exchangemarket/lib.js
2022-08-16 17:30:46 +05:30

9345 lines
360 KiB
JavaScript

(function(GLOBAL) { //lib v1.3.0d
'use strict';
/* Utility Libraries required for Standard operations
* All credits for these codes belong to their respective creators, moderators and owners.
* For more info (including license and terms of use), please visit respective source.
*/
GLOBAL.cryptocoin = (typeof floGlobals === 'undefined' ? null : floGlobals.blockchain) || 'FLO';
//Crypto.js
(function() {
// Global Crypto object
var Crypto = GLOBAL.Crypto = {};
/*!
* Crypto-JS v2.5.4 Crypto.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function() {
var base64map = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
// Crypto utilities
var util = Crypto.util = {
// Bit-wise rotate left
rotl: function(n, b) {
return (n << b) | (n >>> (32 - b));
},
// Bit-wise rotate right
rotr: function(n, b) {
return (n << (32 - b)) | (n >>> b);
},
// Swap big-endian to little-endian and vice versa
endian: function(n) {
// If number given, swap endian
if (n.constructor == Number) {
return util.rotl(n, 8) & 0x00FF00FF |
util.rotl(n, 24) & 0xFF00FF00;
}
// Else, assume array and swap all items
for (var i = 0; i < n.length; i++)
n[i] = util.endian(n[i]);
return n;
},
// Generate an array of any length of random bytes
randomBytes: function(n) {
for (var bytes = []; n > 0; n--)
bytes.push(Math.floor(Math.random() * 256));
return bytes;
},
// Convert a byte array to big-endian 32-bit words
bytesToWords: function(bytes) {
for (var words = [], i = 0, b = 0; i < bytes.length; i++, b += 8)
words[b >>> 5] |= (bytes[i] & 0xFF) << (24 - b % 32);
return words;
},
// Convert big-endian 32-bit words to a byte array
wordsToBytes: function(words) {
for (var bytes = [], b = 0; b < words.length * 32; b += 8)
bytes.push((words[b >>> 5] >>> (24 - b % 32)) & 0xFF);
return bytes;
},
// Convert a byte array to a hex string
bytesToHex: function(bytes) {
for (var hex = [], i = 0; i < bytes.length; i++) {
hex.push((bytes[i] >>> 4).toString(16));
hex.push((bytes[i] & 0xF).toString(16));
}
return hex.join("");
},
// Convert a hex string to a byte array
hexToBytes: function(hex) {
for (var bytes = [], c = 0; c < hex.length; c += 2)
bytes.push(parseInt(hex.substr(c, 2), 16));
return bytes;
},
// Convert a byte array to a base-64 string
bytesToBase64: function(bytes) {
for (var base64 = [], i = 0; i < bytes.length; i += 3) {
var triplet = (bytes[i] << 16) | (bytes[i + 1] << 8) | bytes[i + 2];
for (var j = 0; j < 4; j++) {
if (i * 8 + j * 6 <= bytes.length * 8)
base64.push(base64map.charAt((triplet >>> 6 * (3 - j)) & 0x3F));
else base64.push("=");
}
}
return base64.join("");
},
// Convert a base-64 string to a byte array
base64ToBytes: function(base64) {
// Remove non-base-64 characters
base64 = base64.replace(/[^A-Z0-9+\/]/ig, "");
for (var bytes = [], i = 0, imod4 = 0; i < base64.length; imod4 = ++i % 4) {
if (imod4 == 0) continue;
bytes.push(((base64map.indexOf(base64.charAt(i - 1)) & (Math.pow(2, -2 * imod4 + 8) - 1)) << (imod4 * 2)) |
(base64map.indexOf(base64.charAt(i)) >>> (6 - imod4 * 2)));
}
return bytes;
}
};
// Crypto character encodings
var charenc = Crypto.charenc = {};
// UTF-8 encoding
var UTF8 = charenc.UTF8 = {
// Convert a string to a byte array
stringToBytes: function(str) {
return Binary.stringToBytes(unescape(encodeURIComponent(str)));
},
// Convert a byte array to a string
bytesToString: function(bytes) {
return decodeURIComponent(escape(Binary.bytesToString(bytes)));
}
};
// Binary encoding
var Binary = charenc.Binary = {
// Convert a string to a byte array
stringToBytes: function(str) {
for (var bytes = [], i = 0; i < str.length; i++)
bytes.push(str.charCodeAt(i) & 0xFF);
return bytes;
},
// Convert a byte array to a string
bytesToString: function(bytes) {
for (var str = [], i = 0; i < bytes.length; i++)
str.push(String.fromCharCode(bytes[i]));
return str.join("");
}
};
})();
//Adding SHA1 to fix basic PKBDF2
/*
* Crypto-JS v2.5.4
* http://code.google.com/p/crypto-js/
* (c) 2009-2012 by Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function() {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
// Public API
var SHA1 = C.SHA1 = function(message, options) {
var digestbytes = util.wordsToBytes(SHA1._sha1(message));
return options && options.asBytes ? digestbytes :
options && options.asString ? Binary.bytesToString(digestbytes) :
util.bytesToHex(digestbytes);
};
// The core
SHA1._sha1 = function(message) {
// Convert to byte array
if (message.constructor == String) message = UTF8.stringToBytes(message);
/* else, assume byte array already */
var m = util.bytesToWords(message),
l = message.length * 8,
w = [],
H0 = 1732584193,
H1 = -271733879,
H2 = -1732584194,
H3 = 271733878,
H4 = -1009589776;
// Padding
m[l >> 5] |= 0x80 << (24 - l % 32);
m[((l + 64 >>> 9) << 4) + 15] = l;
for (var i = 0; i < m.length; i += 16) {
var a = H0,
b = H1,
c = H2,
d = H3,
e = H4;
for (var j = 0; j < 80; j++) {
if (j < 16) w[j] = m[i + j];
else {
var n = w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16];
w[j] = (n << 1) | (n >>> 31);
}
var t = ((H0 << 5) | (H0 >>> 27)) + H4 + (w[j] >>> 0) + (
j < 20 ? (H1 & H2 | ~H1 & H3) + 1518500249 :
j < 40 ? (H1 ^ H2 ^ H3) + 1859775393 :
j < 60 ? (H1 & H2 | H1 & H3 | H2 & H3) - 1894007588 :
(H1 ^ H2 ^ H3) - 899497514);
H4 = H3;
H3 = H2;
H2 = (H1 << 30) | (H1 >>> 2);
H1 = H0;
H0 = t;
}
H0 += a;
H1 += b;
H2 += c;
H3 += d;
H4 += e;
}
return [H0, H1, H2, H3, H4];
};
// Package private blocksize
SHA1._blocksize = 16;
SHA1._digestsize = 20;
})();
//Added to make PKBDF2 work
/*
* Crypto-JS v2.5.4
* http://code.google.com/p/crypto-js/
* (c) 2009-2012 by Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function() {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
C.HMAC = function(hasher, message, key, options) {
// Convert to byte arrays
if (message.constructor == String) message = UTF8.stringToBytes(message);
if (key.constructor == String) key = UTF8.stringToBytes(key);
/* else, assume byte arrays already */
// Allow arbitrary length keys
if (key.length > hasher._blocksize * 4)
key = hasher(key, {
asBytes: true
});
// XOR keys with pad constants
var okey = key.slice(0),
ikey = key.slice(0);
for (var i = 0; i < hasher._blocksize * 4; i++) {
okey[i] ^= 0x5C;
