1126 lines
39 KiB
HTML
1126 lines
39 KiB
HTML
<!DOCTYPE html>
|
|
<html>
|
|
|
|
<head>
|
|
<title>FLO Operators</title>
|
|
</head>
|
|
|
|
<script>
|
|
/* Constants for FLO blockchain operations !!Make sure to add this at begining!! */
|
|
floGlobals = {
|
|
|
|
//Required for all
|
|
blockchain: "FLO_TEST",
|
|
|
|
//Required for blockchain API operators
|
|
apiURL: {
|
|
FLO: 'https://flosight.duckdns.org',
|
|
FLO_TEST: 'https://testnet-flosight.duckdns.org'
|
|
},
|
|
adminID: "oTZw3ydCRKDhcYC5Bp6mRJMGTTVv9JHtg8",
|
|
sendAmt: 0.001,
|
|
fee: 0.0005,
|
|
|
|
//Required for Supernode operations
|
|
supernodes = {}, //each supnernode must be stored as floID : {uri:<uri>,pubKey:<publicKey>}
|
|
}
|
|
</script>
|
|
|
|
<body>
|
|
use console
|
|
</body>
|
|
<script>
|
|
/* Reactor Event handling */
|
|
if (typeof reactor == "undefined" || !reactor) {
|
|
(function () {
|
|
function Event(name) {
|
|
this.name = name;
|
|
this.callbacks = [];
|
|
}
|
|
|
|
Event.prototype.registerCallback = function (callback) {
|
|
this.callbacks.push(callback);
|
|
};
|
|
|
|
function Reactor() {
|
|
this.events = {};
|
|
}
|
|
|
|
Reactor.prototype.registerEvent = function (eventName) {
|
|
var event = new Event(eventName);
|
|
this.events[eventName] = event;
|
|
};
|
|
|
|
Reactor.prototype.dispatchEvent = function (eventName, eventArgs) {
|
|
this.events[eventName].callbacks.forEach(function (callback) {
|
|
callback(eventArgs);
|
|
});
|
|
};
|
|
|
|
Reactor.prototype.addEventListener = function (eventName, callback) {
|
|
this.events[eventName].registerCallback(callback);
|
|
};
|
|
|
|
window.reactor = new Reactor();
|
|
})();
|
|
}
|
|
|
|
/* Sample Usage
|
|
|
|
--Creating and defining the event--
|
|
reactor.registerEvent('<eventName>');
|
|
reactor.addEventListener('<eventName>', function(someObject){
|
|
do something...
|
|
});
|
|
|
|
--Firing the event--
|
|
reactor.dispatchEvent('<eventName>',<someObject>);
|
|
|
|
*/
|
|
</script>
|
|
<script>
|
|
/* FLO Crypto Operators*/
|
|
floCryptoOperators = {
|
|
|
|
p: BigInteger("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16),
|
|
|
|
ecparams: EllipticCurve.getSECCurveByName("secp256k1"),
|
|
|
|
exponent1: function () {
|
|
return this.p.add(BigInteger.ONE).divide(BigInteger("4"))
|
|
},
|
|
|
|
calculateY: function (x) {
|
|
let p = this.p;
|
|
let exp = this.exponent1();
|
|
// x is x value of public key in BigInteger format without 02 or 03 or 04 prefix
|
|
return x.modPow(BigInteger("3"), p).add(BigInteger("7")).mod(p).modPow(exp, p)
|
|
},
|
|
|
|
getUncompressedPublicKey: function (compressedPublicKey) {
|
|
|
|
const p = this.p;
|
|
|
|
// Fetch x from compressedPublicKey
|
|
let pubKeyBytes = Crypto.util.hexToBytes(compressedPublicKey);
|
|
const prefix = pubKeyBytes.shift() // remove prefix
|
|
let prefix_modulus = prefix % 2;
|
|
pubKeyBytes.unshift(0) // add prefix 0
|
|
let x = new BigInteger(pubKeyBytes)
|
|
let xDecimalValue = x.toString()
|
|
|
|
// Fetch y
|
|
let y = this.calculateY(x);
|
|
let yDecimalValue = y.toString();
|
|
|
|
// verify y value
|
|
let resultBigInt = y.mod(BigInteger("2"));
|
|
|
|
let check = resultBigInt.toString() % 2;
|
|
|
|
if (prefix_modulus !== check) {
|
|
yDecimalValue = y.negate().mod(p).toString();
|
|
}
|
|
|
|
return {
|
|
x: xDecimalValue,
|
|
y: yDecimalValue
|
|
};
|
|
},
|
|
|
|
getSenderPublicKeyString: function () {
|
|
privateKey = ellipticCurveEncryption.senderRandom();
|
|
senderPublicKeyString = ellipticCurveEncryption.senderPublicString(privateKey);
|
|
return {
|
|
privateKey: privateKey,
|
|
senderPublicKeyString: senderPublicKeyString
|
|
}
|
|
},
|
|
|
|
deriveSharedKeySender: function (receiverCompressedPublicKey, senderPrivateKey) {
|
|
try {
|
|
let receiverPublicKeyString = this.getUncompressedPublicKey(receiverCompressedPublicKey);
|
|
var senderDerivedKey = ellipticCurveEncryption.senderSharedKeyDerivation(
|
|
receiverPublicKeyString.x, receiverPublicKeyString.y, senderPrivateKey);
|
|
return senderDerivedKey;
|
|
} catch (error) {
|
|
return new Error(error);
|
|
}
|
|
},
|
|
|
|
deriveReceiverSharedKey: function (senderPublicKeyString, receiverPrivateKey) {
|
|
return ellipticCurveEncryption.receiverSharedKeyDerivation(
|
|
senderPublicKeyString.XValuePublicString, senderPublicKeyString.YValuePublicString,
|
|
receiverPrivateKey);
|
|
},
|
|
|
|
getReceiverPublicKeyString: function (privateKey) {
|
|
return ellipticCurveEncryption.receiverPublicString(privateKey);
|
|
},
|
|
|
|
deriveSharedKeyReceiver: function (senderPublicKeyString, receiverPrivateKey) {
|
|
try {
|
|
return ellipticCurveEncryption.receiverSharedKeyDerivation(senderPublicKeyString.XValuePublicString,
|
|
senderPublicKeyString.YValuePublicString, receiverPrivateKey);
|
|
|
|
} catch (error) {
|
|
return new Error(error);
|
|
}
|
|
},
|
|
|
|
wifToDecimal: function (pk_wif, isPubKeyCompressed = false) {
|
|
let pk = Bitcoin.Base58.decode(pk_wif)
|
|
pk.shift()
|
|
pk.splice(-4, 4)
|
|
//If the private key corresponded to a compressed public key, also drop the last byte (it should be 0x01).
