values.length; ++p) {
var top = chk >> 25;
chk = (chk & 0x1ffffff) << 5 ^ values[p];
for (var i = 0; i < 5; ++i) {
if ((top >> i) & 1) {
chk ^= BECH32_GENERATOR[i];
}
}
}
return chk;
}
coinjs.bech32_hrpExpand = function (hrp) {
var ret = [];
var p;
for (p = 0; p < hrp.length; ++p) {
ret.push(hrp.charCodeAt(p) >> 5);
}
ret.push(0);
for (p = 0; p < hrp.length; ++p) {
ret.push(hrp.charCodeAt(p) & 31);
}
return ret;
}
coinjs.bech32_verifyChecksum = function (hrp, data) {
return coinjs.bech32_polymod(coinjs.bech32_hrpExpand(hrp).concat(data)) === 1;
}
coinjs.bech32_createChecksum = function (hrp, data) {
var values = coinjs.bech32_hrpExpand(hrp).concat(data).concat([0, 0, 0, 0, 0, 0]);
var mod = coinjs.bech32_polymod(values) ^ 1;
var ret = [];
for (var p = 0; p < 6; ++p) {
ret.push((mod >> 5 * (5 - p)) & 31);
}
return ret;
}
coinjs.bech32_encode = function (hrp, data) {
var combined = data.concat(coinjs.bech32_createChecksum(hrp, data));
var ret = hrp + '1';
for (var p = 0; p < combined.length; ++p) {
ret += coinjs.bech32.charset.charAt(combined[p]);
}
return ret;
}
coinjs.bech32_decode = function (bechString) {
var p;
var has_lower = false;
var has_upper = false;
for (p = 0; p < bechString.length; ++p) {
if (bechString.charCodeAt(p) < 33 || bechString.charCodeAt(p) > 126) {
return null;
}
if (bechString.charCodeAt(p) >= 97 && bechString.charCodeAt(p) <= 122) {
has_lower = true;
}
if (bechString.charCodeAt(p) >= 65 && bechString.charCodeAt(p) <= 90) {
has_upper = true;
}
}
if (has_lower && has_upper) {
return null;
}
bechString = bechString.toLowerCase();
var pos = bechString.lastIndexOf('1');
if (pos < 1 || pos + 7 > bechString.length || bechString.length > 90) {
return null;
}
var hrp = bechString.substring(0, pos);
var data = [];
for (p = pos + 1; p < bechString.length; ++p) {
var d = coinjs.bech32.charset.indexOf(bechString.charAt(p));
if (d === -1) {
return null;
}
data.push(d);
}
if (!coinjs.bech32_verifyChecksum(hrp, data)) {
return null;
}
return {
hrp: hrp,
data: data.slice(0, data.length - 6)
};
}
coinjs.bech32_convert = function (data, inBits, outBits, pad) {
var value = 0;
var bits = 0;
var maxV = (1 << outBits) - 1;
var result = [];
for (var i = 0; i < data.length; ++i) {
value = (value << inBits) | data[i];
bits += inBits;
while (bits >= outBits) {
bits -= outBits;
result.push((value >> bits) & maxV);
}
}
if (pad) {
if (bits > 0) {
result.push((value << (outBits - bits)) & maxV);
}
} else {
if (bits >= inBits) throw new Error('Excess padding');
if ((value << (outBits - bits)) & maxV) throw new Error('Non-zero padding');
}
return result;
}
coinjs.testdeterministicK = function () {
// https://github.com/bitpay/bitcore/blob/9a5193d8e94b0bd5b8e7f00038e7c0b935405a03/test/crypto/ecdsa.js
// Line 21 and 22 specify digest hash and privkey for the first 2 test vectors.
// Line 96-117 tells expected result.
var tx = coinjs.transaction();
var test_vectors = [{
'message': 'test data',
'privkey': 'fee0a1f7afebf9d2a5a80c0c98a31c709681cce195cbcd06342b517970c0be1e',
'k_bad00': 'fcce1de7a9bcd6b2d3defade6afa1913fb9229e3b7ddf4749b55c4848b2a196e',
'k_bad01': '727fbcb59eb48b1d7d46f95a04991fc512eb9dbf9105628e3aec87428df28fd8',
'k_bad15': '398f0e2c9f79728f7b3d84d447ac3a86d8b2083c8f234a0ffa9c4043d68bd258'
},
{
'message': 'Everything should be made as simple as possible, but not simpler.',
'privkey': '0000000000000000000000000000000000000000000000000000000000000001',
'k_bad00': 'ec633bd56a5774a0940cb97e27a9e4e51dc94af737596a0c5cbb3d30332d92a5',
'k_bad01': 'df55b6d1b5c48184622b0ead41a0e02bfa5ac3ebdb4c34701454e80aabf36f56',
'k_bad15': 'def007a9a3c2f7c769c75da9d47f2af84075af95cadd1407393dc1e26086ef87'
},
{
'message': 'Satoshi Nakamoto',
'privkey': '0000000000000000000000000000000000000000000000000000000000000002',
'k_bad00': 'd3edc1b8224e953f6ee05c8bbf7ae228f461030e47caf97cde91430b4607405e',
'k_bad01': 'f86d8e43c09a6a83953f0ab6d0af59fb7446b4660119902e9967067596b58374',
'k_bad15': '241d1f57d6cfd2f73b1ada7907b199951f95ef5ad362b13aed84009656e0254a'
},
{
'message': 'Diffie Hellman',
'privkey': '7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f',
'k_bad00': 'c378a41cb17dce12340788dd3503635f54f894c306d52f6e9bc4b8f18d27afcc',
'k_bad01': '90756c96fef41152ac9abe08819c4e95f16da2af472880192c69a2b7bac29114',
'k_bad15': '7b3f53300ab0ccd0f698f4d67db87c44cf3e9e513d9df61137256652b2e94e7c'
},
{
'message': 'Japan',
'privkey': '8080808080808080808080808080808080808080808080808080808080808080',
'k_bad00': 'f471e61b51d2d8db78f3dae19d973616f57cdc54caaa81c269394b8c34edcf59',
'k_bad01': '6819d85b9730acc876fdf59e162bf309e9f63dd35550edf20869d23c2f3e6d17',
'k_bad15': 'd8e8bae3ee330a198d1f5e00ad7c5f9ed7c24c357c0a004322abca5d9cd17847'
},
{
'message': 'Bitcoin',
'privkey': 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364140',
'k_bad00': '36c848ffb2cbecc5422c33a994955b807665317c1ce2a0f59c689321aaa631cc',
'k_bad01': '4ed8de1ec952a4f5b3bd79d1ff96446bcd45cabb00fc6ca127183e14671bcb85',
'k_bad15': '56b6f47babc1662c011d3b1f93aa51a6e9b5f6512e9f2e16821a238d450a31f8'
},
{
'message': 'i2FLPP8WEus5WPjpoHwheXOMSobUJVaZM1JPMQZq',
'privkey': 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364140',
'k_bad00': '6e9b434fcc6bbb081a0463c094356b47d62d7efae7da9c518ed7bac23f4e2ed6',
'k_bad01': 'ae5323ae338d6117ce8520a43b92eacd2ea1312ae514d53d8e34010154c593bb',
'k_bad15': '3eaa1b61d1b8ab2f1ca71219c399f2b8b3defa624719f1e96fe3957628c2c4ea'
},
{
'message': 'lEE55EJNP7aLrMtjkeJKKux4Yg0E8E1SAJnWTCEh',
'privkey': '3881e5286abc580bb6139fe8e83d7c8271c6fe5e5c2d640c1f0ed0e1ee37edc9',
'k_bad00': '5b606665a16da29cc1c5411d744ab554640479dd8abd3c04ff23bd6b302e7034',
'k_bad01': 'f8b25263152c042807c992eacd2ac2cc5790d1e9957c394f77ea368e3d9923bd',
'k_bad15': 'ea624578f7e7964ac1d84adb5b5087dd14f0ee78b49072aa19051cc15dab6f33'
},
{
'message': '2SaVPvhxkAPrayIVKcsoQO5DKA8Uv5X/esZFlf+y',
'privkey': '7259dff07922de7f9c4c5720d68c9745e230b32508c497dd24cb95ef18856631',
'k_bad00': '3ab6c19ab5d3aea6aa0c6da37516b1d6e28e3985019b3adb388714e8f536686b',
'k_bad01': '19af21b05004b0ce9cdca82458a371a9d2cf0dc35a813108c557b551c08eb52e',
'k_bad15': '117a32665fca1b7137a91c4739ac5719fec0cf2e146f40f8e7c21b45a07ebc6a'
},
{
'message': '00A0OwO2THi7j5Z/jp0FmN6nn7N/DQd6eBnCS+/b',
'privkey': '0d6ea45d62b334777d6995052965c795a4f8506044b4fd7dc59c15656a28f7aa',
'k_bad00': '79487de0c8799158294d94c0eb92ee4b567e4dc7ca18addc86e49d31ce1d2db6',
'k_bad01': '9561d2401164a48a8f600882753b3105ebdd35e2358f4f808c4f549c91490009',
'k_bad15': 'b0d273634129ff4dbdf0df317d4062a1dbc58818f88878ffdb4ec511c77976c0'
}
];
var result_txt = '\n----------------------\nResults\n----------------------\n\n';
for (i = 0; i < test_vectors.length; i++) {
var hash = Crypto.SHA256(test_vectors[i]['message'].split('').map(function (c) {