ikey[i] ^= 0x36;
}
var hmacbytes = hasher(okey.concat(hasher(ikey.concat(message), {
asBytes: true
})), {
asBytes: true
});
return options && options.asBytes ? hmacbytes :
options && options.asString ? Binary.bytesToString(hmacbytes) :
util.bytesToHex(hmacbytes);
};
})();
//crypto-sha256-hmac.js
/*
* Crypto-JS v2.5.4
* http://code.google.com/p/crypto-js/
* (c) 2009-2012 by Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function() {
var d = Crypto,
k = d.util,
g = d.charenc,
b = g.UTF8,
a = g.Binary,
c = [1116352408, 1899447441, 3049323471, 3921009573, 961987163, 1508970993, 2453635748, 2870763221,
3624381080, 310598401, 607225278, 1426881987, 1925078388, 2162078206, 2614888103, 3248222580,
3835390401, 4022224774, 264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986,
2554220882, 2821834349, 2952996808, 3210313671, 3336571891, 3584528711, 113926993, 338241895,
666307205, 773529912, 1294757372, 1396182291, 1695183700, 1986661051, 2177026350, 2456956037,
2730485921,
2820302411, 3259730800, 3345764771, 3516065817, 3600352804, 4094571909, 275423344, 430227734,
506948616, 659060556, 883997877, 958139571, 1322822218, 1537002063, 1747873779, 1955562222,
2024104815, 2227730452, 2361852424, 2428436474, 2756734187, 3204031479, 3329325298
],
e = d.SHA256 = function(b, c) {
var f = k.wordsToBytes(e._sha256(b));
return c && c.asBytes ? f : c && c.asString ? a.bytesToString(f) : k.bytesToHex(f)
};
e._sha256 = function(a) {
a.constructor == String && (a = b.stringToBytes(a));
var e = k.bytesToWords(a),
f = a.length * 8,
a = [1779033703, 3144134277,
1013904242, 2773480762, 1359893119, 2600822924, 528734635, 1541459225
],
d = [],
g, m, r, i, n, o, s, t, h, l, j;
e[f >> 5] |= 128 << 24 - f % 32;
e[(f + 64 >> 9 << 4) + 15] = f;
for (t = 0; t < e.length; t += 16) {
f = a[0];
g = a[1];
m = a[2];
r = a[3];
i = a[4];
n = a[5];
o = a[6];
s = a[7];
for (h = 0; h < 64; h++) {
h < 16 ? d[h] = e[h + t] : (l = d[h - 15], j = d[h - 2], d[h] = ((l << 25 | l >>> 7) ^
(l << 14 | l >>> 18) ^ l >>> 3) + (d[h - 7] >>> 0) + ((j << 15 | j >>> 17) ^
(j << 13 | j >>> 19) ^ j >>> 10) + (d[h - 16] >>> 0));
j = f & g ^ f & m ^ g & m;
var u = (f << 30 | f >>> 2) ^ (f << 19 | f >>> 13) ^ (f << 10 | f >>> 22);
l = (s >>> 0) + ((i << 26 | i >>> 6) ^ (i << 21 | i >>> 11) ^ (i << 7 | i >>> 25)) +
(i & n ^ ~i & o) + c[h] + (d[h] >>> 0);
j = u + j;
s = o;
o = n;
n = i;
i = r + l >>> 0;
r = m;
m = g;
g = f;
f = l + j >>> 0
}
a[0] += f;
a[1] += g;
a[2] += m;
a[3] += r;
a[4] += i;
a[5] += n;
a[6] += o;
a[7] += s
}
return a
};
e._blocksize = 16;
e._digestsize = 32
})();
(function() {
var d = Crypto,
k = d.util,
g = d.charenc,
b = g.UTF8,
a = g.Binary;
d.HMAC = function(c, e, d, g) {
e.constructor == String && (e = b.stringToBytes(e));
d.constructor == String && (d = b.stringToBytes(d));
d.length > c._blocksize * 4 && (d = c(d, {
asBytes: !0
}));
for (var f = d.slice(0), d = d.slice(0), q = 0; q < c._blocksize * 4; q++) f[q] ^= 92, d[q] ^=
54;
c = c(f.concat(c(d.concat(e), {
asBytes: !0
})), {
asBytes: !0
});
return g && g.asBytes ? c : g && g.asString ? a.bytesToString(c) : k.bytesToHex(c)
}
})();
})();
//SecureRandom.js
(function() {
const getRandomValues = function(buf) {
if (typeof require === 'function') {
var bytes = require('crypto').randomBytes(buf.length);
buf.set(bytes)
return buf;
} else if (GLOBAL.crypto && GLOBAL.crypto.getRandomValues)
return GLOBAL.crypto.getRandomValues(buf);
else
return null;
}
/*!
* Random number generator with ArcFour PRNG
*
* NOTE: For best results, put code like
* <body onclick='SecureRandom.seedTime();' onkeypress='SecureRandom.seedTime();'>
* in your main HTML document.
*
* Copyright Tom Wu, bitaddress.org BSD License.
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
*/
// Constructor function of Global SecureRandom object
var sr = GLOBAL.SecureRandom = function() {};
// Properties
sr.state;
sr.pool;
sr.pptr;
sr.poolCopyOnInit;
// Pool size must be a multiple of 4 and greater than 32.
// An array of bytes the size of the pool will be passed to init()
sr.poolSize = 256;
// --- object methods ---
// public method
// ba: byte array
sr.prototype.nextBytes = function(ba) {
var i;
if (getRandomValues && GLOBAL.Uint8Array) {
try {
var rvBytes = new Uint8Array(ba.length);
getRandomValues(rvBytes);
for (i = 0; i < ba.length; ++i)
ba[i] = sr.getByte() ^ rvBytes[i];
return;
} catch (e) {
alert(e);
}
}
for (i = 0; i < ba.length; ++i) ba[i] = sr.getByte();
};
// --- static methods ---
// Mix in the current time (w/milliseconds) into the pool
// NOTE: this method should be called from body click/keypress event handlers to increase entropy
sr.seedTime = function() {
sr.seedInt(new Date().getTime());
}
sr.getByte = function() {
if (sr.state == null) {
sr.seedTime();
sr.state = sr.ArcFour(); // Plug in your RNG constructor here
sr.state.init(sr.pool);
sr.poolCopyOnInit = [];
for (sr.pptr = 0; sr.pptr < sr.pool.length; ++sr.pptr)
sr.poolCopyOnInit[sr.pptr] = sr.pool[sr.pptr];
sr.pptr = 0;
}
// TODO: allow reseeding after first request
return sr.state.next();
}
// Mix in a 32-bit integer into the pool
sr.seedInt = function(x) {
sr.seedInt8(x);
sr.seedInt8((x >> 8));
sr.seedInt8((x >> 16));
sr.seedInt8((x >> 24));
}
// Mix in a 16-bit integer into the pool
sr.seedInt16 = function(x) {
sr.seedInt8(x);
sr.seedInt8((x >> 8));
}
// Mix in a 8-bit integer into the pool
sr.seedInt8 = function(x) {
sr.pool[sr.pptr++] ^= x & 255;
if (sr.pptr >= sr.poolSize) sr.pptr -= sr.poolSize;
}
// Arcfour is a PRNG
sr.ArcFour = function() {
function Arcfour() {
this.i = 0;
this.j = 0;
this.S = new Array();
}
// Initialize arcfour context from key, an array of ints, each from [0..255]
function ARC4init(key) {
var i, j, t;
for (i = 0; i < 256; ++i)
this.S[i] = i;
j = 0;
for (i = 0; i < 256; ++i) {
j = (j + this.S[i] + key[i % key.length]) & 255;
t = this.S[i];
this.S[i] = this.S[j];
this.S[j] = t;
}
this.i = 0;
this.j = 0;
}
function ARC4next() {
var t;
this.i = (this.i + 1) & 255;
this.j = (this.j + this.S[this.i]) & 255;
t = this.S[this.i];
this.S[this.i] = this.S[this.j];
this.S[this.j] = t;
return this.S[(t + this.S[this.i]) & 255];
}
Arcfour.prototype.init = ARC4init;
Arcfour.prototype.next = ARC4next;
return new Arcfour();
};
// Initialize the pool with junk if needed.