|
|
if (isPubKeyCompressed == true) pk.pop()
|
|
pk.unshift(0)
|
|
privateKeyDecimal = BigInteger(pk).toString()
|
|
privateKeyHex = Crypto.util.bytesToHex(pk)
|
|
return {
|
|
privateKeyDecimal: privateKeyDecimal,
|
|
privateKeyHex: privateKeyHex
|
|
}
|
|
},
|
|
|
|
//Encrypt Data using public-key
|
|
encryptData: function (data, receiverCompressedPublicKey) {
|
|
var senderECKeyData = this.getSenderPublicKeyString();
|
|
var senderDerivedKey = this.deriveSharedKeySender(receiverCompressedPublicKey, senderECKeyData.privateKey);
|
|
let senderKey = senderDerivedKey.XValue + senderDerivedKey.YValue;
|
|
let secret = Crypto.AES.encrypt(data, senderKey);
|
|
return {
|
|
secret: secret,
|
|
senderPublicKeyString: senderECKeyData.senderPublicKeyString
|
|
};
|
|
},
|
|
|
|
//Decrypt Data using private-key
|
|
decryptData: function (data, myPrivateKey) {
|
|
var receiverECKeyData = {};
|
|
if (typeof myPrivateKey !== "string") throw new Error("No private key found.");
|
|
|
|
let privateKey = this.wifToDecimal(myPrivateKey, true);
|
|
if (typeof privateKey.privateKeyDecimal !== "string") throw new Error(
|
|
"Failed to detremine your private key.");
|
|
receiverECKeyData.privateKey = privateKey.privateKeyDecimal;
|
|
|
|
var receiverDerivedKey = this.deriveReceiverSharedKey(data.senderPublicKeyString, receiverECKeyData
|
|
.privateKey);
|
|
console.log("receiverDerivedKey", receiverDerivedKey);
|
|
|
|
let receiverKey = receiverDerivedKey.XValue + receiverDerivedKey.YValue;
|
|
let decryptMsg = Crypto.AES.decrypt(data.secret, receiverKey);
|
|
return decryptMsg;
|
|
},
|
|
|
|
//Sign data using private-key
|
|
signData: function (data, privateKeyHex) {
|
|
var key = new Bitcoin.ECKey(privateKeyHex);
|
|
key.setCompressed(true);
|
|
|
|
var privateKeyArr = key.getBitcoinPrivateKeyByteArray();
|
|
privateKey = BigInteger.fromByteArrayUnsigned(privateKeyArr);
|
|
var messageHash = Crypto.SHA256(data);
|
|
|
|
var messageHashBigInteger = new BigInteger(messageHash);
|
|
var messageSign = Bitcoin.ECDSA.sign(messageHashBigInteger, key.priv);
|
|
|
|
var sighex = Crypto.util.bytesToHex(messageSign);
|
|
return sighex;
|
|
},
|
|
|
|
//Verify signatue of the data using public-key
|
|
verifySign: function (data, signatureHex, publicKeyHex) {
|
|
var msgHash = Crypto.SHA256(data);
|
|
var messageHashBigInteger = new BigInteger(msgHash);
|
|
|
|
var sigBytes = Crypto.util.hexToBytes(signatureHex);
|
|
var signature = Bitcoin.ECDSA.parseSig(sigBytes);
|
|
|
|
var publicKeyPoint = this.ecparams.getCurve().decodePointHex(publicKeyHex);
|
|
|
|
var verify = Bitcoin.ECDSA.verifyRaw(messageHashBigInteger, signature.r, signature.s,
|
|
publicKeyPoint);
|
|
return verify;
|
|
},
|
|
|
|
//Generates a new flo ID and returns private-key, public-key and floID
|
|
generateNewID: function () {
|
|
try {
|
|
var key = new Bitcoin.ECKey(false);
|
|
key.setCompressed(true);
|
|
return {
|
|
floID: key.getBitcoinAddress(),
|
|
pubKey: key.getPubKeyHex(),
|
|
privKey: key.getBitcoinWalletImportFormat()
|
|
}
|
|
} catch (e) {
|
|
console.log(e);
|
|
}
|
|
},
|
|
|
|
//Returns public-key from private-key
|
|
getPubKeyHex: function (privateKeyHex) {
|
|
var key = new Bitcoin.ECKey(privateKeyHex);
|
|
if (key.priv == null) {
|
|
alert("Invalid Private key");
|
|
return;
|
|
}
|
|
key.setCompressed(true);
|
|
var pubkeyHex = key.getPubKeyHex();
|
|
return pubkeyHex;
|
|
},
|
|
|
|
//Returns flo-ID from public-key
|
|
getFloIDfromPubkeyHex: function (pubkeyHex) {
|
|
var key = new Bitcoin.ECKey().setPub(pubkeyHex);
|
|
var floID = key.getBitcoinAddress();
|
|
return floID;
|
|
},
|
|
|
|
//Verify the private-key for the given public-key or flo-ID
|
|
verifyPrivKey: function (privateKeyHex, pubKey_floID, isfloID = true) {
|
|
try {
|
|
var key = new Bitcoin.ECKey(privateKeyHex);
|
|
if (key.priv == null)
|
|
return false;
|
|
key.setCompressed(true);
|
|
if (isfloID && pubKey_floID == key.getBitcoinAddress())
|
|
return true;
|
|
else if (!isfloID && pubKey_floID == key.getPubKeyHex())
|
|
return true;
|
|
else
|
|
return false;
|
|
} catch (e) {
|
|
console.log(e);
|
|
}
|
|
},
|
|
|
|
//Check if the given Address is valid or not
|
|
validateAddr: function (inpAddr) {
|
|
try {
|
|
var addr = new Bitcoin.Address(inpAddr);
|
|
return true;
|
|
} catch {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
</script>
|
|
<script>
|
|
/* FLO Blockchain Operator to send/receive data from blockchain using API calls*/
|
|