return c.charCodeAt(0);
}), {
asBytes: true
});
var wif = coinjs.privkey2wif(test_vectors[i]['privkey']);
var KBigInt = tx.deterministicK(wif, hash);
var KBigInt0 = tx.deterministicK(wif, hash, 0);
var KBigInt1 = tx.deterministicK(wif, hash, 1);
var KBigInt15 = tx.deterministicK(wif, hash, 15);
var K = Crypto.util.bytesToHex(KBigInt.toByteArrayUnsigned());
var K0 = Crypto.util.bytesToHex(KBigInt0.toByteArrayUnsigned());
var K1 = Crypto.util.bytesToHex(KBigInt1.toByteArrayUnsigned());
var K15 = Crypto.util.bytesToHex(KBigInt15.toByteArrayUnsigned());
if (K != test_vectors[i]['k_bad00']) {
result_txt += 'Failed Test #' + (i + 1) + '\n K = ' + K + '\nExpected = ' + test_vectors[i]['k_bad00'] + '\n\n';
} else if (K0 != test_vectors[i]['k_bad00']) {
result_txt += 'Failed Test #' + (i + 1) + '\n K0 = ' + K0 + '\nExpected = ' + test_vectors[i]['k_bad00'] + '\n\n';
} else if (K1 != test_vectors[i]['k_bad01']) {
result_txt += 'Failed Test #' + (i + 1) + '\n K1 = ' + K1 + '\nExpected = ' + test_vectors[i]['k_bad01'] + '\n\n';
} else if (K15 != test_vectors[i]['k_bad15']) {
result_txt += 'Failed Test #' + (i + 1) + '\n K15 = ' + K15 + '\nExpected = ' + test_vectors[i]['k_bad15'] + '\n\n';
};
};
if (result_txt.length < 60) {
result_txt = 'All Tests OK!';
};
return result_txt;
};
/* start of hd functions, thanks bip32.org */
coinjs.hd = function (data) {
var r = {};
/* some hd value parsing */
r.parse = function () {
var bytes = [];
// some quick validation
if (typeof (data) == 'string') {
var decoded = coinjs.base58decode(data);
if (decoded.length == 82) {
var checksum = decoded.slice(78, 82);
var hash = Crypto.SHA256(Crypto.SHA256(decoded.slice(0, 78), {
asBytes: true
}), {
asBytes: true
});
if (checksum[0] == hash[0] && checksum[1] == hash[1] && checksum[2] == hash[2] && checksum[3] == hash[3]) {
bytes = decoded.slice(0, 78);
}
}
}
// actual parsing code
if (bytes && bytes.length > 0) {
r.version = coinjs.uint(bytes.slice(0, 4), 4);
r.depth = coinjs.uint(bytes.slice(4, 5), 1);
r.parent_fingerprint = bytes.slice(5, 9);
r.child_index = coinjs.uint(bytes.slice(9, 13), 4);
r.chain_code = bytes.slice(13, 45);
r.key_bytes = bytes.slice(45, 78);
var c = coinjs.compressed; // get current default
coinjs.compressed = true;
if (r.key_bytes[0] == 0x00) {
r.type = 'private';
var privkey = (r.key_bytes).slice(1, 33);
var privkeyHex = Crypto.util.bytesToHex(privkey);
var pubkey = coinjs.newPubkey(privkeyHex);
r.keys = {
'privkey': privkeyHex,
'pubkey': pubkey,
'address': coinjs.pubkey2address(pubkey),
'wif': coinjs.privkey2wif(privkeyHex)
};
} else if (r.key_bytes[0] == 0x02 || r.key_bytes[0] == 0x03) {
r.type = 'public';
var pubkeyHex = Crypto.util.bytesToHex(r.key_bytes);
r.keys = {
'pubkey': pubkeyHex,
'address': coinjs.pubkey2address(pubkeyHex)
};
} else {
r.type = 'invalid';
}
r.keys_extended = r.extend();
coinjs.compressed = c; // reset to default
}
return r;
}
// extend prv/pub key
r.extend = function () {
var hd = coinjs.hd();
return hd.make({
'depth': (this.depth * 1) + 1,
'parent_fingerprint': this.parent_fingerprint,
'child_index': this.child_index,
'chain_code': this.chain_code,
'privkey': this.keys.privkey,
'pubkey': this.keys.pubkey
});
}
// derive from path
r.derive_path = function (path) {
if (path == 'm' || path == 'M' || path == 'm\'' || path == 'M\'') return this;
var p = path.split('/');
var hdp = coinjs.clone(this); // clone hd path
for (var i in p) {
if (((i == 0) && c != 'm') || i == 'remove') {
continue;
}
var c = p[i];
var use_private = (c.length > 1) && (c[c.length - 1] == '\'');
var child_index = parseInt(use_private ? c.slice(0, c.length - 1) : c) & 0x7fffffff;
if (use_private)
child_index += 0x80000000;
hdp = hdp.derive(child_index);
var key = ((hdp.keys_extended.privkey) && hdp.keys_extended.privkey != '') ? hdp.keys_extended.privkey : hdp.keys_extended.pubkey;
hdp = coinjs.hd(key);
}
return hdp;
}
// derive key from index
r.derive = function (i) {
i = (i) ? i : 0;
var blob = (Crypto.util.hexToBytes(this.keys.pubkey)).concat(coinjs.numToBytes(i, 4).reverse());
var j = new jsSHA(Crypto.util.bytesToHex(blob), 'HEX');
var hash = j.getHMAC(Crypto.util.bytesToHex(r.chain_code), "HEX", "SHA-512", "HEX");
var il = new BigInteger(hash.slice(0, 64), 16);
var ir = Crypto.util.hexToBytes(hash.slice(64, 128));
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
var curve = ecparams.getCurve();
var k, key, pubkey, o;
o = coinjs.clone(this);
o.chain_code = ir;
o.child_index = i;
if (this.type == 'private') {
// derive key pair from from a xprv key
k = il.add(new BigInteger([0].concat(Crypto.util.hexToBytes(this.keys.privkey)))).mod(ecparams.getN());
key = Crypto.util.bytesToHex(k.toByteArrayUnsigned());
pubkey = coinjs.newPubkey(key);
o.keys = {
'privkey': key,
'pubkey': pubkey,
'wif': coinjs.privkey2wif(key),
'address': coinjs.pubkey2address(pubkey)
};
} else if (this.type == 'public') {
// derive xpub key from an xpub key
q = ecparams.curve.decodePointHex(this.keys.pubkey);
var curvePt = ecparams.getG().multiply(il).add(q);
var x = curvePt.getX().toBigInteger();
var y = curvePt.getY().toBigInteger();
var publicKeyBytesCompressed = EllipticCurve.integerToBytes(x, 32)
if (y.isEven()) {
publicKeyBytesCompressed.unshift(0x02)
} else {
publicKeyBytesCompressed.unshift(0x03)
}
pubkey = Crypto.util.bytesToHex(publicKeyBytesCompressed);
o.keys = {
'pubkey': pubkey,
'address': coinjs.pubkey2address(pubkey)
}
} else {
// fail
}
o.parent_fingerprint = (ripemd160(Crypto.SHA256(Crypto.util.hexToBytes(r.keys.pubkey), {
asBytes: true
}), {
asBytes: true
})).slice(0, 4);
o.keys_extended = o.extend();
return o;
}
// make a master hd xprv/xpub
r.master = function (pass) {
var seed = (pass) ? Crypto.SHA256(pass) : coinjs.newPrivkey();
var hasher = new jsSHA(seed, 'HEX');
var I = hasher.getHMAC("Bitcoin seed", "TEXT", "SHA-512", "HEX");
var privkey = Crypto.util.hexToBytes(I.slice(0, 64));
var chain = Crypto.util.hexToBytes(I.slice(64, 128));
var hd = coinjs.hd();
return hd.make({
'depth': 0,
'parent_fingerprint': [0, 0, 0, 0],
'child_index': 0,
'chain_code': chain,
'privkey': I.slice(0, 64),
'pubkey': coinjs.newPubkey(I.slice(0, 64))
});
}
// encode data to a base58 string
r.make = function (data) { // { (int) depth, (array) parent_fingerprint, (int) child_index, (byte array) chain_code, (hex str) privkey, (hex str) pubkey}
var k = [];
//depth
k.push(data.depth * 1);
//parent fingerprint
k = k.concat(data.parent_fingerprint);
//child index
k = k.concat((coinjs.numToBytes(data.child_index, 4)).reverse());
//Chain code
k = k.concat(data.chain_code);
var o = {}; // results
//encode xprv key
if (data.privkey) {
var prv = (coinjs.numToBytes(coinjs.hdkey.prv, 4)).reverse();
prv = prv.concat(k);
prv.push(0x00);