if (sr.pool == null) {
sr.pool = new Array();
sr.pptr = 0;
var t;
if (getRandomValues && GLOBAL.Uint8Array) {
try {
// Use webcrypto if available
var ua = new Uint8Array(sr.poolSize);
getRandomValues(ua);
for (t = 0; t < sr.poolSize; ++t)
sr.pool[sr.pptr++] = ua[t];
} catch (e) {
alert(e);
}
}
while (sr.pptr < sr.poolSize) { // extract some randomness from Math.random()
t = Math.floor(65536 * Math.random());
sr.pool[sr.pptr++] = t >>> 8;
sr.pool[sr.pptr++] = t & 255;
}
sr.pptr = Math.floor(sr.poolSize * Math.random());
sr.seedTime();
// entropy
var entropyStr = "";
// screen size and color depth: ~4.8 to ~5.4 bits
entropyStr += (GLOBAL.screen.height * GLOBAL.screen.width * GLOBAL.screen.colorDepth);
entropyStr += (GLOBAL.screen.availHeight * GLOBAL.screen.availWidth * GLOBAL.screen.pixelDepth);
// time zone offset: ~4 bits
var dateObj = new Date();
var timeZoneOffset = dateObj.getTimezoneOffset();
entropyStr += timeZoneOffset;
// user agent: ~8.3 to ~11.6 bits
entropyStr += navigator.userAgent;
// browser plugin details: ~16.2 to ~21.8 bits
var pluginsStr = "";
for (var i = 0; i < navigator.plugins.length; i++) {
pluginsStr += navigator.plugins[i].name + " " + navigator.plugins[i].filename + " " + navigator.plugins[i].description + " " + navigator.plugins[i].version + ", ";
}
var mimeTypesStr = "";
for (var i = 0; i < navigator.mimeTypes.length; i++) {
mimeTypesStr += navigator.mimeTypes[i].description + " " + navigator.mimeTypes[i].type + " " + navigator.mimeTypes[i].suffixes + ", ";
}
entropyStr += pluginsStr + mimeTypesStr;
// cookies and storage: 1 bit
entropyStr += navigator.cookieEnabled + typeof(sessionStorage) + typeof(localStorage);
// language: ~7 bit
entropyStr += navigator.language;
// history: ~2 bit
entropyStr += GLOBAL.history.length;
// location
entropyStr += GLOBAL.location;
var entropyBytes = Crypto.SHA256(entropyStr, {
asBytes: true
});
for (var i = 0; i < entropyBytes.length; i++) {
sr.seedInt8(entropyBytes[i]);
}
}
})();
//ripemd160.js
(function() {
/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
/** @preserve
(c) 2012 by Cédric Mesnil. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Constants table
var zl = [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13
];
var zr = [
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
];
var sl = [
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6
];
var sr = [
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
];
var hl = [0x00000000, 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xA953FD4E];
var hr = [0x50A28BE6, 0x5C4DD124, 0x6D703EF3, 0x7A6D76E9, 0x00000000];
var bytesToWords = function(bytes) {
var words = [];
for (var i = 0, b = 0; i < bytes.length; i++, b += 8) {
words[b >>> 5] |= bytes[i] << (24 - b % 32);
}
return words;
};
var wordsToBytes = function(words) {
var bytes = [];
for (var b = 0; b < words.length * 32; b += 8) {
bytes.push((words[b >>> 5] >>> (24 - b % 32)) & 0xFF);
}
return bytes;
};
var processBlock = function(H, M, offset) {
// Swap endian
for (var i = 0; i < 16; i++) {
var offset_i = offset + i;
var M_offset_i = M[offset_i];
// Swap
M[offset_i] = (
(((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) |
(((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00)
);
}
// Working variables
var al, bl, cl, dl, el;
var ar, br, cr, dr, er;
ar = al = H[0];
br = bl = H[1];
cr = cl = H[2];
dr = dl = H[3];
er = el = H[4];
// Computation
var t;
for (var i = 0; i < 80; i += 1) {
t = (al + M[offset + zl[i]]) | 0;
if (i < 16) {
t += f1(bl, cl, dl) + hl[0];
} else if (i < 32) {
t += f2(bl, cl, dl) + hl[1];
} else if (i < 48) {
t += f3(bl, cl, dl) + hl[2];
} else if (i < 64) {
t += f4(bl, cl, dl) + hl[3];
} else { // if (i<80) {
t += f5(bl, cl, dl) + hl[4];
}
t = t | 0;
t = rotl(t, sl[i]);
t = (t + el) | 0;
al = el;
el = dl;
dl = rotl(cl, 10);
cl = bl;
bl = t;
t = (ar + M[offset + zr[i]]) | 0;
if (i < 16) {
t += f5(br, cr, dr) + hr[0];
} else if (i < 32) {
t += f4(br, cr, dr) + hr[1];
} else if (i < 48) {
t += f3(br, cr, dr) + hr[2];
} else if (i < 64) {
t += f2(br, cr, dr) + hr[3];
} else { // if (i<80) {
t += f1(br, cr, dr) + hr[4];
}
t = t | 0;
t = rotl(t, sr[i]);
t = (t + er) | 0;
ar = er;
er = dr;
dr = rotl(cr, 10);
cr = br;
br = t;
}
// Intermediate hash value
t = (H[1] + cl + dr) | 0;
H[1] = (H[2] + dl + er) | 0;
H[2] = (H[3] + el + ar) | 0;
H[3] = (H[4] + al + br) | 0;
H[4] = (H[0] + bl + cr) | 0;
H[0] = t;
};
function f1(x, y, z) {
return ((x) ^ (y) ^ (z));
}
function f2(x, y, z) {
return (((x) & (y)) | ((~x) & (z)));
}
function f3(x, y, z) {
return (((x) | (~(y))) ^ (z));
}
function f4(x, y, z) {
return (((x) & (z)) | ((y) & (~(z))));
}
function f5(x, y, z) {
return ((x) ^ ((y) | (~(z))));
}
function rotl(x, n) {
return (x << n) | (x >>> (32 - n));
}
GLOBAL.ripemd160 = function ripemd160(message) {
var H = [0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0];
var m = bytesToWords(message);
var nBitsLeft = message.length * 8;
var nBitsTotal = message.length * 8;
// Add padding
m[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
m[(((nBitsLeft + 64) >>> 9) << 4) + 14] = (
(((nBitsTotal << 8) | (nBitsTotal >>> 24)) & 0x00ff00ff) |
(((nBitsTotal << 24) | (nBitsTotal >>> 8)) & 0xff00ff00)
);
for (var i = 0; i < m.length; i += 16) {
processBlock(H, m, i);
}
// Swap endian
for (var i = 0; i < 5; i++) {
// Shortcut
var H_i = H[i];
// Swap
H[i] = (((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) |
(((H_i << 24) | (H_i >>> 8)) & 0xff00ff00);
}
var digestbytes = wordsToBytes(H);
return digestbytes;
}
})();
//BigInteger.js
(function() {
// Upstream 'BigInteger' here:
// Original Author: http://www-cs-students.stanford.edu/~tjw/jsbn/
// Follows 'jsbn' on Github: https://github.com/jasondavies/jsbn
// Review and Testing: https://github.com/cryptocoinjs/bigi/
/*!
* Basic JavaScript BN library - subset useful for RSA encryption. v1.4
*
* Copyright (c) 2005 Tom Wu
* All Rights Reserved.
* BSD License
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
*
* Copyright Stephan Thomas
* Copyright pointbiz
*/
// (public) Constructor function of Global BigInteger object
var BigInteger = GLOBAL.BigInteger = function BigInteger(a, b, c) {
if (!(this instanceof BigInteger))
return new BigInteger(a, b, c);
if (a != null)
if ("number" == typeof a) this.fromNumber(a, b, c);
else if (b == null && "string" != typeof a) this.fromString(a, 256);
else this.fromString(a, b);
};
// Bits per digit
var dbits;
// JavaScript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = ((canary & 0xffffff) == 0xefcafe);
// return new, unset BigInteger
function nbi() {
return new BigInteger(null);
}
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i, x, w, j, c, n) {
while (--n >= 0) {
var v = x * this[i++] + w[j] + c;
c = Math.floor(v / 0x4000000);
w[j++] = v & 0x3ffffff;
}
return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i, x, w, j, c, n) {
var xl = x & 0x7fff,
xh = x >> 15;
while (--n >= 0) {
var l = this[i] & 0x7fff;
var h = this[i++] >> 15;
var m = xh * l + h * xl;
l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
w[j++] = l & 0x3fffffff;
}
return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i, x, w, j, c, n) {
var xl = x & 0x3fff,
xh = x >> 14;
while (--n >= 0) {
var l = this[i] & 0x3fff;
var h = this[i++] >> 14;
var m = xh * l + h * xl;
l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
c = (l >> 28) + (m >> 14) + xh * h;
w[j++] = l & 0xfffffff;
}
return c;
}
if (j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
BigInteger.prototype.am = am2;
dbits = 30;
} else if (j_lm && (navigator.appName != "Netscape")) {
BigInteger.prototype.am = am1;
dbits = 26;
} else { // Mozilla/Netscape seems to prefer am3
BigInteger.prototype.am = am3;
dbits = 28;
}
BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1 << dbits) - 1);
BigInteger.prototype.DV = (1 << dbits);
var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2, BI_FP);
BigInteger.prototype.F1 = BI_FP - dbits;
BigInteger.prototype.F2 = 2 * dbits - BI_FP;
// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr, vv;
rr = "0".charCodeAt(0);
for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
rr = "a".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
rr = "A".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
function int2char(n) {
return BI_RM.charAt(n);
}
function intAt(s, i) {
var c = BI_RC[s.charCodeAt(i)];
return (c == null) ? -1 : c;
}
// return bigint initialized to value
function nbv(i) {
var r = nbi();
r.fromInt(i);
return r;
}
// returns bit length of the integer x