floBlockchainOperator = {
|
|
|
|
//Promised AJAX function to get data from API
|
|
promisedAJAX: function (method, uri) {
|
|
return new Promise((resolve, reject) => {
|
|
var request = new XMLHttpRequest();
|
|
var url = `${floGlobals.apiURL[floGlobals.blockchain]}/${uri}`;
|
|
console.log(url)
|
|
request.open(method, url, true);
|
|
request.onload = (evt) => {
|
|
if (request.readyState == 4 && request.status == 200)
|
|
resolve(request.response);
|
|
else
|
|
reject(request.response);
|
|
};
|
|
request.send();
|
|
});
|
|
},
|
|
|
|
//Get balance for the given Address
|
|
getBalance: function (addr) {
|
|
return new Promise((resolve, reject) => {
|
|
this.promisedAJAX("GET", `api/addr/${addr}/balance`).then(balance => {
|
|
resolve(parseFloat(balance));
|
|
}).catch(error => {
|
|
reject(error);
|
|
});
|
|
});
|
|
},
|
|
|
|
//Write Data into blockchain
|
|
writeData: function (senderAddr, Data, PrivKey, receiverAddr = floGlobals.adminID) {
|
|
return new Promise((resolve, reject) => {
|
|
this.sendTx(senderAddr, receiverAddr, floGlobals.sendAmt, PrivKey, Data).then(txid => {
|
|
resolve(txid);
|
|
}).catch(error => {
|
|
reject(error);
|
|
});
|
|
});
|
|
},
|
|
|
|
//Send Tx to blockchain
|
|
sendTx: function (senderAddr, receiverAddr, sendAmt, PrivKey, floData = '') {
|
|
return new Promise((resolve, reject) => {
|
|
if (!floCryptoOperators.validateAddr(senderAddr))
|
|
reject(`Invalid address : ${senderAddr}`);
|
|
else if (!floCryptoOperators.validateAddr(receiverAddr))
|
|
reject(`Invalid address : ${receiverAddr}`);
|
|
if (PrivKey.length < 1 || !floCryptoOperators.verifyPrivKey(PrivKey, senderAddr))
|
|
reject("Invalid Private key!");
|
|
else if (typeof sendAmt !== 'number' || sendAmt <= 0)
|
|
reject(`Invalid sendAmt : ${sendAmt}`);
|
|
else {
|
|
var trx = bitjs.transaction();
|
|
var utxoAmt = 0.0;
|
|
var fee = floGlobals.fee;
|
|
this.promisedAJAX("GET", `api/addr/${senderAddr}/utxo`).then(response => {
|
|
var utxos = JSON.parse(response);
|
|
for (var i = utxos.length - 1;
|
|
(i >= 0) && (utxoAmt < sendAmt + fee); i--) {
|
|
if (utxos[i].confirmations) {
|
|
trx.addinput(utxos[i].txid, utxos[i].vout, utxos[i].scriptPubKey)
|
|
utxoAmt += utxos[i].amount;
|
|
} else break;
|
|
}
|
|
if (utxoAmt < sendAmt + fee)
|
|
reject("Insufficient balance!");
|
|
else {
|
|
trx.addoutput(receiverAddr, sendAmt);
|
|
var change = utxoAmt - sendAmt - fee;
|
|
if (change > 0)
|
|
trx.addoutput(senderAddr, change);
|
|
trx.addflodata(floData);
|
|
var signedTxHash = trx.sign(PrivKey, 1);
|
|
this.broadcastTx(signedTxHash).then(txid => {
|
|
resolve(txid)
|
|
}).catch(error => {
|
|
reject(error);
|
|
});
|
|
}
|
|
}).catch(error => {
|
|
reject(error);
|
|
});
|
|
}
|
|
});
|
|
},
|
|
|
|
//Broadcast signed Tx in blockchain using API
|
|
broadcastTx: function (signedTxHash) {
|
|
return new Promise((resolve, reject) => {
|
|
var request = new XMLHttpRequest();
|
|
var url = `${floGlobals.apiURL[floGlobals.blockchain]}/api/tx/send`;
|
|
if (signedTxHash.length < 1)
|
|
reject("Empty Signature");
|
|
else {
|
|
var params = `{"rawtx":"${signedTxHash}"}`;
|
|
var result;
|
|
request.open('POST', url, false);
|
|
//Send the proper header information along with the request
|
|
request.setRequestHeader('Content-type', 'application/json');
|
|
request.onload = function () {
|
|
if (request.readyState == 4 && request.status == 200) {
|
|
console.log(request.response);
|
|
resolve(JSON.parse(request.response).txid.result);
|
|
} else
|
|
reject(request.responseText);
|
|
}
|
|
request.send(params);
|
|
return result;
|
|
}
|
|
})
|
|
},
|
|
|
|
//Read Txs of Address between from and to
|
|
readData: function (addr, from, to) {
|
|
return new Promise((resolve, reject) => {
|
|
this.promisedAJAX("GET", `api/addrs/${addr}/txs?from=${from}&to=${to}`).then(response => {
|
|
resolve(JSON.parse(response));
|
|
}).catch(error => {
|
|
reject(error);
|
|
});
|
|
});
|
|
},
|
|
|
|
//Read All Txs of Address (newest first)
|
|
readAllData: function (addr) {
|
|
return new Promise((resolve, reject) => {
|
|
this.promisedAJAX("GET", `api/addrs/${addr}/txs?from=0&to=1`).then(response => {
|
|
var totalItems = JSON.parse(response).totalItems;
|
|
this.promisedAJAX("GET", `api/addrs/${addr}/txs?from=0&to=${totalItems}0`).then(response => {
|
|
resolve(JSON.parse(response).items);
|
|
}).catch(error => {
|
|
reject(error);
|
|
});
|
|
}).catch(error => {
|
|
reject(error);
|
|
});
|
|
});
|
|
},
|
|
|
|