prv = prv.concat(Crypto.util.hexToBytes(data.privkey));
var hash = Crypto.SHA256(Crypto.SHA256(prv, {
asBytes: true
}), {
asBytes: true
});
var checksum = hash.slice(0, 4);
var ret = prv.concat(checksum);
o.privkey = coinjs.base58encode(ret);
}
//encode xpub key
if (data.pubkey) {
var pub = (coinjs.numToBytes(coinjs.hdkey.pub, 4)).reverse();
pub = pub.concat(k);
pub = pub.concat(Crypto.util.hexToBytes(data.pubkey));
var hash = Crypto.SHA256(Crypto.SHA256(pub, {
asBytes: true
}), {
asBytes: true
});
var checksum = hash.slice(0, 4);
var ret = pub.concat(checksum);
o.pubkey = coinjs.base58encode(ret);
}
return o;
}
return r.parse();
}
/* start of script functions */
coinjs.script = function (data) {
var r = {};
if (!data) {
r.buffer = [];
} else if ("string" == typeof data) {
r.buffer = Crypto.util.hexToBytes(data);
} else if (coinjs.isArray(data)) {
r.buffer = data;
} else if (data instanceof coinjs.script) {
r.buffer = data.buffer;
} else {
r.buffer = data;
}
/* parse buffer array */
r.parse = function () {
var self = this;
r.chunks = [];
var i = 0;
function readChunk(n) {
self.chunks.push(self.buffer.slice(i, i + n));
i += n;
};
while (i < this.buffer.length) {
var opcode = this.buffer[i++];
if (opcode >= 0xF0) {
opcode = (opcode << 8) | this.buffer[i++];
}
var len;
if (opcode > 0 && opcode < 76) { //OP_PUSHDATA1
readChunk(opcode);
} else if (opcode == 76) { //OP_PUSHDATA1
len = this.buffer[i++];
readChunk(len);
} else if (opcode == 77) { //OP_PUSHDATA2
len = (this.buffer[i++] << 8) | this.buffer[i++];
readChunk(len);
} else if (opcode == 78) { //OP_PUSHDATA4
len = (this.buffer[i++] << 24) | (this.buffer[i++] << 16) | (this.buffer[i++] << 8) | this.buffer[i++];
readChunk(len);
} else {
this.chunks.push(opcode);
}
if (i < 0x00) {
break;
}
}
return true;
};
/* decode the redeemscript of a multisignature transaction */
r.decodeRedeemScript = function (script) {
var r = false;
try {
var s = coinjs.script(Crypto.util.hexToBytes(script));
if ((s.chunks.length >= 3) && s.chunks[s.chunks.length - 1] == 174) { //OP_CHECKMULTISIG
r = {};
r.signaturesRequired = s.chunks[0] - 80;
var pubkeys = [];
for (var i = 1; i < s.chunks.length - 2; i++) {
pubkeys.push(Crypto.util.bytesToHex(s.chunks[i]));
}
r.pubkeys = pubkeys;
var multi = coinjs.pubkeys2MultisigAddress(pubkeys, r.signaturesRequired);
r.address = multi['address'];
r.type = 'multisig__'; // using __ for now to differentiat from the other object .type == "multisig"
var rs = Crypto.util.bytesToHex(s.buffer);
r.redeemscript = rs;
} else if ((s.chunks.length == 2) && (s.buffer[0] == 0 && s.buffer[1] == 20)) { // SEGWIT
r = {};
r.type = "segwit__";
var rs = Crypto.util.bytesToHex(s.buffer);
r.address = coinjs.pubkey2address(rs, coinjs.multisig);
r.redeemscript = rs;
} else if (s.chunks.length == 5 && s.chunks[1] == 177 && s.chunks[2] == 117 && s.chunks[4] == 172) {
// ^ <unlocktime> OP_CHECKLOCKTIMEVERIFY OP_DROP <pubkey> OP_CHECKSIG ^
r = {}
r.pubkey = Crypto.util.bytesToHex(s.chunks[3]);
r.checklocktimeverify = coinjs.bytesToNum(s.chunks[0].slice());
r.address = coinjs.simpleHodlAddress(r.pubkey, r.checklocktimeverify).address;
var rs = Crypto.util.bytesToHex(s.buffer);
r.redeemscript = rs;
r.type = "hodl__";
}
} catch (e) {
// console.log(e);
r = false;
}
return r;
}
/* decode the redeemscript of a multisignature transaction for Bech32*/
r.decodeRedeemScriptBech32 = function (script) {
var r = false;
try {
var s = coinjs.script(Crypto.util.hexToBytes(script));
if ((s.chunks.length >= 3) && s.chunks[s.chunks.length - 1] == 174) { //OP_CHECKMULTISIG
r = {};
r.signaturesRequired = s.chunks[0] - 80;
var pubkeys = [];
for (var i = 1; i < s.chunks.length - 2; i++) {
pubkeys.push(Crypto.util.bytesToHex(s.chunks[i]));
}
r.pubkeys = pubkeys;
var multi = coinjs.pubkeys2MultisigAddressBech32(pubkeys, r.signaturesRequired);
r.address = multi['address'];
r.type = 'multisig__'; // using __ for now to differentiat from the other object .type == "multisig"
var rs = Crypto.util.bytesToHex(s.buffer);
r.redeemscript = rs;
}
} catch (e) {
// console.log(e);
r = false;
}
return r;
}
/* create output script to spend */
r.spendToScript = function (address) {
var addr = coinjs.addressDecode(address);
var s = coinjs.script();
if (addr.type == "bech32" || addr.type == "multisigBech32") {
s.writeOp(0);
s.writeBytes(Crypto.util.hexToBytes(addr.redeemscript));
} else if (addr.version == coinjs.multisig) { // multisig address
s.writeOp(169); //OP_HASH160
s.writeBytes(addr.bytes);
s.writeOp(135); //OP_EQUAL
} else { // regular address
s.writeOp(118); //OP_DUP
s.writeOp(169); //OP_HASH160
s.writeBytes(addr.bytes);
s.writeOp(136); //OP_EQUALVERIFY
s.writeOp(172); //OP_CHECKSIG
}
return s;
}
/* geneate a (script) pubkey hash of the address - used for when signing */
r.pubkeyHash = function (address) {
var addr = coinjs.addressDecode(address);
var s = coinjs.script();
s.writeOp(118); //OP_DUP
s.writeOp(169); //OP_HASH160
s.writeBytes(addr.bytes);
s.writeOp(136); //OP_EQUALVERIFY
s.writeOp(172); //OP_CHECKSIG
return s;
}
/* write to buffer */
r.writeOp = function (op) {
this.buffer.push(op);
this.chunks.push(op);
return true;
}
/* write bytes to buffer */
r.writeBytes = function (data) {
if (data.length < 76) { //OP_PUSHDATA1
this.buffer.push(data.length);
} else if (data.length <= 0xff) {
this.buffer.push(76); //OP_PUSHDATA1
this.buffer.push(data.length);
} else if (data.length <= 0xffff) {
this.buffer.push(77); //OP_PUSHDATA2
this.buffer.push(data.length & 0xff);
this.buffer.push((data.length >>> 8) & 0xff);
} else {
this.buffer.push(78); //OP_PUSHDATA4
this.buffer.push(data.length & 0xff);
this.buffer.push((data.length >>> 8) & 0xff);
this.buffer.push((data.length >>> 16) & 0xff);
this.buffer.push((data.length >>> 24) & 0xff);
}
this.buffer = this.buffer.concat(data);
this.chunks.push(data);
return true;
}
r.parse();
return r;
}
/* start of transaction functions */
/* create a new transaction object */
coinjs.transaction = function () {
var r = {};
r.version = 1;
r.lock_time = 0;
r.ins = [];
r.outs = [];
r.witness = false;
r.timestamp = null;
r.block = null;
/* add an input to a transaction */
r.addinput = function (txid, index, script, sequence) {
var o = {};
o.outpoint = {
'hash': txid,
'index': index
};
o.script = coinjs.script(script || []);
o.sequence = sequence || ((r.lock_time == 0) ? 4294967295 : 0);
return this.ins.push(o);
}
/* add an output to a transaction */
r.addoutput = function (address, value) {
var o = {};
o.value = new BigInteger('' + Math.round((value * 1) * 1e8), 10);
var s = coinjs.script();
o.script = s.spendToScript(address);
return this.outs.push(o);
}
/* add two outputs for stealth addresses to a transaction */
r.addstealth = function (stealth, value) {