function nbits(x) {
var r = 1,
t;
if ((t = x >>> 16) != 0) {
x = t;
r += 16;
}
if ((t = x >> 8) != 0) {
x = t;
r += 8;
}
if ((t = x >> 4) != 0) {
x = t;
r += 4;
}
if ((t = x >> 2) != 0) {
x = t;
r += 2;
}
if ((t = x >> 1) != 0) {
x = t;
r += 1;
}
return r;
}
// (protected) copy this to r
BigInteger.prototype.copyTo = function(r) {
for (var i = this.t - 1; i >= 0; --i) r[i] = this[i];
r.t = this.t;
r.s = this.s;
};
// (protected) set from integer value x, -DV <= x < DV
BigInteger.prototype.fromInt = function(x) {
this.t = 1;
this.s = (x < 0) ? -1 : 0;
if (x > 0) this[0] = x;
else if (x < -1) this[0] = x + this.DV;
else this.t = 0;
};
// (protected) set from string and radix
BigInteger.prototype.fromString = function(s, b) {
var k;
if (b == 16) k = 4;
else if (b == 8) k = 3;
else if (b == 256) k = 8; // byte array
else if (b == 2) k = 1;
else if (b == 32) k = 5;
else if (b == 4) k = 2;
else {
this.fromRadix(s, b);
return;
}
this.t = 0;
this.s = 0;
var i = s.length,
mi = false,
sh = 0;
while (--i >= 0) {
var x = (k == 8) ? s[i] & 0xff : intAt(s, i);
if (x < 0) {
if (s.charAt(i) == "-") mi = true;
continue;
}
mi = false;
if (sh == 0)
this[this.t++] = x;
else if (sh + k > this.DB) {
this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh;
this[this.t++] = (x >> (this.DB - sh));
} else
this[this.t - 1] |= x << sh;
sh += k;
if (sh >= this.DB) sh -= this.DB;
}
if (k == 8 && (s[0] & 0x80) != 0) {
this.s = -1;
if (sh > 0) this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh;
}
this.clamp();
if (mi) BigInteger.ZERO.subTo(this, this);
};
// (protected) clamp off excess high words
BigInteger.prototype.clamp = function() {
var c = this.s & this.DM;
while (this.t > 0 && this[this.t - 1] == c) --this.t;
};
// (protected) r = this << n*DB
BigInteger.prototype.dlShiftTo = function(n, r) {
var i;
for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i];
for (i = n - 1; i >= 0; --i) r[i] = 0;
r.t = this.t + n;
r.s = this.s;
};
// (protected) r = this >> n*DB
BigInteger.prototype.drShiftTo = function(n, r) {
for (var i = n; i < this.t; ++i) r[i - n] = this[i];
r.t = Math.max(this.t - n, 0);
r.s = this.s;
};
// (protected) r = this << n
BigInteger.prototype.lShiftTo = function(n, r) {
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << cbs) - 1;
var ds = Math.floor(n / this.DB),
c = (this.s << bs) & this.DM,
i;
for (i = this.t - 1; i >= 0; --i) {
r[i + ds + 1] = (this[i] >> cbs) | c;
c = (this[i] & bm) << bs;
}
for (i = ds - 1; i >= 0; --i) r[i] = 0;
r[ds] = c;
r.t = this.t + ds + 1;
r.s = this.s;
r.clamp();
};
// (protected) r = this >> n
BigInteger.prototype.rShiftTo = function(n, r) {
r.s = this.s;
var ds = Math.floor(n / this.DB);
if (ds >= this.t) {
r.t = 0;
return;
}
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << bs) - 1;
r[0] = this[ds] >> bs;
for (var i = ds + 1; i < this.t; ++i) {
r[i - ds - 1] |= (this[i] & bm) << cbs;
r[i - ds] = this[i] >> bs;
}
if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs;
r.t = this.t - ds;
r.clamp();
};
// (protected) r = this - a
BigInteger.prototype.subTo = function(a, r) {
var i = 0,
c = 0,
m = Math.min(a.t, this.t);
while (i < m) {
c += this[i] - a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t) {
c -= a.s;
while (i < this.t) {
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
} else {
c += this.s;
while (i < a.t) {
c -= a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c -= a.s;
}
r.s = (c < 0) ? -1 : 0;
if (c < -1) r[i++] = this.DV + c;
else if (c > 0) r[i++] = c;
r.t = i;
r.clamp();
};
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
BigInteger.prototype.multiplyTo = function(a, r) {
var x = this.abs(),
y = a.abs();
var i = x.t;
r.t = i + y.t;
while (--i >= 0) r[i] = 0;
for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
r.s = 0;
r.clamp();
if (this.s != a.s) BigInteger.ZERO.subTo(r, r);
};
// (protected) r = this^2, r != this (HAC 14.16)
BigInteger.prototype.squareTo = function(r) {
var x = this.abs();
var i = r.t = 2 * x.t;
while (--i >= 0) r[i] = 0;
for (i = 0; i < x.t - 1; ++i) {
var c = x.am(i, x[i], r, 2 * i, 0, 1);
if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) {
r[i + x.t] -= x.DV;
r[i + x.t + 1] = 1;
}
}
if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
r.s = 0;
r.clamp();
};
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
BigInteger.prototype.divRemTo = function(m, q, r) {
var pm = m.abs();
if (pm.t <= 0) return;
var pt = this.abs();
if (pt.t < pm.t) {
if (q != null) q.fromInt(0);
if (r != null) this.copyTo(r);
return;
}
if (r == null) r = nbi();
var y = nbi(),
ts = this.s,
ms = m.s;
var nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus
if (nsh > 0) {
pm.lShiftTo(nsh, y);
pt.lShiftTo(nsh, r);
} else {
pm.copyTo(y);
pt.copyTo(r);
}
var ys = y.t;
var y0 = y[ys - 1];
if (y0 == 0) return;
var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0);
var d1 = this.FV / yt,
d2 = (1 << this.F1) / yt,
e = 1 << this.F2;
var i = r.t,
j = i - ys,
t = (q == null) ? nbi() : q;
y.dlShiftTo(j, t);
if (r.compareTo(t) >= 0) {
r[r.t++] = 1;
r.subTo(t, r);
}
BigInteger.ONE.dlShiftTo(ys, t);
t.subTo(y, y); // "negative" y so we can replace sub with am later
while (y.t < ys) y[y.t++] = 0;
while (--j >= 0) {
// Estimate quotient digit
var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out
y.dlShiftTo(j, t);
r.subTo(t, r);
while (r[i] < --qd) r.subTo(t, r);
}
}
if (q != null) {
r.drShiftTo(ys, q);
if (ts != ms) BigInteger.ZERO.subTo(q, q);
}
r.t = ys;
r.clamp();
if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder
if (ts < 0) BigInteger.ZERO.subTo(r, r);
};
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
BigInteger.prototype.invDigit = function() {
if (this.t < 1) return 0;
var x = this[0];
if ((x & 1) == 0) return 0;
var y = x & 3; // y == 1/x mod 2^2
y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4
y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8
y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y > 0) ? this.DV - y : -y;
};
// (protected) true iff this is even
BigInteger.prototype.isEven = function() {
return ((this.t > 0) ? (this[0] & 1) : this.s) == 0;
};
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
BigInteger.prototype.exp = function(e, z) {
if (e > 0xffffffff || e < 1) return BigInteger.ONE;
var r = nbi(),
r2 = nbi(),
g = z.convert(this),
i = nbits(e) - 1;
g.copyTo(r);
while (--i >= 0) {
z.sqrTo(r, r2);
if ((e & (1 << i)) > 0) z.mulTo(r2, g, r);
else {
var t = r;
r = r2;
r2 = t;
}
}
return z.revert(r);
};
// (public) return string representation in given radix
BigInteger.prototype.toString = function(b) {
if (this.s < 0) return "-" + this.negate().toString(b);
var k;
if (b == 16) k = 4;
else if (b == 8) k = 3;
else if (b == 2) k = 1;
else if (b == 32) k = 5;
else if (b == 4) k = 2;
else return this.toRadix(b);
var km = (1 << k) - 1,
d, m = false,
r = "",
i = this.t;
var p = this.DB - (i * this.DB) % k;
if (i-- > 0) {
if (p < this.DB && (d = this[i] >> p) > 0) {
m = true;
r = int2char(d);
}
while (i >= 0) {
if (p < k) {
d = (this[i] & ((1 << p) - 1)) << (k - p);
d |= this[--i] >> (p += this.DB - k);
} else {
d = (this[i] >> (p -= k)) & km;
if (p <= 0) {
p += this.DB;
--i;
}
}
if (d > 0) m = true;
if (m) r += int2char(d);
}
}
return m ? r : "0";
};
// (public) -this
BigInteger.prototype.negate = function() {
var r = nbi();
BigInteger.ZERO.subTo(this, r);
return r;
};
// (public) |this|
BigInteger.prototype.abs = function() {
return (this.s < 0) ? this.negate() : this;
};
// (public) return + if this > a, - if this < a, 0 if equal
BigInteger.prototype.compareTo = function(a) {
var r = this.s - a.s;
if (r != 0) return r;
var i = this.t;
r = i - a.t;
if (r != 0) return (this.s < 0) ? -r : r;
while (--i >= 0)
if ((r = this[i] - a[i]) != 0) return r;
return 0;
}
// (public) return the number of bits in "this"
BigInteger.prototype.bitLength = function() {
if (this.t <= 0) return 0;
return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM));
};
// (public) this mod a
BigInteger.prototype.mod = function(a) {
var r = nbi();
this.abs().divRemTo(a, null, r);
if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r);
return r;
}
// (public) this^e % m, 0 <= e < 2^32
BigInteger.prototype.modPowInt = function(e, m) {
var z;
if (e < 256 || m.isEven()) z = new Classic(m);
else z = new Montgomery(m);
return this.exp(e, z);
};
// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);
// Copyright (c) 2005-2009 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Extended JavaScript BN functions, required for RSA private ops.