//Read Data Sent from Address (if limit is specified, only return newest sent data)
|
|
readSentData: function (addr, limit = 0) {
|
|
return new Promise((resolve, reject) => {
|
|
this.readAllData(addr).then(items => {
|
|
var filteredItems = [];
|
|
if (limit <= 0) limit = items.length;
|
|
for (i = 0; i < items.length && filteredItems.length < limit; i++)
|
|
if (items[i].vin[0].addr === addr)
|
|
filteredItems.push(items[i]);
|
|
console.log(filteredItems);
|
|
resolve(filteredItems);
|
|
}).catch(error => {
|
|
reject(error)
|
|
});
|
|
});
|
|
},
|
|
|
|
//Read newest 'limit' Data matching 'pattern'
|
|
readDataPattern: function (addr, pattern, jsonType = false, limit = 1000) {
|
|
return new Promise((resolve, reject) => {
|
|
this.readAllData(addr).then(items => {
|
|
var filteredItems = [];
|
|
var pos = (jsonType ? 2 : 0);
|
|
for (i = 0; i < items.length && filteredItems.length < limit; i++)
|
|
if (items[i].floData.startsWith(pattern, pos))
|
|
filteredItems.push(items[i]);
|
|
resolve(filteredItems);
|
|
}).catch(error => {
|
|
reject(error)
|
|
});
|
|
});
|
|
},
|
|
|
|
//Read newest 'limit' Data Sent from Address and matching 'pattern'
|
|
readSentDataPattern: function (addr, pattern, jsonType = false, limit = 1000) {
|
|
return new Promise((resolve, reject) => {
|
|
this.readAllData(addr).then(items => {
|
|
var filteredItems = [];
|
|
var pos = (jsonType ? 2 : 0);
|
|
for (i = 0; i < items.length && filteredItems.length < limit; i++)
|
|
if (items[i].vin[0].addr === addr && items[i].floData.startsWith(pattern, pos))
|
|
filteredItems.push(items[i]);
|
|
resolve(filteredItems);
|
|
}).catch(error => {
|
|
reject(error)
|
|
});
|
|
});
|
|
},
|
|
|
|
//Read newest 'limit' Data containing 'keyword'
|
|
readDataContains: function (addr, keyword, limit = 1000) {
|
|
return new Promise((resolve, reject) => {
|
|
this.readAllData(addr).then(items => {
|
|
var filteredItems = [];
|
|
for (i = 0; i < items.length && filteredItems.length < limit; i++)
|
|
if (items[i].floData.includes(keyword))
|
|
filteredItems.push(items[i]);
|
|
resolve(filteredItems);
|
|
}).catch(error => {
|
|
reject(error)
|
|
});
|
|
});
|
|
},
|
|
|
|
//Read newest 'limit' Data Sent from Address and containing 'keyword'
|
|
readSentDataContains: function (addr, keyword, limit = 1000) {
|
|
return new Promise((resolve, reject) => {
|
|
this.readAllData(addr).then(items => {
|
|
var filteredItems = [];
|
|
for (i = 0; i < items.length && filteredItems.length < limit; i++)
|
|
if (items[i].vin[0].addr === addr && items[i].floData.includes(keyword))
|
|
filteredItems.push(items[i]);
|
|
resolve(filteredItems);
|
|
}).catch(error => {
|
|
reject(error)
|
|
});
|
|
});
|
|
}
|
|
}
|
|
</script>
|
|
<script>
|
|
/* flo Supernode Operators to send/receive data from supernodes using websocket */
|
|
floSupernodeOperator = {
|
|
|
|
//kBucket object
|
|
kBucket: {
|
|
supernodeKBucket = null,
|
|
decodeBase58Address: function (address) {
|
|
let k = bitjs.Base58.decode(address)
|
|
k.shift()
|
|
k.splice(-4, 4)
|
|
return Crypto.util.bytesToHex(k)
|
|
},
|
|
floIdToKbucketId: function (address) {
|
|
const decodedId = this.decodeBase58Address(address);
|
|
const nodeIdBigInt = new BigInteger(decodedId, 16);
|
|
const nodeIdBytes = nodeIdBigInt.toByteArrayUnsigned();
|
|
const nodeIdNewInt8Array = new Uint8Array(nodeIdBytes);
|
|
return nodeIdNewInt8Array;
|
|
},
|
|
launch: function (superNodeList, master_floID) {
|
|
return new Promise((resolve, reject) => {
|
|
try {
|
|
const SuKBucketId = this.floIdToKbucketId(master_floID);
|
|
const SukbOptions = {
|
|
localNodeId: SuKBucketId
|
|
}
|
|
this.supernodeKBucket = new BuildKBucket(SukbOptions);
|
|
for (var i = 0; i < superNodeList.length; i++) {
|
|
this.addNewNode(superNodeList[i])
|
|
}
|
|
resolve('SuperNode KBucket formed');
|
|
} catch (error) {
|
|
reject(error);
|
|
}
|
|
});
|
|
},
|
|
addContact: function (id, floID, KB = this.supernodeKBucket) {
|
|
const contact = {
|
|
id: id,
|
|
floID: floID
|
|
};
|
|
KB.add(contact)
|
|
},
|
|
addNewNode: function (address, KB = this.supernodeKBucket) {
|
|
let decodedId = address;
|
|
try {
|
|
decodedId = this.floIdToKbucketId(address);
|
|
} catch (e) {
|
|
decodedId = address;
|
|
}
|
|
this.addContact(decodedId, address, KB);
|
|
},
|
|
isNodePresent: function (flo_id, KB = this.supernodeKBucket) {
|
|
return new Promise((resolve, reject) => {
|
|
let kArray = KB.toArray();
|
|
let kArrayFloIds = kArray.map(k => k.data.id);