var ephemeralKeyBigInt = BigInteger.fromByteArrayUnsigned(Crypto.util.hexToBytes(coinjs.newPrivkey()));
var curve = EllipticCurve.getSECCurveByName("secp256k1");
var p = EllipticCurve.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F");
var a = BigInteger.ZERO;
var b = EllipticCurve.fromHex("7");
var calccurve = new EllipticCurve.CurveFp(p, a, b);
var ephemeralPt = curve.getG().multiply(ephemeralKeyBigInt);
var scanPt = calccurve.decodePointHex(stealth.scankey);
var sharedPt = scanPt.multiply(ephemeralKeyBigInt);
var stealthindexKeyBigInt = BigInteger.fromByteArrayUnsigned(Crypto.SHA256(sharedPt.getEncoded(true), {
asBytes: true
}));
var stealthindexPt = curve.getG().multiply(stealthindexKeyBigInt);
var spendPt = calccurve.decodePointHex(stealth.spendkey);
var addressPt = spendPt.add(stealthindexPt);
var sendaddress = coinjs.pubkey2address(Crypto.util.bytesToHex(addressPt.getEncoded(true)));
var OPRETBytes = [6].concat(Crypto.util.randomBytes(4)).concat(ephemeralPt.getEncoded(true)); // ephemkey data
var q = coinjs.script();
q.writeOp(106); // OP_RETURN
q.writeBytes(OPRETBytes);
v = {};
v.value = 0;
v.script = q;
this.outs.push(v);
var o = {};
o.value = new BigInteger('' + Math.round((value * 1) * 1e8), 10);
var s = coinjs.script();
o.script = s.spendToScript(sendaddress);
return this.outs.push(o);
}
/* add data to a transaction */
r.adddata = function (data) {
var r = false;
if (((data.match(/^[a-f0-9]+$/gi)) && data.length < 160) && (data.length % 2) == 0) {
var s = coinjs.script();
s.writeOp(106); // OP_RETURN
s.writeBytes(Crypto.util.hexToBytes(data));
o = {};
o.value = 0;
o.script = s;
return this.outs.push(o);
}
return r;
}
/* list unspent transactions */
r.listUnspent = function (address, callback) {
coinjs.ajax(coinjs.host + '?uid=' + coinjs.uid + '&key=' + coinjs.key + '&setmodule=addresses&request=unspent&address=' + address + '&r=' + Math.random(), callback, "GET");
}
/* list transaction data */
r.getTransaction = function (txid, callback) {
coinjs.ajax(coinjs.host + '?uid=' + coinjs.uid + '&key=' + coinjs.key + '&setmodule=bitcoin&request=gettransaction&txid=' + txid + '&r=' + Math.random(), callback, "GET");
}
/* add unspent to transaction */
r.addUnspent = function (address, callback, script, segwit, sequence) {
var self = this;
this.listUnspent(address, function (data) {
var s = coinjs.script();
var value = 0;
var total = 0;
var x = {};
if (GLOBAL.DOMParser) {
parser = new DOMParser();
xmlDoc = parser.parseFromString(data, "text/xml");
} else {
xmlDoc = new ActiveXObject("Microsoft.XMLDOM");
xmlDoc.async = false;
xmlDoc.loadXML(data);
}
var unspent = xmlDoc.getElementsByTagName("unspent")[0];
if (unspent) {
for (i = 1; i <= unspent.childElementCount; i++) {
var u = xmlDoc.getElementsByTagName("unspent_" + i)[0]
var txhash = (u.getElementsByTagName("tx_hash")[0].childNodes[0].nodeValue).match(/.{1,2}/g).reverse().join("") + '';
var n = u.getElementsByTagName("tx_output_n")[0].childNodes[0].nodeValue;
var scr = script || u.getElementsByTagName("script")[0].childNodes[0].nodeValue;
if (segwit) { //also for MULTISIG_BECH32 (p2wsh-multisig)(script = raw_redeemscript; for p2wsh-multisig)
/* this is a small hack to include the value with the redeemscript to make the signing procedure smoother.
It is not standard and removed during the signing procedure. */
s = coinjs.script();
s.writeBytes(Crypto.util.hexToBytes(script));
s.writeOp(0);
s.writeBytes(coinjs.numToBytes(u.getElementsByTagName("value")[0].childNodes[0].nodeValue * 1, 8));
scr = Crypto.util.bytesToHex(s.buffer);
}
var seq = sequence || false;
self.addinput(txhash, n, scr, seq);
value += u.getElementsByTagName("value")[0].childNodes[0].nodeValue * 1;
total++;
}
}
x.result = xmlDoc.getElementsByTagName("result")[0].childNodes[0].nodeValue;
x.unspent = unspent;
x.value = value;
x.total = total;
x.response = xmlDoc.getElementsByTagName("response")[0].childNodes[0].nodeValue;
return callback(x);
});
}
/* add unspent and sign */
r.addUnspentAndSign = function (wif, callback) {
var self = this;
var address = coinjs.wif2address(wif);
self.addUnspent(address['address'], function (data) {
self.sign(wif);
return callback(data);
});
}
/* broadcast a transaction */
r.broadcast = function (callback, txhex) {
var tx = txhex || this.serialize();
coinjs.ajax(coinjs.host + '?uid=' + coinjs.uid + '&key=' + coinjs.key + '&setmodule=bitcoin&request=sendrawtransaction', callback, "POST", ["rawtx=" + tx]);
}
/* generate the transaction hash to sign from a transaction input */
r.transactionHash = function (index, sigHashType) {
var clone = coinjs.clone(this);
var shType = sigHashType || 1;
/* black out all other ins, except this one */
for (var i = 0; i < clone.ins.length; i++) {
if (index != i) {
clone.ins[i].script = coinjs.script();
}
}
var extract = this.extractScriptKey(index);
clone.ins[index].script = coinjs.script(extract['script']);
if ((clone.ins) && clone.ins[index]) {
/* SIGHASH : For more info on sig hashs see https://en.bitcoin.it/wiki/OP_CHECKSIG
and https://bitcoin.org/en/developer-guide#signature-hash-type */
if (shType == 1) {
//SIGHASH_ALL 0x01
} else if (shType == 2) {
//SIGHASH_NONE 0x02
clone.outs = [];
for (var i = 0; i < clone.ins.length; i++) {
if (index != i) {
clone.ins[i].sequence = 0;
}
}
} else if (shType == 3) {
//SIGHASH_SINGLE 0x03
clone.outs.length = index + 1;
for (var i = 0; i < index; i++) {
clone.outs[i].value = -1;
clone.outs[i].script.buffer = [];
}
for (var i = 0; i < clone.ins.length; i++) {
if (index != i) {
clone.ins[i].sequence = 0;
}
}
} else if (shType >= 128) {
//SIGHASH_ANYONECANPAY 0x80
clone.ins = [clone.ins[index]];
if (shType == 129) {
// SIGHASH_ALL + SIGHASH_ANYONECANPAY
} else if (shType == 130) {
// SIGHASH_NONE + SIGHASH_ANYONECANPAY
clone.outs = [];
} else if (shType == 131) {
// SIGHASH_SINGLE + SIGHASH_ANYONECANPAY
clone.outs.length = index + 1;
for (var i = 0; i < index; i++) {
clone.outs[i].value = -1;
clone.outs[i].script.buffer = [];
}
}
}
var buffer = Crypto.util.hexToBytes(clone.serialize());
buffer = buffer.concat(coinjs.numToBytes(parseInt(shType), 4));
var hash = Crypto.SHA256(buffer, {
asBytes: true
});
var r = Crypto.util.bytesToHex(Crypto.SHA256(hash, {
asBytes: true
}));
return r;
} else {
return false;
}
}
/* generate a segwit transaction hash to sign from a transaction input */
r.transactionHashSegWitV0 = function (index, sigHashType) {
/*
Notice: coinb.in by default, deals with segwit transactions in a non-standard way.
Segwit transactions require that input values are included in the transaction hash.
To save wasting resources and potentially slowing down this service, we include the amount with the
redeem script to generate the transaction hash and remove it after its signed.