// Version 1.1: new BigInteger("0", 10) returns "proper" zero
// Version 1.2: square() API, isProbablePrime fix
// return index of lowest 1-bit in x, x < 2^31
function lbit(x) {
if (x == 0) return -1;
var r = 0;
if ((x & 0xffff) == 0) {
x >>= 16;
r += 16;
}
if ((x & 0xff) == 0) {
x >>= 8;
r += 8;
}
if ((x & 0xf) == 0) {
x >>= 4;
r += 4;
}
if ((x & 3) == 0) {
x >>= 2;
r += 2;
}
if ((x & 1) == 0) ++r;
return r;
}
// return number of 1 bits in x
function cbit(x) {
var r = 0;
while (x != 0) {
x &= x - 1;
++r;
}
return r;
}
var lowprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89,
97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191,
193,
197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307,
311,
313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431,
433,
439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563,
569,
571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677,
683,
691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823,
827,
829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967,
971,
977, 983, 991, 997
];
var lplim = (1 << 26) / lowprimes[lowprimes.length - 1];
// (protected) return x s.t. r^x < DV
BigInteger.prototype.chunkSize = function(r) {
return Math.floor(Math.LN2 * this.DB / Math.log(r));
};
// (protected) convert to radix string
BigInteger.prototype.toRadix = function(b) {
if (b == null) b = 10;
if (this.signum() == 0 || b < 2 || b > 36) return "0";
var cs = this.chunkSize(b);
var a = Math.pow(b, cs);
var d = nbv(a),
y = nbi(),
z = nbi(),
r = "";
this.divRemTo(d, y, z);
while (y.signum() > 0) {
r = (a + z.intValue()).toString(b).substr(1) + r;
y.divRemTo(d, y, z);
}
return z.intValue().toString(b) + r;
};
// (protected) convert from radix string
BigInteger.prototype.fromRadix = function(s, b) {
this.fromInt(0);
if (b == null) b = 10;
var cs = this.chunkSize(b);
var d = Math.pow(b, cs),
mi = false,
j = 0,
w = 0;
for (var i = 0; i < s.length; ++i) {
var x = intAt(s, i);
if (x < 0) {
if (s.charAt(i) == "-" && this.signum() == 0) mi = true;
continue;
}
w = b * w + x;
if (++j >= cs) {
this.dMultiply(d);
this.dAddOffset(w, 0);
j = 0;
w = 0;
}
}
if (j > 0) {
this.dMultiply(Math.pow(b, j));
this.dAddOffset(w, 0);
}
if (mi) BigInteger.ZERO.subTo(this, this);
};
// (protected) alternate constructor
BigInteger.prototype.fromNumber = function(a, b, c) {
if ("number" == typeof b) {
// new BigInteger(int,int,RNG)
if (a < 2) this.fromInt(1);
else {
this.fromNumber(a, c);
if (!this.testBit(a - 1)) // force MSB set
this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this);
if (this.isEven()) this.dAddOffset(1, 0); // force odd
while (!this.isProbablePrime(b)) {
this.dAddOffset(2, 0);
if (this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a - 1), this);
}
}
} else {
// new BigInteger(int,RNG)
var x = new Array(),
t = a & 7;
x.length = (a >> 3) + 1;
b.nextBytes(x);
if (t > 0) x[0] &= ((1 << t) - 1);
else x[0] = 0;
this.fromString(x, 256);
}
};
// (protected) r = this op a (bitwise)
BigInteger.prototype.bitwiseTo = function(a, op, r) {
var i, f, m = Math.min(a.t, this.t);
for (i = 0; i < m; ++i) r[i] = op(this[i], a[i]);
if (a.t < this.t) {
f = a.s & this.DM;
for (i = m; i < this.t; ++i) r[i] = op(this[i], f);
r.t = this.t;
} else {
f = this.s & this.DM;
for (i = m; i < a.t; ++i) r[i] = op(f, a[i]);
r.t = a.t;
}
r.s = op(this.s, a.s);
r.clamp();
};
// (protected) this op (1<<n)
BigInteger.prototype.changeBit = function(n, op) {
var r = BigInteger.ONE.shiftLeft(n);
this.bitwiseTo(r, op, r);
return r;
};
// (protected) r = this + a
BigInteger.prototype.addTo = function(a, r) {
var i = 0,
c = 0,
m = Math.min(a.t, this.t);
while (i < m) {
c += this[i] + a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t) {
c += a.s;
while (i < this.t) {
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
} else {
c += this.s;
while (i < a.t) {
c += a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += a.s;
}
r.s = (c < 0) ? -1 : 0;
if (c > 0) r[i++] = c;
else if (c < -1) r[i++] = this.DV + c;
r.t = i;
r.clamp();
};
// (protected) this *= n, this >= 0, 1 < n < DV
BigInteger.prototype.dMultiply = function(n) {
this[this.t] = this.am(0, n - 1, this, 0, 0, this.t);
++this.t;
this.clamp();
};
// (protected) this += n << w words, this >= 0
BigInteger.prototype.dAddOffset = function(n, w) {
if (n == 0) return;
while (this.t <= w) this[this.t++] = 0;
this[w] += n;
while (this[w] >= this.DV) {
this[w] -= this.DV;
if (++w >= this.t) this[this.t++] = 0;
++this[w];
}
};
// (protected) r = lower n words of "this * a", a.t <= n
// "this" should be the larger one if appropriate.
BigInteger.prototype.multiplyLowerTo = function(a, n, r) {
var i = Math.min(this.t + a.t, n);
r.s = 0; // assumes a,this >= 0
r.t = i;
while (i > 0) r[--i] = 0;
var j;
for (j = r.t - this.t; i < j; ++i) r[i + this.t] = this.am(0, a[i], r, i, 0, this.t);
for (j = Math.min(a.t, n); i < j; ++i) this.am(0, a[i], r, i, 0, n - i);
r.clamp();
};
// (protected) r = "this * a" without lower n words, n > 0
// "this" should be the larger one if appropriate.
BigInteger.prototype.multiplyUpperTo = function(a, n, r) {
--n;
var i = r.t = this.t + a.t - n;
r.s = 0; // assumes a,this >= 0
while (--i >= 0) r[i] = 0;
for (i = Math.max(n - this.t, 0); i < a.t; ++i)
r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n);
r.clamp();
r.drShiftTo(1, r);
};
// (protected) this % n, n < 2^26
BigInteger.prototype.modInt = function(n) {
if (n <= 0) return 0;
var d = this.DV % n,
r = (this.s < 0) ? n - 1 : 0;
if (this.t > 0)
if (d == 0) r = this[0] % n;
else
for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n;
return r;
};
// (protected) true if probably prime (HAC 4.24, Miller-Rabin)
BigInteger.prototype.millerRabin = function(t) {
var n1 = this.subtract(BigInteger.ONE);
var k = n1.getLowestSetBit();
if (k <= 0) return false;
var r = n1.shiftRight(k);
t = (t + 1) >> 1;
if (t > lowprimes.length) t = lowprimes.length;
var a = nbi();
for (var i = 0; i < t; ++i) {
//Pick bases at random, instead of starting at 2
a.fromInt(lowprimes[Math.floor(Math.random() * lowprimes.length)]);
var y = a.modPow(r, this);
if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
var j = 1;
while (j++ < k && y.compareTo(n1) != 0) {
y = y.modPowInt(2, this);
if (y.compareTo(BigInteger.ONE) == 0) return false;
}
if (y.compareTo(n1) != 0) return false;
}
}
return true;
};
// (public)
BigInteger.prototype.clone = function() {
var r = nbi();
this.copyTo(r);
return r;
};
// (public) return value as integer
BigInteger.prototype.intValue = function() {
if (this.s < 0) {
if (this.t == 1) return this[0] - this.DV;
else if (this.t == 0) return -1;
} else if (this.t == 1) return this[0];
else if (this.t == 0) return 0;
// assumes 16 < DB < 32
return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0];
};
// (public) return value as byte
BigInteger.prototype.byteValue = function() {
return (this.t == 0) ? this.s : (this[0] << 24) >> 24;
};
// (public) return value as short (assumes DB>=16)
BigInteger.prototype.shortValue = function() {
return (this.t == 0) ? this.s : (this[0] << 16) >> 16;
};
// (public) 0 if this == 0, 1 if this > 0
BigInteger.prototype.signum = function() {
if (this.s < 0) return -1;
else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
else return 1;
};
// (public) convert to bigendian byte array
BigInteger.prototype.toByteArray = function() {
var i = this.t,
r = new Array();
r[0] = this.s;
var p = this.DB - (i * this.DB) % 8,
d, k = 0;
if (i-- > 0) {
if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p)
r[k++] = d | (this.s << (this.DB - p));
while (i >= 0) {
if (p < 8) {
d = (this[i] & ((1 << p) - 1)) << (8 - p);
d |= this[--i] >> (p += this.DB - 8);
} else {
d = (this[i] >> (p -= 8)) & 0xff;
if (p <= 0) {
p += this.DB;
--i;
}
}
if ((d & 0x80) != 0) d |= -256;
if (k == 0 && (this.s & 0x80) != (d & 0x80)) ++k;