|
|
if (kArrayFloIds.includes(flo_id)) {
|
|
resolve(true);
|
|
} else {
|
|
reject(false);
|
|
}
|
|
});
|
|
},
|
|
determineClosestSupernode: function (flo_addr, n = 1, KB = this.supernodeKBucket) {
|
|
return new Promise((resolve, reject) => {
|
|
try {
|
|
let isFloIdUint8 = flo_addr instanceof Uint8Array;
|
|
if (!isFloIdUint8)
|
|
flo_addr = this.floIdToKbucketId(flo_addr);
|
|
const closestSupernode = KB.closest(flo_addr, n);
|
|
resolve(closestSupernode);
|
|
} catch (error) {
|
|
reject(error);
|
|
}
|
|
});
|
|
}
|
|
},
|
|
|
|
//Sends data to the supernode
|
|
sendData: function (data, floID) {
|
|
return new Promise((resolve, reject) => {
|
|
this.kBucket.determineClosestSupernode(floID).then(result => {
|
|
var websocket = new WebSocket("ws://" + floGlobals.supernodes[result].uri + "/ws");
|
|
websocket.onopen = (evt) => {
|
|
websocket.send(data);
|
|
resolve(`Data sent to ${floID}'s supernode`);
|
|
websocket.close();
|
|
};
|
|
websocket.onerror = (evt) => {
|
|
reject(evt);
|
|
};
|
|
}).catch(error => {
|
|
reject(error);
|
|
});
|
|
});
|
|
},
|
|
|
|
//Request data from supernode
|
|
requestData: function (request, floID) {
|
|
return new Promise((resolve, reject) => {
|
|
this.kBucket.determineClosestSupernode(floID).then(result => {
|
|
var websocket = new WebSocket("ws://" + floGlobals.supernodes[result].uri + "/ws");
|
|
websocket.onopen = (evt) => {
|
|
websocket.send(`?${request}`);
|
|
};
|
|
selfwebsocket.onmessage = (evt) => {
|
|
resolve(evt.data);
|
|
websocket.close();
|
|
};
|
|
selfwebsocket.onerror = (evt) => {
|
|
reject(evt);
|
|
};
|
|
}).catch(error => {
|
|
reject(error);
|
|
});
|
|
});
|
|
},
|
|
|
|
//Supernode initate (call this function only when client is authorized as supernode)
|
|
/* DO NOT edit this function
|
|
To edit the response or callback, edit the reactor eventListener given below
|
|
*/
|
|
initSupernode: function (pwd, floID) {
|
|
return new Promise((resolve, reject) => {
|
|
try {
|
|
this.supernodeClientWS = new WebSocket("ws://" + floGlobals.supernodes[floID].uri + "/ws");
|
|
this.supernodeClientWS.onopen = (evt) => {
|
|
supernodeClientWS.send("$" + pwd);
|
|
reactor.dispatchEvent('supernode_open', evt);
|
|
};
|
|
this.supernodeClientWS.onclose = (evt) => {
|
|
reactor.dispatchEvent('supernode_close', evt);
|
|
};
|
|
this.supernodeClientWS.onmessage = (evt) => {
|
|
if (evt.data[0] == '$') {
|
|
reactor.dispatchEvent('supernode_admin', evt.data.substr(1));
|
|
if (evt.data == '$Access Granted!')
|
|
resolve("Access Granted! Initiated Supernode client");
|
|
else if (evt.data == '$Access Denied!')
|
|
reject("Access Denied! Failed to initiate Supernode client");
|
|
} else if (evt.data[0] == '?')
|
|
reactor.dispatchEvent('supernode_processRequest', evt.data.substr(1));
|
|
else
|
|
reactor.dispatchEvent('supernode_processData', evt.data);
|
|
};
|
|
selfwebsocket.onerror = (evt) => {
|
|
reactor.dispatchEvent('supernode_error', evt);
|
|
reject(evt);
|
|
};
|
|
} catch (error) {
|
|
reject(error)
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
//Event fired when connected to supernode websocket
|
|
reactor.registerEvent('supernode_open');
|
|
reactor.addEventListener('supernode_open', function (event) {
|
|
console.log('Connected to supernode websocket!');
|
|
});
|
|
|
|
//Event fired when disconnected from supernode websocket
|
|
reactor.registerEvent('supernode_close');
|
|
reactor.addEventListener('supernode_close', function (event) {
|
|
console.log('Disconnected from supernode websocket!');
|
|
});
|
|
|
|
//Event fired when connection error with supernode websocket
|
|
reactor.registerEvent('supernode_error');
|
|
reactor.addEventListener('supernode_error', function (event) {
|
|
console.log('Error! Unable to connect supernode websocket!');
|
|
});
|
|
|
|
//Event fired during incoming request
|
|
reactor.registerEvent('supernode_processRequest');
|
|
reactor.addEventListener('supernode_processRequest', function (request) {
|
|
console.log('Request : ' + request);
|
|
});
|
|
|
|
//Event fired during incoming data
|
|
reactor.registerEvent('supernode_processData');
|
|
reactor.addEventListener('supernode_processData', function (data) {
|
|
console.log('Data : ' + data);
|
|
});
|
|
</script>
|
|
|
|
|
|
<script>
|
|
/*Kademlia DHT K-bucket implementation as a binary tree.*/
|
|
|
|
/**
|
|
* Implementation of a Kademlia DHT k-bucket used for storing
|
|
* contact (peer node) information.