*/
// start redeem script check
var extract = this.extractScriptKey(index);
if (extract['type'] != 'segwit' && extract['type'] != 'multisig_bech32') {
return {
'result': 0,
'fail': 'redeemscript',
'response': 'redeemscript missing or not valid for segwit'
};
}
if (extract['value'] == -1) {
return {
'result': 0,
'fail': 'value',
'response': 'unable to generate a valid segwit hash without a value'
};
}
var scriptcode = Crypto.util.hexToBytes(extract['script']);
// end of redeem script check
/* P2WPKH */
if (scriptcode.length == 20) {
scriptcode = [0x00, 0x14].concat(scriptcode);
}
if (scriptcode.length == 22) {
scriptcode = scriptcode.slice(1);
scriptcode.unshift(25, 118, 169);
scriptcode.push(136, 172);
} else if (scriptcode[0] > 80) {
scriptcode.unshift(scriptcode.length)
}
var value = coinjs.numToBytes(extract['value'], 8);
// start
var zero = coinjs.numToBytes(0, 32);
var version = coinjs.numToBytes(parseInt(this.version), 4);
var bufferTmp = [];
if (!(sigHashType >= 80)) { // not sighash anyonecanpay
for (var i = 0; i < this.ins.length; i++) {
bufferTmp = bufferTmp.concat(Crypto.util.hexToBytes(this.ins[i].outpoint.hash).reverse());
bufferTmp = bufferTmp.concat(coinjs.numToBytes(this.ins[i].outpoint.index, 4));
}
}
var hashPrevouts = bufferTmp.length >= 1 ? Crypto.SHA256(Crypto.SHA256(bufferTmp, {
asBytes: true
}), {
asBytes: true
}) : zero;
var bufferTmp = [];
if (!(sigHashType >= 80) && sigHashType != 2 && sigHashType != 3) { // not sighash anyonecanpay & single & none
for (var i = 0; i < this.ins.length; i++) {
bufferTmp = bufferTmp.concat(coinjs.numToBytes(this.ins[i].sequence, 4));
}
}
var hashSequence = bufferTmp.length >= 1 ? Crypto.SHA256(Crypto.SHA256(bufferTmp, {
asBytes: true
}), {
asBytes: true
}) : zero;
var outpoint = Crypto.util.hexToBytes(this.ins[index].outpoint.hash).reverse();
outpoint = outpoint.concat(coinjs.numToBytes(this.ins[index].outpoint.index, 4));
var nsequence = coinjs.numToBytes(this.ins[index].sequence, 4);
var hashOutputs = zero;
var bufferTmp = [];
if (sigHashType != 2 && sigHashType != 3) { // not sighash single & none
for (var i = 0; i < this.outs.length; i++) {
bufferTmp = bufferTmp.concat(coinjs.numToBytes(this.outs[i].value, 8));
bufferTmp = bufferTmp.concat(coinjs.numToVarInt(this.outs[i].script.buffer.length));
bufferTmp = bufferTmp.concat(this.outs[i].script.buffer);
}
hashOutputs = Crypto.SHA256(Crypto.SHA256(bufferTmp, {
asBytes: true
}), {
asBytes: true
});
} else if ((sigHashType == 2) && index < this.outs.length) { // is sighash single
bufferTmp = bufferTmp.concat(coinjs.numToBytes(this.outs[index].value, 8));
bufferTmp = bufferTmp.concat(coinjs.numToVarInt(this.outs[i].script.buffer.length));
bufferTmp = bufferTmp.concat(this.outs[index].script.buffer);
hashOutputs = Crypto.SHA256(Crypto.SHA256(bufferTmp, {
asBytes: true
}), {
asBytes: true
});
}
var locktime = coinjs.numToBytes(this.lock_time, 4);
var sighash = coinjs.numToBytes(sigHashType, 4);
var buffer = [];
buffer = buffer.concat(version);
buffer = buffer.concat(hashPrevouts);
buffer = buffer.concat(hashSequence);
buffer = buffer.concat(outpoint);
buffer = buffer.concat(scriptcode);
buffer = buffer.concat(value);
buffer = buffer.concat(nsequence);
buffer = buffer.concat(hashOutputs);
buffer = buffer.concat(locktime);
buffer = buffer.concat(sighash);
var hash = Crypto.SHA256(buffer, {
asBytes: true
});
return {
'result': 1,
'hash': Crypto.util.bytesToHex(Crypto.SHA256(hash, {
asBytes: true
})),
'response': 'hash generated'
};
}
/* extract the scriptSig, used in the transactionHash() function */
r.extractScriptKey = function (index) {
if (this.ins[index]) {
if ((this.ins[index].script.chunks.length == 5) && this.ins[index].script.chunks[4] == 172 && coinjs.isArray(this.ins[index].script.chunks[2])) { //OP_CHECKSIG
// regular scriptPubkey (not signed)
return {
'type': 'scriptpubkey',
'signed': 'false',
'signatures': 0,
'script': Crypto.util.bytesToHex(this.ins[index].script.buffer)
};
} else if ((this.ins[index].script.chunks.length == 2) && this.ins[index].script.chunks[0][0] == 48 && this.ins[index].script.chunks[1].length == 5 && this.ins[index].script.chunks[1][1] == 177) { //OP_CHECKLOCKTIMEVERIFY
// hodl script (signed)
return {
'type': 'hodl',
'signed': 'true',
'signatures': 1,
'script': Crypto.util.bytesToHex(this.ins[index].script.buffer)
};
} else if ((this.ins[index].script.chunks.length == 2) && this.ins[index].script.chunks[0][0] == 48) {
// regular scriptPubkey (probably signed)
return {
'type': 'scriptpubkey',
'signed': 'true',
'signatures': 1,
'script': Crypto.util.bytesToHex(this.ins[index].script.buffer)
};
} else if (this.ins[index].script.chunks.length == 5 && this.ins[index].script.chunks[1] == 177) { //OP_CHECKLOCKTIMEVERIFY
// hodl script (not signed)
return {
'type': 'hodl',
'signed': 'false',
'signatures': 0,
'script': Crypto.util.bytesToHex(this.ins[index].script.buffer)
};
} else if ((this.ins[index].script.chunks.length <= 3 && this.ins[index].script.chunks.length > 0) && ((this.ins[index].script.chunks[0].length == 22 && this.ins[index].script.chunks[0][0] == 0) || (this.ins[index].script.chunks[0].length == 20 && this.ins[index].script.chunks[1] == 0))) {
var signed = ((this.witness[index]) && this.witness[index].length == 2) ? 'true' : 'false';
var sigs = (signed == 'true') ? 1 : 0;
var value = -1; // no value found
if ((this.ins[index].script.chunks[2]) && this.ins[index].script.chunks[2].length == 8) {
value = coinjs.bytesToNum(this.ins[index].script.chunks[2]); // value found encoded in transaction (THIS IS NON STANDARD)
}
return {
'type': 'segwit',
'signed': signed,
'signatures': sigs,
'script': Crypto.util.bytesToHex(this.ins[index].script.chunks[0]),
'value': value
};
} else if (this.ins[index].script.chunks[0] == 0 && this.ins[index].script.chunks[this.ins[index].script.chunks.length - 1][this.ins[index].script.chunks[this.ins[index].script.chunks.length - 1].length - 1] == 174) { // OP_CHECKMULTISIG
// multisig script, with signature(s) included
var sigcount = 0;
for (let i = 1; i < this.ins[index].script.chunks.length - 1; i++) {
if (this.ins[index].script.chunks[i] != 0) {
sigcount++;
}
}
return {
'type': 'multisig',
'signed': 'true',
'signatures': sigcount,
'script': Crypto.util.bytesToHex(this.ins[index].script.chunks[this.ins[index].script.chunks.length - 1])
};
} else if (this.ins[index].script.chunks[0] >= 80 && this.ins[index].script.chunks[this.ins[index].script.chunks.length - 1] == 174) { // OP_CHECKMULTISIG
// multisig script, without signature!
return {
'type': 'multisig',
'signed': 'false',
'signatures': 0,
'script': Crypto.util.bytesToHex(this.ins[index].script.buffer)
};
} else if (this.ins[index].script.chunks.length == 3 && this.ins[index].script.chunks[0][0] >= 80 && this.ins[index].script.chunks[0][this.ins[index].script.chunks[0].length - 1] == 174 && this.ins[index].script.chunks[1] == 0) { //OP_CHECKMULTISIG_BECH32
// multisig bech32 script
let last_index = this.ins[index].script.chunks.length - 1;
var value = -1;
if (last_index >= 2 && this.ins[index].script.chunks[last_index].length == 8) {
value = coinjs.bytesToNum(this.ins[index].script.chunks[last_index]); // value found encoded in transaction (THIS IS NON STANDARD)
}
var sigcount = (!this.witness[index]) ? 0 : this.witness[index].length - 2;
return {
'type': 'multisig_bech32',
'signed': 'false',
'signatures': sigcount,
'script': Crypto.util.bytesToHex(this.ins[index].script.chunks[0]),
'value': value
};
} else if (this.ins[index].script.chunks.length == 0) {
// empty
//bech32 witness check
var signed = ((this.witness[index]) && this.witness[index].length >= 2) ? 'true' : 'false';
var sigs = (signed == 'true') ? (!this.witness[index][0] ? this.witness[index].length - 2 : 1) : 0;
return {
'type': 'empty',
'signed': signed,
'signatures': sigs,
'script': ''
};
} else {
// something else
return {
'type': 'unknown',
'signed': 'false',
'signatures': 0,
'script': Crypto.util.bytesToHex(this.ins[index].script.buffer)
};
}
} else {
return false;
}
}
/* generate a signature from a transaction hash */
r.transactionSig = function (index, wif, sigHashType, txhash) {
function serializeSig(r, s) {
var rBa = r.toByteArraySigned();
var sBa = s.toByteArraySigned();
var sequence = [];
sequence.push(0x02); // INTEGER
sequence.push(rBa.length);
sequence = sequence.concat(rBa);
sequence.push(0x02); // INTEGER
sequence.push(sBa.length);
sequence = sequence.concat(sBa);
sequence.unshift(sequence.length);
sequence.unshift(0x30); // SEQUENCE
return sequence;
}
var shType = sigHashType || 1;
var hash = txhash || Crypto.util.hexToBytes(this.transactionHash(index, shType));
if (hash) {
var curve = EllipticCurve.getSECCurveByName("secp256k1");
var key = coinjs.wif2privkey(wif);
var priv = BigInteger.fromByteArrayUnsigned(Crypto.util.hexToBytes(key['privkey']));
var n = curve.getN();
var e = BigInteger.fromByteArrayUnsigned(hash);
var badrs = 0
do {
var k = this.deterministicK(wif, hash, badrs);
var G = curve.getG();
var Q = G.multiply(k);
var r = Q.getX().toBigInteger().mod(n);
var s = k.modInverse(n).multiply(e.add(priv.multiply(r))).mod(n);
badrs++
} while (r.compareTo(BigInteger.ZERO) <= 0 || s.compareTo(BigInteger.ZERO) <= 0);
// Force lower s values per BIP62
var halfn = n.shiftRight(1);
if (s.compareTo(halfn) > 0) {
s = n.subtract(s);
};
var sig = serializeSig(r, s);
sig.push(parseInt(shType, 10));
return Crypto.util.bytesToHex(sig);
} else {
return false;
}
}
// https://tools.ietf.org/html/rfc6979#section-3.2
r.deterministicK = function (wif, hash, badrs) {
// if r or s were invalid when this function was used in signing,
// we do not want to actually compute r, s here for efficiency, so,
// we can increment badrs. explained at end of RFC 6979 section 3.2
// wif is b58check encoded wif privkey.