if (k > 0 || d != this.s) r[k++] = d;
}
}
return r;
};
BigInteger.prototype.equals = function(a) {
return (this.compareTo(a) == 0);
};
BigInteger.prototype.min = function(a) {
return (this.compareTo(a) < 0) ? this : a;
};
BigInteger.prototype.max = function(a) {
return (this.compareTo(a) > 0) ? this : a;
};
// (public) this & a
function op_and(x, y) {
return x & y;
}
BigInteger.prototype.and = function(a) {
var r = nbi();
this.bitwiseTo(a, op_and, r);
return r;
};
// (public) this | a
function op_or(x, y) {
return x | y;
}
BigInteger.prototype.or = function(a) {
var r = nbi();
this.bitwiseTo(a, op_or, r);
return r;
};
// (public) this ^ a
function op_xor(x, y) {
return x ^ y;
}
BigInteger.prototype.xor = function(a) {
var r = nbi();
this.bitwiseTo(a, op_xor, r);
return r;
};
// (public) this & ~a
function op_andnot(x, y) {
return x & ~y;
}
BigInteger.prototype.andNot = function(a) {
var r = nbi();
this.bitwiseTo(a, op_andnot, r);
return r;
};
// (public) ~this
BigInteger.prototype.not = function() {
var r = nbi();
for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i];
r.t = this.t;
r.s = ~this.s;
return r;
};
// (public) this << n
BigInteger.prototype.shiftLeft = function(n) {
var r = nbi();
if (n < 0) this.rShiftTo(-n, r);
else this.lShiftTo(n, r);
return r;
};
// (public) this >> n
BigInteger.prototype.shiftRight = function(n) {
var r = nbi();
if (n < 0) this.lShiftTo(-n, r);
else this.rShiftTo(n, r);
return r;
};
// (public) returns index of lowest 1-bit (or -1 if none)
BigInteger.prototype.getLowestSetBit = function() {
for (var i = 0; i < this.t; ++i)
if (this[i] != 0) return i * this.DB + lbit(this[i]);
if (this.s < 0) return this.t * this.DB;
return -1;
};
// (public) return number of set bits
BigInteger.prototype.bitCount = function() {
var r = 0,
x = this.s & this.DM;
for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x);
return r;
};
// (public) true iff nth bit is set
BigInteger.prototype.testBit = function(n) {
var j = Math.floor(n / this.DB);
if (j >= this.t) return (this.s != 0);
return ((this[j] & (1 << (n % this.DB))) != 0);
};
// (public) this | (1<<n)
BigInteger.prototype.setBit = function(n) {
return this.changeBit(n, op_or);
};
// (public) this & ~(1<<n)
BigInteger.prototype.clearBit = function(n) {
return this.changeBit(n, op_andnot);
};
// (public) this ^ (1<<n)
BigInteger.prototype.flipBit = function(n) {
return this.changeBit(n, op_xor);
};
// (public) this + a
BigInteger.prototype.add = function(a) {
var r = nbi();
this.addTo(a, r);
return r;
};
// (public) this - a
BigInteger.prototype.subtract = function(a) {
var r = nbi();
this.subTo(a, r);
return r;
};
// (public) this * a
BigInteger.prototype.multiply = function(a) {
var r = nbi();
this.multiplyTo(a, r);
return r;
};
// (public) this / a
BigInteger.prototype.divide = function(a) {
var r = nbi();
this.divRemTo(a, r, null);
return r;
};
// (public) this % a
BigInteger.prototype.remainder = function(a) {
var r = nbi();
this.divRemTo(a, null, r);
return r;
};
// (public) [this/a,this%a]
BigInteger.prototype.divideAndRemainder = function(a) {
var q = nbi(),
r = nbi();
this.divRemTo(a, q, r);
return new Array(q, r);
};
// (public) this^e % m (HAC 14.85)
BigInteger.prototype.modPow = function(e, m) {
var i = e.bitLength(),
k, r = nbv(1),
z;
if (i <= 0) return r;
else if (i < 18) k = 1;
else if (i < 48) k = 3;
else if (i < 144) k = 4;
else if (i < 768) k = 5;
else k = 6;
if (i < 8)
z = new Classic(m);
else if (m.isEven())
z = new Barrett(m);
else
z = new Montgomery(m);
// precomputation
var g = new Array(),
n = 3,
k1 = k - 1,
km = (1 << k) - 1;
g[1] = z.convert(this);
if (k > 1) {
var g2 = nbi();
z.sqrTo(g[1], g2);
while (n <= km) {
g[n] = nbi();
z.mulTo(g2, g[n - 2], g[n]);
n += 2;
}
}
var j = e.t - 1,
w, is1 = true,
r2 = nbi(),
t;
i = nbits(e[j]) - 1;
while (j >= 0) {
if (i >= k1) w = (e[j] >> (i - k1)) & km;
else {
w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i);
if (j > 0) w |= e[j - 1] >> (this.DB + i - k1);
}
n = k;
while ((w & 1) == 0) {
w >>= 1;
--n;
}
if ((i -= n) < 0) {
i += this.DB;
--j;
}
if (is1) { // ret == 1, don't bother squaring or multiplying it
g[w].copyTo(r);
is1 = false;
} else {
while (n > 1) {
z.sqrTo(r, r2);
z.sqrTo(r2, r);
n -= 2;
}
if (n > 0) z.sqrTo(r, r2);
else {
t = r;
r = r2;
r2 = t;
}
z.mulTo(r2, g[w], r);
}
while (j >= 0 && (e[j] & (1 << i)) == 0) {
z.sqrTo(r, r2);
t = r;
r = r2;
r2 = t;
if (--i < 0) {
i = this.DB - 1;
--j;
}
}
}
return z.revert(r);
};
// (public) 1/this % m (HAC 14.61)
BigInteger.prototype.modInverse = function(m) {
var ac = m.isEven();
if (this.signum() === 0) throw new Error('division by zero');
if ((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
var u = m.clone(),
v = this.clone();
var a = nbv(1),
b = nbv(0),
c = nbv(0),
d = nbv(1);
while (u.signum() != 0) {
while (u.isEven()) {
u.rShiftTo(1, u);
if (ac) {
if (!a.isEven() || !b.isEven()) {
a.addTo(this, a);
b.subTo(m, b);
}
a.rShiftTo(1, a);
} else if (!b.isEven()) b.subTo(m, b);
b.rShiftTo(1, b);
}
while (v.isEven()) {
v.rShiftTo(1, v);
if (ac) {
if (!c.isEven() || !d.isEven()) {
c.addTo(this, c);
d.subTo(m, d);
}
c.rShiftTo(1, c);
} else if (!d.isEven()) d.subTo(m, d);
d.rShiftTo(1, d);
}
if (u.compareTo(v) >= 0) {
u.subTo(v, u);
if (ac) a.subTo(c, a);
b.subTo(d, b);
} else {
v.subTo(u, v);
if (ac) c.subTo(a, c);
d.subTo(b, d);
}
}
if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
while (d.compareTo(m) >= 0) d.subTo(m, d);
while (d.signum() < 0) d.addTo(m, d);
return d;
};
// (public) this^e
BigInteger.prototype.pow = function(e) {
return this.exp(e, new NullExp());
};
// (public) gcd(this,a) (HAC 14.54)
BigInteger.prototype.gcd = function(a) {
var x = (this.s < 0) ? this.negate() : this.clone();
var y = (a.s < 0) ? a.negate() : a.clone();
if (x.compareTo(y) < 0) {
var t = x;
x = y;
y = t;
}
var i = x.getLowestSetBit(),
g = y.getLowestSetBit();
if (g < 0) return x;
if (i < g) g = i;
if (g > 0) {
x.rShiftTo(g, x);
y.rShiftTo(g, y);
}
while (x.signum() > 0) {
if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x);
if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y);
if (x.compareTo(y) >= 0) {
x.subTo(y, x);
x.rShiftTo(1, x);
} else {
y.subTo(x, y);
y.rShiftTo(1, y);
}
}
if (g > 0) y.lShiftTo(g, y);
return y;
};
// (public) test primality with certainty >= 1-.5^t
BigInteger.prototype.isProbablePrime = function(t) {
var i, x = this.abs();
if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) {
for (i = 0; i < lowprimes.length; ++i)
if (x[0] == lowprimes[i]) return true;
return false;
}
if (x.isEven()) return false;
i = 1;
while (i < lowprimes.length) {
var m = lowprimes[i],
j = i + 1;
while (j < lowprimes.length && m < lplim) m *= lowprimes[j++];
m = x.modInt(m);
while (i < j)
if (m % lowprimes[i++] == 0) return false;
}
return x.millerRabin(t);
};
// JSBN-specific extension
// (public) this^2
BigInteger.prototype.square = function() {
var r = nbi();
this.squareTo(r);
return r;
};
// NOTE: BigInteger interfaces not implemented in jsbn:
// BigInteger(int signum, byte[] magnitude)
// double doubleValue()
// float floatValue()
// int hashCode()
// long longValue()
// static BigInteger valueOf(long val)
// Copyright Stephan Thomas (start) --- //
// https://raw.github.com/bitcoinjs/bitcoinjs-lib/07f9d55ccb6abd962efb6befdd37671f85ea4ff9/src/util.js
// BigInteger monkey patching
BigInteger.valueOf = nbv;
/**
* Returns a byte array representation of the big integer.
*
* This returns the absolute of the contained value in big endian
* form. A value of zero results in an empty array.
*/
BigInteger.prototype.toByteArrayUnsigned = function() {
var ba = this.abs().toByteArray();
if (ba.length) {
if (ba[0] == 0) {
ba = ba.slice(1);
}
return ba.map(function(v) {
return (v < 0) ? v + 256 : v;
});
} else {
// Empty array, nothing to do
return ba;
}
};
/**
* Turns a byte array into a big integer.