|
|
*
|
|
* @extends EventEmitter
|
|
*/
|
|
function BuildKBucket(options = {}) {
|
|
/**
|
|
* `options`:
|
|
* `distance`: Function
|
|
* `function (firstId, secondId) { return distance }` An optional
|
|
* `distance` function that gets two `id` Uint8Arrays
|
|
* and return distance (as number) between them.
|
|
* `arbiter`: Function (Default: vectorClock arbiter)
|
|
* `function (incumbent, candidate) { return contact; }` An optional
|
|
* `arbiter` function that givent two `contact` objects with the same `id`
|
|
* returns the desired object to be used for updating the k-bucket. For
|
|
* more details, see [arbiter function](#arbiter-function).
|
|
* `localNodeId`: Uint8Array An optional Uint8Array representing the local node id.
|
|
* If not provided, a local node id will be created via `randomBytes(20)`.
|
|
* `metadata`: Object (Default: {}) Optional satellite data to include
|
|
* with the k-bucket. `metadata` property is guaranteed not be altered by,
|
|
* it is provided as an explicit container for users of k-bucket to store
|
|
* implementation-specific data.
|
|
* `numberOfNodesPerKBucket`: Integer (Default: 20) The number of nodes
|
|
* that a k-bucket can contain before being full or split.
|
|
* `numberOfNodesToPing`: Integer (Default: 3) The number of nodes to
|
|
* ping when a bucket that should not be split becomes full. KBucket will
|
|
* emit a `ping` event that contains `numberOfNodesToPing` nodes that have
|
|
* not been contacted the longest.
|
|
*
|
|
* @param {Object=} options optional
|
|
*/
|
|
|
|
this.localNodeId = options.localNodeId || window.crypto.getRandomValues(new Uint8Array(20))
|
|
this.numberOfNodesPerKBucket = options.numberOfNodesPerKBucket || 20
|
|
this.numberOfNodesToPing = options.numberOfNodesToPing || 3
|
|
this.distance = options.distance || this.distance
|
|
// use an arbiter from options or vectorClock arbiter by default
|
|
this.arbiter = options.arbiter || this.arbiter
|
|
this.metadata = Object.assign({}, options.metadata)
|
|
|
|
this.createNode = function () {
|
|
return {
|
|
contacts: [],
|
|
dontSplit: false,
|
|
left: null,
|
|
right: null
|
|
}
|
|
}
|
|
|
|
this.ensureInt8 = function (name, val) {
|
|
if (!(val instanceof Uint8Array)) {
|
|
throw new TypeError(name + ' is not a Uint8Array')
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param {Uint8Array} array1
|
|
* @param {Uint8Array} array2
|
|
* @return {Boolean}
|
|
*/
|
|
this.arrayEquals = function (array1, array2) {
|
|
if (array1 === array2) {
|
|
return true
|
|
}
|
|
if (array1.length !== array2.length) {
|
|
return false
|
|
}
|
|
for (let i = 0, length = array1.length; i < length; ++i) {
|
|
if (array1[i] !== array2[i]) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
this.ensureInt8('option.localNodeId as parameter 1', this.localNodeId)
|
|
this.root = this.createNode()
|
|
|
|
/**
|
|
* Default arbiter function for contacts with the same id. Uses
|
|
* contact.vectorClock to select which contact to update the k-bucket with.
|
|
* Contact with larger vectorClock field will be selected. If vectorClock is
|
|
* the same, candidat will be selected.
|
|
*
|
|
* @param {Object} incumbent Contact currently stored in the k-bucket.
|
|
* @param {Object} candidate Contact being added to the k-bucket.
|
|
* @return {Object} Contact to updated the k-bucket with.
|
|
*/
|
|
this.arbiter = function (incumbent, candidate) {
|
|
return incumbent.vectorClock > candidate.vectorClock ? incumbent : candidate
|
|
}
|
|
|
|
/**
|
|
* Default distance function. Finds the XOR
|
|
* distance between firstId and secondId.
|
|
*
|
|
* @param {Uint8Array} firstId Uint8Array containing first id.
|
|
* @param {Uint8Array} secondId Uint8Array containing second id.
|
|
* @return {Number} Integer The XOR distance between firstId
|
|
* and secondId.
|
|
*/
|
|
this.distance = function (firstId, secondId) {
|
|
let distance = 0
|
|
let i = 0
|
|
const min = Math.min(firstId.length, secondId.length)
|
|
const max = Math.max(firstId.length, secondId.length)
|
|
for (; i < min; ++i) {
|
|
distance = distance * 256 + (firstId[i] ^ secondId[i])
|
|
}
|
|
for (; i < max; ++i) distance = distance * 256 + 255
|
|
return distance
|
|
}
|
|
|
|
/**
|
|
* Adds a contact to the k-bucket.