// hash is byte array of transaction digest.
// badrs is used only if the k resulted in bad r or s.
// some necessary things out of the way for clarity.
badrs = badrs || 0;
var key = coinjs.wif2privkey(wif);
var x = Crypto.util.hexToBytes(key['privkey'])
var curve = EllipticCurve.getSECCurveByName("secp256k1");
var N = curve.getN();
// Step: a
// hash is a byteArray of the message digest. so h1 == hash in our case
// Step: b
var v = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1];
// Step: c
var k = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
// Step: d
k = Crypto.HMAC(Crypto.SHA256, v.concat([0]).concat(x).concat(hash), k, {
asBytes: true
});
// Step: e
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
// Step: f
k = Crypto.HMAC(Crypto.SHA256, v.concat([1]).concat(x).concat(hash), k, {
asBytes: true
});
// Step: g
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
// Step: h1
var T = [];
// Step: h2 (since we know tlen = qlen, just copy v to T.)
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
T = v;
// Step: h3
var KBigInt = BigInteger.fromByteArrayUnsigned(T);
// loop if KBigInt is not in the range of [1, N-1] or if badrs needs incrementing.
var i = 0
while (KBigInt.compareTo(N) >= 0 || KBigInt.compareTo(BigInteger.ZERO) <= 0 || i < badrs) {
k = Crypto.HMAC(Crypto.SHA256, v.concat([0]), k, {
asBytes: true
});
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
T = v;
KBigInt = BigInteger.fromByteArrayUnsigned(T);
i++
};
return KBigInt;
};
/* sign a "standard" input */
r.signinput = function (index, wif, sigHashType) {
var key = coinjs.wif2pubkey(wif);
var shType = sigHashType || 1;
var signature = this.transactionSig(index, wif, shType);
var s = coinjs.script();
s.writeBytes(Crypto.util.hexToBytes(signature));
s.writeBytes(Crypto.util.hexToBytes(key['pubkey']));
this.ins[index].script = s;
return true;
}
/* signs a time locked / hodl input */
r.signhodl = function (index, wif, sigHashType) {
var shType = sigHashType || 1;
var signature = this.transactionSig(index, wif, shType);
var redeemScript = this.ins[index].script.buffer
var s = coinjs.script();
s.writeBytes(Crypto.util.hexToBytes(signature));
s.writeBytes(redeemScript);
this.ins[index].script = s;
return true;
}
r.signmultisig_bech32 = function (index, wif, sigHashType) {
function scriptListPubkey(redeemScript) {
var r = {};
for (var i = 1; i < redeemScript.chunks.length - 2; i++) {
r[i] = Crypto.util.hexToBytes(coinjs.pubkeydecompress(Crypto.util.bytesToHex(redeemScript.chunks[i])));
}
return r;
}
function scriptListSigs(sigList) {
let r = {};
var c = 0;
if (Array.isArray(sigList)) {
for (let i = 1; i < sigList.length - 1; i++) {
c++;
r[c] = Crypto.util.hexToBytes(sigList[i]);
}
}
return r;
}
var redeemScript = Crypto.util.bytesToHex(this.ins[index].script.chunks[0]); //redeemScript
if (!coinjs.isArray(this.witness)) {
this.witness = new Array(this.ins.length);
this.witness.fill([]);
}
var pubkeyList = scriptListPubkey(coinjs.script(redeemScript));
var sigsList = scriptListSigs(this.witness[index]);
let decode_rs = coinjs.script().decodeRedeemScriptBech32(redeemScript);
var shType = sigHashType || 1;
var txhash = this.transactionHashSegWitV0(index, shType);
if (txhash.result == 1 && decode_rs.pubkeys.includes(coinjs.wif2pubkey(wif)['pubkey'])) {
var segwitHash = Crypto.util.hexToBytes(txhash.hash);
var signature = Crypto.util.hexToBytes(this.transactionSig(index, wif, shType, segwitHash)); //CHECK THIS
sigsList[coinjs.countObject(sigsList) + 1] = signature;
var w = [];
for (let x in pubkeyList) {
for (let y in sigsList) {
var sighash = this.transactionHashSegWitV0(index, sigsList[y].slice(-1)[0] * 1).hash
sighash = Crypto.util.hexToBytes(sighash);
if (coinjs.verifySignature(sighash, sigsList[y], pubkeyList[x])) {
w.push((Crypto.util.bytesToHex(sigsList[y])))
}
}
}
// when enough signatures collected, remove any non standard data we store, i.e. input value
if (w.length >= decode_rs.signaturesRequired) {
this.ins[index].script = coinjs.script();
}
w.unshift(0);
w.push(redeemScript);
this.witness[index] = w;
}
}
/* sign a multisig input */
r.signmultisig = function (index, wif, sigHashType) {
function scriptListPubkey(redeemScript) {
var r = {};
for (var i = 1; i < redeemScript.chunks.length - 2; i++) {
r[i] = Crypto.util.hexToBytes(coinjs.pubkeydecompress(Crypto.util.bytesToHex(redeemScript.chunks[i])));
}
return r;
}
function scriptListSigs(scriptSig) {
var r = {};
var c = 0;
if (scriptSig.chunks[0] == 0 && scriptSig.chunks[scriptSig.chunks.length - 1][scriptSig.chunks[scriptSig.chunks.length - 1].length - 1] == 174) {
for (var i = 1; i < scriptSig.chunks.length - 1; i++) {
if (scriptSig.chunks[i] != 0) {
c++;
r[c] = scriptSig.chunks[i];
}
}
}
return r;
}
var redeemScript = (this.ins[index].script.chunks[this.ins[index].script.chunks.length - 1] == 174) ? this.ins[index].script.buffer : this.ins[index].script.chunks[this.ins[index].script.chunks.length - 1];
var pubkeyList = scriptListPubkey(coinjs.script(redeemScript));
var sigsList = scriptListSigs(this.ins[index].script);
var shType = sigHashType || 1;
var sighash = Crypto.util.hexToBytes(this.transactionHash(index, shType));
var signature = Crypto.util.hexToBytes(this.transactionSig(index, wif, shType));
sigsList[coinjs.countObject(sigsList) + 1] = signature;
var s = coinjs.script();
s.writeOp(0);
for (let x in pubkeyList) {
for (let y in sigsList) {
this.ins[index].script.buffer = redeemScript;
sighash = Crypto.util.hexToBytes(this.transactionHash(index, sigsList[y].slice(-1)[0] * 1));
if (coinjs.verifySignature(sighash, sigsList[y], pubkeyList[x])) {
s.writeBytes(sigsList[y]);
}
}
}
s.writeBytes(redeemScript);
this.ins[index].script = s;
return true;
}
/* sign segwit input */
r.signsegwit = function (index, wif, sigHashType) {
var shType = sigHashType || 1;
var wif2 = coinjs.wif2pubkey(wif);
var segwit = coinjs.segwitAddress(wif2['pubkey']);
var bech32 = coinjs.bech32Address(wif2['pubkey']);
if ((segwit['redeemscript'] == Crypto.util.bytesToHex(this.ins[index].script.chunks[0])) || (bech32['redeemscript'] == Crypto.util.bytesToHex(this.ins[index].script.chunks[0]))) {
var txhash = this.transactionHashSegWitV0(index, shType);
if (txhash.result == 1) {
var segwitHash = Crypto.util.hexToBytes(txhash.hash);
var signature = this.transactionSig(index, wif, shType, segwitHash);
// remove any non standard data we store, i.e. input value
var script = coinjs.script();
script.writeBytes(this.ins[index].script.chunks[0]);
this.ins[index].script = script;
if (!coinjs.isArray(this.witness)) {
this.witness = new Array(this.ins.length);
this.witness.fill([]);
}
this.witness[index] = ([signature, wif2['pubkey']]);
// bech32, empty redeemscript
if (bech32['redeemscript'] == Crypto.util.bytesToHex(this.ins[index].script.chunks[0])) {
this.ins[index].script = coinjs.script();
}
/* attempt to reorder witness data as best as we can.