*
* This function will interpret a byte array as a big integer in big
* endian notation and ignore leading zeros.
*/
BigInteger.fromByteArrayUnsigned = function(ba) {
if (!ba.length) {
return ba.valueOf(0);
} else if (ba[0] & 0x80) {
// Prepend a zero so the BigInteger class doesn't mistake this
// for a negative integer.
return new BigInteger([0].concat(ba));
} else {
return new BigInteger(ba);
}
};
/**
* Converts big integer to signed byte representation.
*
* The format for this value uses a the most significant bit as a sign
* bit. If the most significant bit is already occupied by the
* absolute value, an extra byte is prepended and the sign bit is set
* there.
*
* Examples:
*
* 0 => 0x00
* 1 => 0x01
* -1 => 0x81
* 127 => 0x7f
* -127 => 0xff
* 128 => 0x0080
* -128 => 0x8080
* 255 => 0x00ff
* -255 => 0x80ff
* 16300 => 0x3fac
* -16300 => 0xbfac
* 62300 => 0x00f35c
* -62300 => 0x80f35c
*/
BigInteger.prototype.toByteArraySigned = function() {
var val = this.abs().toByteArrayUnsigned();
var neg = this.compareTo(BigInteger.ZERO) < 0;
if (neg) {
if (val[0] & 0x80) {
val.unshift(0x80);
} else {
val[0] |= 0x80;
}
} else {
if (val[0] & 0x80) {
val.unshift(0x00);
}
}
return val;
};
/**
* Parse a signed big integer byte representation.
*
* For details on the format please see BigInteger.toByteArraySigned.
*/
BigInteger.fromByteArraySigned = function(ba) {
// Check for negative value
if (ba[0] & 0x80) {
// Remove sign bit
ba[0] &= 0x7f;
return BigInteger.fromByteArrayUnsigned(ba).negate();
} else {
return BigInteger.fromByteArrayUnsigned(ba);
}
};
// Copyright Stephan Thomas (end) --- //
// ****** REDUCTION ******* //
// Modular reduction using "classic" algorithm
var Classic = GLOBAL.Classic = function Classic(m) {
this.m = m;
}
Classic.prototype.convert = function(x) {
if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
else return x;
};
Classic.prototype.revert = function(x) {
return x;
};
Classic.prototype.reduce = function(x) {
x.divRemTo(this.m, null, x);
};
Classic.prototype.mulTo = function(x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
};
Classic.prototype.sqrTo = function(x, r) {
x.squareTo(r);
this.reduce(r);
};
// Montgomery reduction
var Montgomery = GLOBAL.Montgomery = function Montgomery(m) {
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp & 0x7fff;
this.mph = this.mp >> 15;
this.um = (1 << (m.DB - 15)) - 1;
this.mt2 = 2 * m.t;
}
// xR mod m
Montgomery.prototype.convert = function(x) {
var r = nbi();
x.abs().dlShiftTo(this.m.t, r);
r.divRemTo(this.m, null, r);
if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r);
return r;
}
// x/R mod m
Montgomery.prototype.revert = function(x) {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
};
// x = x/R mod m (HAC 14.32)
Montgomery.prototype.reduce = function(x) {
while (x.t <= this.mt2) // pad x so am has enough room later
x[x.t++] = 0;
for (var i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x[i]*mp mod DV
var j = x[i] & 0x7fff;
var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM;
// use am to combine the multiply-shift-add into one call
j = i + this.m.t;
x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
// propagate carry
while (x[j] >= x.DV) {
x[j] -= x.DV;
x[++j]++;
}
}
x.clamp();
x.drShiftTo(this.m.t, x);
if (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
};
// r = "xy/R mod m"; x,y != r
Montgomery.prototype.mulTo = function(x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
};
// r = "x^2/R mod m"; x != r
Montgomery.prototype.sqrTo = function(x, r) {
x.squareTo(r);
this.reduce(r);
};
// A "null" reducer
var NullExp = GLOBAL.NullExp = function NullExp() {}
NullExp.prototype.convert = function(x) {
return x;
};
NullExp.prototype.revert = function(x) {
return x;
};
NullExp.prototype.mulTo = function(x, y, r) {
x.multiplyTo(y, r);
};
NullExp.prototype.sqrTo = function(x, r) {
x.squareTo(r);
};
// Barrett modular reduction
var Barrett = GLOBAL.Barrett = function Barrett(m) {
// setup Barrett
this.r2 = nbi();
this.q3 = nbi();
BigInteger.ONE.dlShiftTo(2 * m.t, this.r2);
this.mu = this.r2.divide(m);
this.m = m;
}
Barrett.prototype.convert = function(x) {
if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m);
else if (x.compareTo(this.m) < 0) return x;
else {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
};
Barrett.prototype.revert = function(x) {
return x;
};
// x = x mod m (HAC 14.42)
Barrett.prototype.reduce = function(x) {
x.drShiftTo(this.m.t - 1, this.r2);
if (x.t > this.m.t + 1) {
x.t = this.m.t + 1;
x.clamp();
}
this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3);
this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2);
while (x.compareTo(this.r2) < 0) x.dAddOffset(1, this.m.t + 1);
x.subTo(this.r2, x);
while (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
};
// r = x*y mod m; x,y != r
Barrett.prototype.mulTo = function(x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
};
// r = x^2 mod m; x != r
Barrett.prototype.sqrTo = function(x, r) {
x.squareTo(r);
this.reduce(r);
};
// BigInteger interfaces not implemented in jsbn:
// BigInteger(int signum, byte[] magnitude)
// double doubleValue()
// float floatValue()
// int hashCode()
// long longValue()
// static BigInteger valueOf(long val)
})();
//ellipticcurve.js
(function() {
/*!
* Basic Javascript Elliptic Curve implementation
* Ported loosely from BouncyCastle's Java EC code
* Only Fp curves implemented for now
*
* Copyright Tom Wu, bitaddress.org BSD License.
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
*/
// Constructor function of Global EllipticCurve object
var ec = GLOBAL.EllipticCurve = function() {};
// ----------------
// ECFieldElementFp constructor
// q instanceof BigInteger
// x instanceof BigInteger
ec.FieldElementFp = function(q, x) {
this.x = x;
// TODO if(x.compareTo(q) >= 0) error
this.q = q;
};
ec.FieldElementFp.prototype.equals = function(other) {
if (other == this) return true;
return (this.q.equals(other.q) && this.x.equals(other.x));
};
ec.FieldElementFp.prototype.toBigInteger = function() {
return this.x;
};
ec.FieldElementFp.prototype.negate = function() {
return new ec.FieldElementFp(this.q, this.x.negate().mod(this.q));
};
ec.FieldElementFp.prototype.add = function(b) {
return new ec.FieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q));
};
ec.FieldElementFp.prototype.subtract = function(b) {
return new ec.FieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q));
};
ec.FieldElementFp.prototype.multiply = function(b) {
return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q));
};
ec.FieldElementFp.prototype.square = function() {
return new ec.FieldElementFp(this.q, this.x.square().mod(this.q));
};
ec.FieldElementFp.prototype.divide = function(b) {
return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(
this.q));
};
ec.FieldElementFp.prototype.getByteLength = function() {
return Math.floor((this.toBigInteger().bitLength() + 7) / 8);
};
// D.1.4 91
/**
* return a sqrt root - the routine verifies that the calculation
* returns the right value - if none exists it returns null.
*
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
* Ported to JavaScript by bitaddress.org
*/
ec.FieldElementFp.prototype.sqrt = function() {
if (!this.q.testBit(0)) throw new Error("even value of q");
// p mod 4 == 3
if (this.q.testBit(1)) {
// z = g^(u+1) + p, p = 4u + 3
var z = new ec.FieldElementFp(this.q, this.x.modPow(this.q.shiftRight(2).add(BigInteger.ONE),
this.q));
return z.square().equals(this) ? z : null;
}
// p mod 4 == 1
var qMinusOne = this.q.subtract(BigInteger.ONE);
var legendreExponent = qMinusOne.shiftRight(1);
if (!(this.x.modPow(legendreExponent, this.q).equals(BigInteger.ONE))) return null;
var u = qMinusOne.shiftRight(2);
var k = u.shiftLeft(1).add(BigInteger.ONE);
var Q = this.x;
var fourQ = Q.shiftLeft(2).mod(this.q);
var U, V;
do {
var rand = new SecureRandom();
var P;
do {
P = new BigInteger(this.q.bitLength(), rand);
}
while (P.compareTo(this.q) >= 0 || !(P.multiply(P).subtract(fourQ).modPow(legendreExponent,
this.q).equals(qMinusOne)));
var result = ec.FieldElementFp.fastLucasSequence(this.q, P, Q, k);
U = result[0];
V = result[1];
if (V.multiply(V).mod(this.q).equals(fourQ)) {
// Integer division by 2, mod q
if (V.testBit(0)) {
V = V.add(this.q);
}
V = V.shiftRight(1);
return new ec.FieldElementFp(this.q, V);
}
}
while (U.equals(BigInteger.ONE) || U.equals(qMinusOne));
return null;
};
/*!