|
|
*
|
|
* @param {Object} contact the contact object to add
|
|
*/
|
|
this.add = function (contact) {
|
|
this.ensureInt8('contact.id', (contact || {}).id)
|
|
|
|
let bitIndex = 0
|
|
let node = this.root
|
|
|
|
while (node.contacts === null) {
|
|
// this is not a leaf node but an inner node with 'low' and 'high'
|
|
// branches; we will check the appropriate bit of the identifier and
|
|
// delegate to the appropriate node for further processing
|
|
node = this._determineNode(node, contact.id, bitIndex++)
|
|
}
|
|
|
|
// check if the contact already exists
|
|
const index = this._indexOf(node, contact.id)
|
|
if (index >= 0) {
|
|
this._update(node, index, contact)
|
|
return this
|
|
}
|
|
|
|
if (node.contacts.length < this.numberOfNodesPerKBucket) {
|
|
node.contacts.push(contact)
|
|
return this
|
|
}
|
|
|
|
// the bucket is full
|
|
if (node.dontSplit) {
|
|
// we are not allowed to split the bucket
|
|
// we need to ping the first this.numberOfNodesToPing
|
|
// in order to determine if they are alive
|
|
// only if one of the pinged nodes does not respond, can the new contact
|
|
// be added (this prevents DoS flodding with new invalid contacts)
|
|
return this
|
|
}
|
|
|
|
this._split(node, bitIndex)
|
|
return this.add(contact)
|
|
}
|
|
|
|
/**
|
|
* Get the n closest contacts to the provided node id. "Closest" here means:
|
|
* closest according to the XOR metric of the contact node id.
|
|
*
|
|
* @param {Uint8Array} id Contact node id
|
|
* @param {Number=} n Integer (Default: Infinity) The maximum number of
|
|
* closest contacts to return
|
|
* @return {Array} Array Maximum of n closest contacts to the node id
|
|
*/
|
|
this.closest = function (id, n = Infinity) {
|
|
this.ensureInt8('id', id)
|
|
|
|
if ((!Number.isInteger(n) && n !== Infinity) || n <= 0) {
|
|
throw new TypeError('n is not positive number')
|
|
}
|
|
|
|
let contacts = []
|
|
|
|
for (let nodes = [this.root], bitIndex = 0; nodes.length > 0 && contacts.length < n;) {
|
|
const node = nodes.pop()
|
|
if (node.contacts === null) {
|
|
const detNode = this._determineNode(node, id, bitIndex++)
|
|
nodes.push(node.left === detNode ? node.right : node.left)
|
|
nodes.push(detNode)
|
|
} else {
|
|
contacts = contacts.concat(node.contacts)
|
|
}
|
|
}
|
|
|
|
return contacts
|
|
.map(a => [this.distance(a.id, id), a])
|
|
.sort((a, b) => a[0] - b[0])
|
|
.slice(0, n)
|
|
.map(a => a[1])
|
|
}
|
|
|
|
/**
|
|
* Counts the total number of contacts in the tree.
|
|
*
|
|
* @return {Number} The number of contacts held in the tree
|
|
*/
|
|
this.count = function () {
|
|
// return this.toArray().length
|
|
let count = 0
|
|
for (const nodes = [this.root]; nodes.length > 0;) {
|
|
const node = nodes.pop()
|
|
if (node.contacts === null) nodes.push(node.right, node.left)
|
|
else count += node.contacts.length
|
|
}
|
|
return count
|
|
}
|
|
|
|
/**
|
|
* Determines whether the id at the bitIndex is 0 or 1.
|
|
* Return left leaf if `id` at `bitIndex` is 0, right leaf otherwise
|
|
*
|
|
* @param {Object} node internal object that has 2 leafs: left and right
|
|
* @param {Uint8Array} id Id to compare localNodeId with.
|
|
* @param {Number} bitIndex Integer (Default: 0) The bit index to which bit
|
|
* to check in the id Uint8Array.
|
|
* @return {Object} left leaf if id at bitIndex is 0, right leaf otherwise.
|
|
*/
|
|
this._determineNode = function (node, id, bitIndex) {
|
|
// *NOTE* remember that id is a Uint8Array and has granularity of
|
|
// bytes (8 bits), whereas the bitIndex is the bit index (not byte)
|
|
|
|
// id's that are too short are put in low bucket (1 byte = 8 bits)
|
|
// (bitIndex >> 3) finds how many bytes the bitIndex describes
|
|
// bitIndex % 8 checks if we have extra bits beyond byte multiples
|
|
// if number of bytes is <= no. of bytes described by bitIndex and there
|
|
// are extra bits to consider, this means id has less bits than what
|
|
// bitIndex describes, id therefore is too short, and will be put in low
|
|
// bucket
|
|
const bytesDescribedByBitIndex = bitIndex >> 3
|
|
const bitIndexWithinByte = bitIndex % 8
|
|
if ((id.length <= bytesDescribedByBitIndex) && (bitIndexWithinByte !== 0)) {
|
|
return node.left
|
|
}
|
|
|
|
const byteUnderConsideration = id[bytesDescribedByBitIndex]
|
|
|
|
// byteUnderConsideration is an integer from 0 to 255 represented by 8 bits
|
|
// where 255 is 11111111 and 0 is 00000000
|
|
// in order to find out whether the bit at bitIndexWithinByte is set
|
|
// we construct (1 << (7 - bitIndexWithinByte)) which will consist
|
|
// of all bits being 0, with only one bit set to 1
|
|
// for example, if bitIndexWithinByte is 3, we will construct 00010000 by
|
|
// (1 << (7 - 3)) -> (1 << 4) -> 16
|
|
if (byteUnderConsideration & (1 << (7 - bitIndexWithinByte))) {
|
|
return node.right
|
|
}
|
|
|
|
return node.left
|
|
}
|
|
|
|
/**
|
|
* Get a contact by its exact ID.