data can't be easily validated at this stage as
we dont have access to the inputs value and
making a web call will be too slow. */
/*
var witness_order = [];
var witness_used = [];
for (var i = 0; i < this.ins.length; i++) {
for (var y = 0; y < this.witness.length; y++) {
if (!witness_used.includes(y)) {
var sw = coinjs.segwitAddress(this.witness[y][1]);
var b32 = coinjs.bech32Address(this.witness[y][1]);
var rs = '';
if (this.ins[i].script.chunks.length >= 1) {
rs = Crypto.util.bytesToHex(this.ins[i].script.chunks[0]);
} else if (this.ins[i].script.chunks.length == 0) {
rs = b32['redeemscript'];
}
if ((sw['redeemscript'] == rs) || (b32['redeemscript'] == rs)) {
witness_order.push(this.witness[y]);
witness_used.push(y);
// bech32, empty redeemscript
if (b32['redeemscript'] == rs) {
this.ins[index].script = coinjs.script();
}
break;
}
}
}
}
this.witness = witness_order;
*/
}
}
return true;
}
/* sign inputs */
r.sign = function (wif, sigHashType) {
var shType = sigHashType || 1;
for (var i = 0; i < this.ins.length; i++) {
var d = this.extractScriptKey(i);
var w2a = coinjs.wif2address(wif);
var script = coinjs.script();
var pubkeyHash = script.pubkeyHash(w2a['address']);
if (((d['type'] == 'scriptpubkey' && d['script'] == Crypto.util.bytesToHex(pubkeyHash.buffer)) || d['type'] == 'empty') && d['signed'] == "false") {
this.signinput(i, wif, shType);
} else if (d['type'] == 'hodl' && d['signed'] == "false") {
this.signhodl(i, wif, shType);
} else if (d['type'] == 'multisig') {
this.signmultisig(i, wif, shType);
} else if (d['type'] == 'multisig_bech32' && d['signed'] == "false") {
this.signmultisig_bech32(i, wif, shType);
} else if (d['type'] == 'segwit') {
this.signsegwit(i, wif, shType);
} else {
// could not sign
}
}
return this.serialize();
}
/* serialize a transaction */
r.serialize = function () {
var buffer = [];
buffer = buffer.concat(coinjs.numToBytes(parseInt(this.version), 4));
if (coinjs.isArray(this.witness)) {
buffer = buffer.concat([0x00, 0x01]);
}
buffer = buffer.concat(coinjs.numToVarInt(this.ins.length));
for (var i = 0; i < this.ins.length; i++) {
var txin = this.ins[i];
buffer = buffer.concat(Crypto.util.hexToBytes(txin.outpoint.hash).reverse());
buffer = buffer.concat(coinjs.numToBytes(parseInt(txin.outpoint.index), 4));
var scriptBytes = txin.script.buffer;
buffer = buffer.concat(coinjs.numToVarInt(scriptBytes.length));
buffer = buffer.concat(scriptBytes);
buffer = buffer.concat(coinjs.numToBytes(parseInt(txin.sequence), 4));
}
buffer = buffer.concat(coinjs.numToVarInt(this.outs.length));
for (var i = 0; i < this.outs.length; i++) {
var txout = this.outs[i];
buffer = buffer.concat(coinjs.numToBytes(txout.value, 8));
var scriptBytes = txout.script.buffer;
buffer = buffer.concat(coinjs.numToVarInt(scriptBytes.length));
buffer = buffer.concat(scriptBytes);
}
if ((coinjs.isArray(this.witness)) && this.witness.length >= 1) {
for (var i = 0; i < this.witness.length; i++) {
buffer = buffer.concat(coinjs.numToVarInt(this.witness[i].length));
for (var x = 0; x < this.witness[i].length; x++) {
buffer = buffer.concat(coinjs.numToVarInt(Crypto.util.hexToBytes(this.witness[i][x]).length));
buffer = buffer.concat(Crypto.util.hexToBytes(this.witness[i][x]));
}
}
}
buffer = buffer.concat(coinjs.numToBytes(parseInt(this.lock_time), 4));
return Crypto.util.bytesToHex(buffer);
}
//Utility funtion added to directly compute signatures without transaction index
r.transactionSigNoIndex = function (wif, sigHashType, txhash) {
function serializeSig(r, s) {
var rBa = r.toByteArraySigned();
var sBa = s.toByteArraySigned();
var sequence = [];
sequence.push(0x02); // INTEGER
sequence.push(rBa.length);
sequence = sequence.concat(rBa);
sequence.push(0x02); // INTEGER
sequence.push(sBa.length);
sequence = sequence.concat(sBa);
sequence.unshift(sequence.length);
sequence.unshift(0x30); // SEQUENCE
return sequence;
}
var shType = sigHashType || 1;
var hash = Crypto.util.hexToBytes(txhash);
if (hash) {
var curve = EllipticCurve.getSECCurveByName("secp256k1");
var key = coinjs.wif2privkey(wif);
var priv = BigInteger.fromByteArrayUnsigned(Crypto.util.hexToBytes(key['privkey']));
var n = curve.getN();
var e = BigInteger.fromByteArrayUnsigned(hash);
var badrs = 0
do {
var k = this.deterministicK(wif, hash, badrs);
var G = curve.getG();
var Q = G.multiply(k);
var r = Q.getX().toBigInteger().mod(n);
var s = k.modInverse(n).multiply(e.add(priv.multiply(r))).mod(n);
badrs++
} while (r.compareTo(BigInteger.ZERO) <= 0 || s.compareTo(BigInteger.ZERO) <= 0);
// Force lower s values per BIP62
var halfn = n.shiftRight(1);
if (s.compareTo(halfn) > 0) {
s = n.subtract(s);
};
var sig = serializeSig(r, s);
sig.push(parseInt(shType, 10));
return Crypto.util.bytesToHex(sig);
} else {
return false;
}
}
/* deserialize a transaction */
r.deserialize = function (buffer) {
if (typeof buffer == "string") {
buffer = Crypto.util.hexToBytes(buffer)
}
var pos = 0;
var witness = false;
var readAsInt = function (bytes) {
if (bytes == 0) return 0;
pos++;
return buffer[pos - 1] + readAsInt(bytes - 1) * 256;
}
var readVarInt = function () {
pos++;
if (buffer[pos - 1] < 253) {
return buffer[pos - 1];
}
return readAsInt(buffer[pos - 1] - 251);
}
var readBytes = function (bytes) {
pos += bytes;
return buffer.slice(pos - bytes, pos);
}
var readVarString = function () {
var size = readVarInt();
return readBytes(size);
}
var obj = new coinjs.transaction();
obj.version = readAsInt(4);
if (buffer[pos] == 0x00 && buffer[pos + 1] == 0x01) {
// segwit transaction
witness = true;
obj.witness = [];
pos += 2;
}
var ins = readVarInt();
for (var i = 0; i < ins; i++) {
obj.ins.push({
outpoint: {
hash: Crypto.util.bytesToHex(readBytes(32).reverse()),
index: readAsInt(4)
},
script: coinjs.script(readVarString()),
sequence: readAsInt(4)
});
}
var outs = readVarInt();
for (var i = 0; i < outs; i++) {
obj.outs.push({
value: coinjs.bytesToNum(readBytes(8)),
script: coinjs.script(readVarString())
});
}
if (witness == true) {
for (i = 0; i < ins; ++i) {
var count = readVarInt();
var vector = [];
if (!coinjs.isArray(obj.witness[i])) {
obj.witness[i] = [];
}
for (var y = 0; y < count; y++) {
var slice = readVarInt();
pos += slice;
obj.witness[i].push(Crypto.util.bytesToHex(buffer.slice(pos - slice, pos)));
}
}
}
obj.lock_time = readAsInt(4);
return obj;
}
r.size = function () {
return ((this.serialize()).length / 2).toFixed(0);
}
return r;
}
/* start of signature vertification functions */
coinjs.verifySignature = function (hash, sig, pubkey) {
function parseSig(sig) {
var cursor;
if (sig[0] != 0x30)
throw new Error("Signature not a valid DERSequence");
cursor = 2;
if (sig[cursor] != 0x02)
throw new Error("First element in signature must be a DERInteger");;
var rBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]);
cursor += 2 + sig[cursor + 1];
if (sig[cursor] != 0x02)
throw new Error("Second element in signature must be a DERInteger");
var sBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]);
cursor += 2 + sig[cursor + 1];
var r = BigInteger.fromByteArrayUnsigned(rBa);
var s = BigInteger.fromByteArrayUnsigned(sBa);
return {
r: r,
s: s
};
}
var r, s;
if (coinjs.isArray(sig)) {
var obj = parseSig(sig);
r = obj.r;
s = obj.s;
} else if ("object" === typeof sig && sig.r && sig.s) {
r = sig.r;
s = sig.s;
} else {
throw "Invalid value for signature";
}
var Q;
if (coinjs.isArray(pubkey)) {
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
Q = EllipticCurve.PointFp.decodeFrom(ecparams.getCurve(), pubkey);
} else {