|
|
* If this is a leaf, loop through the bucket contents and return the correct
|
|
* contact if we have it or null if not. If this is an inner node, determine
|
|
* which branch of the tree to traverse and repeat.
|
|
*
|
|
* @param {Uint8Array} id The ID of the contact to fetch.
|
|
* @return {Object|Null} The contact if available, otherwise null
|
|
*/
|
|
this.get = function (id) {
|
|
this.ensureInt8('id', id)
|
|
|
|
let bitIndex = 0
|
|
|
|
let node = this.root
|
|
while (node.contacts === null) {
|
|
node = this._determineNode(node, id, bitIndex++)
|
|
}
|
|
|
|
// index of uses contact id for matching
|
|
const index = this._indexOf(node, id)
|
|
return index >= 0 ? node.contacts[index] : null
|
|
}
|
|
|
|
/**
|
|
* Returns the index of the contact with provided
|
|
* id if it exists, returns -1 otherwise.
|
|
*
|
|
* @param {Object} node internal object that has 2 leafs: left and right
|
|
* @param {Uint8Array} id Contact node id.
|
|
* @return {Number} Integer Index of contact with provided id if it
|
|
* exists, -1 otherwise.
|
|
*/
|
|
this._indexOf = function (node, id) {
|
|
for (let i = 0; i < node.contacts.length; ++i) {
|
|
if (this.arrayEquals(node.contacts[i].id, id)) return i
|
|
}
|
|
|
|
return -1
|
|
}
|
|
|
|
/**
|
|
* Removes contact with the provided id.
|
|
*
|
|
* @param {Uint8Array} id The ID of the contact to remove.
|
|
* @return {Object} The k-bucket itself.
|
|
*/
|
|
this.remove = function (id) {
|
|
this.ensureInt8('the id as parameter 1', id)
|
|
|
|
let bitIndex = 0
|
|
let node = this.root
|
|
|
|
while (node.contacts === null) {
|
|
node = this._determineNode(node, id, bitIndex++)
|
|
}
|
|
|
|
const index = this._indexOf(node, id)
|
|
if (index >= 0) {
|
|
const contact = node.contacts.splice(index, 1)[0]
|
|
}
|
|
|
|
return this
|
|
}
|
|
|
|
/**
|
|
* Splits the node, redistributes contacts to the new nodes, and marks the
|
|
* node that was split as an inner node of the binary tree of nodes by
|
|
* setting this.root.contacts = null
|
|
*
|
|
* @param {Object} node node for splitting
|
|
* @param {Number} bitIndex the bitIndex to which byte to check in the
|
|
* Uint8Array for navigating the binary tree
|
|
*/
|
|
this._split = function (node, bitIndex) {
|
|
node.left = this.createNode()
|
|
node.right = this.createNode()
|
|
|
|
// redistribute existing contacts amongst the two newly created nodes
|
|
for (const contact of node.contacts) {
|
|
this._determineNode(node, contact.id, bitIndex).contacts.push(contact)
|
|
}
|
|
|
|
node.contacts = null // mark as inner tree node
|
|
|
|
// don't split the "far away" node
|
|
// we check where the local node would end up and mark the other one as
|
|
// "dontSplit" (i.e. "far away")
|
|
const detNode = this._determineNode(node, this.localNodeId, bitIndex)
|
|
const otherNode = node.left === detNode ? node.right : node.left
|
|
otherNode.dontSplit = true
|
|
}
|
|
|
|
/**
|
|
* Returns all the contacts contained in the tree as an array.
|
|
* If this is a leaf, return a copy of the bucket. `slice` is used so that we
|
|
* don't accidentally leak an internal reference out that might be
|
|
* accidentally misused. If this is not a leaf, return the union of the low
|
|
* and high branches (themselves also as arrays).
|
|
*
|
|
* @return {Array} All of the contacts in the tree, as an array
|
|
*/
|
|
this.toArray = function () {
|
|
let result = []
|
|
for (const nodes = [this.root]; nodes.length > 0;) {
|
|
const node = nodes.pop()
|
|
if (node.contacts === null) nodes.push(node.right, node.left)
|
|
else result = result.concat(node.contacts)
|
|
}
|
|
return result
|
|
}
|
|
|
|
/**
|
|
* Updates the contact selected by the arbiter.
|
|
* If the selection is our old contact and the candidate is some new contact
|
|
* then the new contact is abandoned (not added).
|
|
* If the selection is our old contact and the candidate is our old contact
|
|
* then we are refreshing the contact and it is marked as most recently
|
|
* contacted (by being moved to the right/end of the bucket array).
|
|
* If the selection is our new contact, the old contact is removed and the new
|
|
* contact is marked as most recently contacted.
|
|
*
|
|
* @param {Object} node internal object that has 2 leafs: left and right
|
|
* @param {Number} index the index in the bucket where contact exists
|
|
* (index has already been computed in a previous
|
|
* calculation)
|
|
* @param {Object} contact The contact object to update.
|
|
*/
|
|
this._update = function (node, index, contact) {
|
|
// sanity check
|
|
if (!this.arrayEquals(node.contacts[index].id, contact.id)) {
|
|
throw new Error('wrong index for _update')
|
|
}
|
|
|
|
const incumbent = node.contacts[index]
|
|
const selection = this.arbiter(incumbent, contact)
|
|
// if the selection is our old contact and the candidate is some new
|
|
// contact, then there is nothing to do
|
|
if (selection === incumbent && incumbent !== contact) return
|
|
|
|
node.contacts.splice(index, 1) // remove old contact
|
|
node.contacts.push(selection) // add more recent contact version
|
|
|
|
}
|
|
}
|
|
</script>
|
|
|
|
</html> |