throw "Invalid format for pubkey value, must be byte array";
}
var e = BigInteger.fromByteArrayUnsigned(hash);
return coinjs.verifySignatureRaw(e, r, s, Q);
}
coinjs.verifySignatureRaw = function (e, r, s, Q) {
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
var n = ecparams.getN();
var G = ecparams.getG();
if (r.compareTo(BigInteger.ONE) < 0 || r.compareTo(n) >= 0)
return false;
if (s.compareTo(BigInteger.ONE) < 0 || s.compareTo(n) >= 0)
return false;
var c = s.modInverse(n);
var u1 = e.multiply(c).mod(n);
var u2 = r.multiply(c).mod(n);
var point = G.multiply(u1).add(Q.multiply(u2));
var v = point.getX().toBigInteger().mod(n);
return v.equals(r);
}
/* start of privates functions */
/* base58 encode function */
coinjs.base58encode = function (buffer) {
var alphabet = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
var base = BigInteger.valueOf(58);
var bi = BigInteger.fromByteArrayUnsigned(buffer);
var chars = [];
while (bi.compareTo(base) >= 0) {
var mod = bi.mod(base);
chars.unshift(alphabet[mod.intValue()]);
bi = bi.subtract(mod).divide(base);
}
chars.unshift(alphabet[bi.intValue()]);
for (var i = 0; i < buffer.length; i++) {
if (buffer[i] == 0x00) {
chars.unshift(alphabet[0]);
} else break;
}
return chars.join('');
}
/* base58 decode function */
coinjs.base58decode = function (buffer) {
var alphabet = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
var base = BigInteger.valueOf(58);
var validRegex = /^[1-9A-HJ-NP-Za-km-z]+$/;
var bi = BigInteger.valueOf(0);
var leadingZerosNum = 0;
for (var i = buffer.length - 1; i >= 0; i--) {
var alphaIndex = alphabet.indexOf(buffer[i]);
if (alphaIndex < 0) {
throw "Invalid character";
}
bi = bi.add(BigInteger.valueOf(alphaIndex).multiply(base.pow(buffer.length - 1 - i)));
if (buffer[i] == "1") leadingZerosNum++;
else leadingZerosNum = 0;
}
var bytes = bi.toByteArrayUnsigned();
while (leadingZerosNum-- > 0) bytes.unshift(0);
return bytes;
}
/* raw ajax function to avoid needing bigger frame works like jquery, mootools etc */
coinjs.ajax = function (u, f, m, a) {
var x = false;
try {
x = new ActiveXObject('Msxml2.XMLHTTP')
} catch (e) {
try {
x = new ActiveXObject('Microsoft.XMLHTTP')
} catch (e) {
x = new XMLHttpRequest()
}
}
if (x == false) {
return false;
}
x.open(m, u, true);
x.onreadystatechange = function () {
if ((x.readyState == 4) && f)
f(x.responseText);
};
if (m == 'POST') {
x.setRequestHeader('Content-type', 'application/x-www-form-urlencoded');
}
x.send(a);
}
/* clone an object */
coinjs.clone = function (obj) {
if (obj == null || typeof (obj) != 'object') return obj;
var temp = new obj.constructor();
for (var key in obj) {
if (obj.hasOwnProperty(key)) {
temp[key] = coinjs.clone(obj[key]);
}
}
return temp;
}
coinjs.numToBytes = function (num, bytes) {
if (typeof bytes === "undefined") bytes = 8;
if (bytes == 0) {
return [];
} else if (num == -1) {
return Crypto.util.hexToBytes("ffffffffffffffff");
} else {
return [num % 256].concat(coinjs.numToBytes(Math.floor(num / 256), bytes - 1));
}
}
function scriptNumSize(i) {
return i > 0x7fffffff ? 5 :
i > 0x7fffff ? 4 :
i > 0x7fff ? 3 :
i > 0x7f ? 2 :
i > 0x00 ? 1 :
0;
}
coinjs.numToScriptNumBytes = function (_number) {
var value = Math.abs(_number);
var size = scriptNumSize(value);
var result = [];
for (var i = 0; i < size; ++i) {
result.push(0);
}
var negative = _number < 0;
for (i = 0; i < size; ++i) {
result[i] = value & 0xff;
value = Math.floor(value / 256);
}
if (negative) {
result[size - 1] |= 0x80;
}
return result;
}
coinjs.numToVarInt = function (num) {
if (num < 253) {
return [num];
} else if (num < 65536) {
return [253].concat(coinjs.numToBytes(num, 2));
} else if (num < 4294967296) {
return [254].concat(coinjs.numToBytes(num, 4));
} else {
return [255].concat(coinjs.numToBytes(num, 8));
}
}
coinjs.bytesToNum = function (bytes) {
if (bytes.length == 0) return 0;
else return bytes[0] + 256 * coinjs.bytesToNum(bytes.slice(1));
}
coinjs.uint = function (f, size) {
if (f.length < size)
throw new Error("not enough data");
var n = 0;
for (var i = 0; i < size; i++) {
n *= 256;
n += f[i];
}
return n;
}
coinjs.isArray = function (o) {
return Object.prototype.toString.call(o) === '[object Array]';
}
coinjs.countObject = function (obj) {
var count = 0;
var i;
for (i in obj) {
if (obj.hasOwnProperty(i)) {
count++;
}
}
return count;
}
//Nine utility functions added for generating transaction hashes and verification of signatures
coinjs.changeEndianness = (string) => {
const result = [];
let len = string.length - 2;
while (len >= 0) {
result.push(string.substr(len, 2));
len -= 2;
}
return result.join('');
}
coinjs.getTransactionHash = function (transaction_in_hex, changeOutputEndianess) {
var x1, x2, x3, x4, x5;
x1 = Crypto.util.hexToBytes(transaction_in_hex);
x2 = Crypto.SHA256(x1);
x3 = Crypto.util.hexToBytes(x2);
x4 = Crypto.SHA256(x3);
x5 = coinjs.changeEndianness(x4);
if (changeOutputEndianess == true) { x5 = x5 } else if ((typeof changeOutputEndianess == 'undefined') || (changeOutputEndianess == false)) { x5 = x4 };
return x5;
}
coinjs.compressedToUncompressed = function (compressed) {
var t1, t2;
var curve = EllipticCurve.getSECCurveByName("secp256k1");
t1 = curve.curve.decodePointHex(compressed);
t2 = curve.curve.encodePointHex(t1);
return t2;
}
coinjs.uncompressedToCompressed = function (uncompressed) {
var t1, t2, t3;
t1 = uncompressed.charAt(uncompressed.length - 1)
t2 = parseInt(t1, 10);
//Check if the last digit is odd
if (t2 % 2 == 1) { t3 = "03"; } else { t3 = "02" };
return t3 + uncompressed.substr(2, 64);
}
coinjs.verifySignatureHex = function (hashHex, sigHex, pubHexCompressed) {
var h1, s1, p1, p2;
h1 = Crypto.util.hexToBytes(hashHex);
s1 = Crypto.util.hexToBytes(sigHex);
p1 = coinjs.compressedToUncompressed(pubHexCompressed);
p2 = Crypto.util.hexToBytes(p1);
return coinjs.verifySignature(h1, s1, p2);
}
coinjs.generateBitcoinSignature = function (private_key, hash, sighash_type_int = 1) {
var wif, tx1;
if (private_key.length < 60) { wif = private_key } else { wif = coinjs.privkey2wif(private_key) };
tx1 = coinjs.transaction();
return tx1.transactionSigNoIndex(wif, sighash_type_int, hash);
}
coinjs.dSHA256 = function (data) {
var t1, t2, t3;
t1 = Crypto.SHA256(Crypto.util.hexToBytes(data));
t2 = Crypto.util.hexToBytes(t1);
t3 = Crypto.SHA256(t2);
return t3;
}
coinjs.fromBitcoinAmountFormat = function (data) {
var x1, x2, x3;
x1 = coinjs.changeEndianness(data);
x2 = parseInt(x1, 16);
x3 = x2 / (10 ** 8);
return x3;
}
coinjs.toBitcoinAmountFormat = function (countBitcoin) {
var t2, t3, t4, t5;
t2 = countBitcoin * 10 ** 8;
t3 = t2.toString(16);
t4 = coinjs.changeEndianness(t3);
t5 = t4.padEnd(16, "0");
return t5;
}
coinjs.scriptcodeCreatorBasic = function (scriptpubkey) {
var t1, t2, t3, t4;
if (scriptpubkey.substr(0, 4) == "0014") {
//Scriptpubkey case
t1 = scriptpubkey.slice(2);
t2 = "1976a9" + t1 + "88ac";
} else {
//Redeemscript case
t3 = (scriptpubkey.length) / 2;
t4 = t3.toString(16);
t2 = t4 + scriptpubkey;
}
return t2;
}
coinjs.ripemd160sha256 = function (data) {
var t1, t2;
t1 = ripemd160(Crypto.SHA256(Crypto.util.hexToBytes(data), { asBytes: true }), { asBytes: true });
t2 = Crypto.util.bytesToHex(t1)
return t2;
}
coinjs.random = function (length) {
var r = "";
var l = length || 25;
var chars = "!$%^&*()_+{}:@~?><|\./;'#][=-abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";
for (let x = 0; x < l; x++) {
r += chars.charAt(Math.floor(Math.random() * 62));
}
return r;
}
})();
})(typeof global !== "undefined" ? global : window);