* Crypto-JS 2.5.4 BlockModes.js
* contribution from Simon Greatrix
*/
(function(C) {
// Create pad namespace
var C_pad = C.pad = {};
// Calculate the number of padding bytes required.
function _requiredPadding(cipher, message) {
var blockSizeInBytes = cipher._blocksize * 4;
var reqd = blockSizeInBytes - message.length % blockSizeInBytes;
return reqd;
}
// Remove padding when the final byte gives the number of padding bytes.
var _unpadLength = function(cipher, message, alg, padding) {
var pad = message.pop();
if (pad == 0) {
throw new Error("Invalid zero-length padding specified for " + alg +
". Wrong cipher specification or key used?");
}
var maxPad = cipher._blocksize * 4;
if (pad > maxPad) {
throw new Error("Invalid padding length of " + pad +
" specified for " + alg +
". Wrong cipher specification or key used?");
}
for (var i = 1; i < pad; i++) {
var b = message.pop();
if (padding != undefined && padding != b) {
throw new Error("Invalid padding byte of 0x" + b.toString(16) +
" specified for " + alg +
". Wrong cipher specification or key used?");
}
}
};
// No-operation padding, used for stream ciphers
C_pad.NoPadding = {
pad: function(cipher, message) {},
unpad: function(cipher, message) {}
};
// Zero Padding.
//
// If the message is not an exact number of blocks, the final block is
// completed with 0x00 bytes. There is no unpadding.
C_pad.ZeroPadding = {
pad: function(cipher, message) {
var blockSizeInBytes = cipher._blocksize * 4;
var reqd = message.length % blockSizeInBytes;
if (reqd != 0) {
for (reqd = blockSizeInBytes - reqd; reqd > 0; reqd--) {
message.push(0x00);
}
}
},
unpad: function(cipher, message) {
while (message[message.length - 1] == 0) {
message.pop();
}
}
};
// ISO/IEC 7816-4 padding.
//
// Pads the plain text with an 0x80 byte followed by as many 0x00
// bytes are required to complete the block.
C_pad.iso7816 = {
pad: function(cipher, message) {
var reqd = _requiredPadding(cipher, message);
message.push(0x80);
for (; reqd > 1; reqd--) {
message.push(0x00);
}
},
unpad: function(cipher, message) {
var padLength;
for (padLength = cipher._blocksize * 4; padLength > 0; padLength--) {
var b = message.pop();
if (b == 0x80) return;
if (b != 0x00) {
throw new Error("ISO-7816 padding byte must be 0, not 0x" + b.toString(16) +
". Wrong cipher specification or key used?");
}
}
throw new Error(
"ISO-7816 padded beyond cipher block size. Wrong cipher specification or key used?"
);
}
};
// ANSI X.923 padding
//
// The final block is padded with zeros except for the last byte of the
// last block which contains the number of padding bytes.
C_pad.ansix923 = {
pad: function(cipher, message) {
var reqd = _requiredPadding(cipher, message);
for (var i = 1; i < reqd; i++) {
message.push(0x00);
}
message.push(reqd);
},
unpad: function(cipher, message) {
_unpadLength(cipher, message, "ANSI X.923", 0);
}
};
// ISO 10126
//
// The final block is padded with random bytes except for the last
// byte of the last block which contains the number of padding bytes.
C_pad.iso10126 = {
pad: function(cipher, message) {
var reqd = _requiredPadding(cipher, message);
for (var i = 1; i < reqd; i++) {
message.push(Math.floor(Math.random() * 256));
}
message.push(reqd);
},
unpad: function(cipher, message) {
_unpadLength(cipher, message, "ISO 10126", undefined);
}
};
// PKCS7 padding
//
// PKCS7 is described in RFC 5652. Padding is in whole bytes. The
// value of each added byte is the number of bytes that are added,
// i.e. N bytes, each of value N are added.
C_pad.pkcs7 = {
pad: function(cipher, message) {
var reqd = _requiredPadding(cipher, message);
for (var i = 0; i < reqd; i++) {
message.push(reqd);
}
},
unpad: function(cipher, message) {
_unpadLength(cipher, message, "PKCS 7", message[message.length - 1]);
}
};
// Create mode namespace
var C_mode = C.mode = {};
/**
* Mode base "class".
*/
var Mode = C_mode.Mode = function(padding) {
if (padding) {
this._padding = padding;
}
};
Mode.prototype = {
encrypt: function(cipher, m, iv) {
this._padding.pad(cipher, m);
this._doEncrypt(cipher, m, iv);
},
decrypt: function(cipher, m, iv) {
this._doDecrypt(cipher, m, iv);
this._padding.unpad(cipher, m);
},
// Default padding
_padding: C_pad.iso7816
};
/**
* Electronic Code Book mode.
*
* ECB applies the cipher directly against each block of the input.
*
* ECB does not require an initialization vector.
*/
var ECB = C_mode.ECB = function() {
// Call parent constructor
Mode.apply(this, arguments);
};
// Inherit from Mode
var ECB_prototype = ECB.prototype = new Mode;
// Concrete steps for Mode template
ECB_prototype._doEncrypt = function(cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// Encrypt each block
for (var offset = 0; offset < m.length; offset += blockSizeInBytes) {
cipher._encryptblock(m, offset);
}
};
ECB_prototype._doDecrypt = function(cipher, c, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// Decrypt each block
for (var offset = 0; offset < c.length; offset += blockSizeInBytes) {
cipher._decryptblock(c, offset);
}
};
// ECB never uses an IV
ECB_prototype.fixOptions = function(options) {
options.iv = [];
};
/**
* Cipher block chaining
*
* The first block is XORed with the IV. Subsequent blocks are XOR with the
* previous cipher output.
*/
var CBC = C_mode.CBC = function() {
// Call parent constructor
Mode.apply(this, arguments);
};
// Inherit from Mode
var CBC_prototype = CBC.prototype = new Mode;
// Concrete steps for Mode template
CBC_prototype._doEncrypt = function(cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// Encrypt each block
for (var offset = 0; offset < m.length; offset += blockSizeInBytes) {
if (offset == 0) {
// XOR first block using IV
for (var i = 0; i < blockSizeInBytes; i++)
m[i] ^= iv[i];
} else {
// XOR this block using previous crypted block
for (var i = 0; i < blockSizeInBytes; i++)
m[offset + i] ^= m[offset + i - blockSizeInBytes];
}
// Encrypt block
cipher._encryptblock(m, offset);
}
};
CBC_prototype._doDecrypt = function(cipher, c, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// At the start, the previously crypted block is the IV
var prevCryptedBlock = iv;
// Decrypt each block
for (var offset = 0; offset < c.length; offset += blockSizeInBytes) {
// Save this crypted block
var thisCryptedBlock = c.slice(offset, offset + blockSizeInBytes);
// Decrypt block
cipher._decryptblock(c, offset);
// XOR decrypted block using previous crypted block
for (var i = 0; i < blockSizeInBytes; i++) {
c[offset + i] ^= prevCryptedBlock[i];
}
prevCryptedBlock = thisCryptedBlock;
}
};
/**
* Cipher feed back
*
* The cipher output is XORed with the plain text to produce the cipher output,
* which is then fed back into the cipher to produce a bit pattern to XOR the
* next block with.
*
* This is a stream cipher mode and does not require padding.
*/
var CFB = C_mode.CFB = function() {
// Call parent constructor
Mode.apply(this, arguments);
};
// Inherit from Mode
var CFB_prototype = CFB.prototype = new Mode;
// Override padding
CFB_prototype._padding = C_pad.NoPadding;
// Concrete steps for Mode template
CFB_prototype._doEncrypt = function(cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4,
keystream = iv.slice(0);
// Encrypt each byte
for (var i = 0; i < m.length; i++) {
var j = i % blockSizeInBytes;
if (j == 0) cipher._encryptblock(keystream, 0);
m[i] ^= keystream[j];
keystream[j] = m[i];
}
};
CFB_prototype._doDecrypt = function(cipher, c, iv) {
var blockSizeInBytes = cipher._blocksize * 4,
keystream = iv.slice(0);
// Encrypt each byte
for (var i = 0; i < c.length; i++) {
var j = i % blockSizeInBytes;
if (j == 0) cipher._encryptblock(keystream, 0);
var b = c[i];
c[i] ^= keystream[j];
keystream[j] = b;
}
};
/**
* Output feed back
*
* The cipher repeatedly encrypts its own output. The output is XORed with the
* plain text to produce the cipher text.
*
* This is a stream cipher mode and does not require padding.
*/
var OFB = C_mode.OFB = function() {
// Call parent constructor
Mode.apply(this, arguments);
};
// Inherit from Mode
var OFB_prototype = OFB.prototype = new Mode;
// Override padding
OFB_prototype._padding = C_pad.NoPadding;
// Concrete steps for Mode template
OFB_prototype._doEncrypt = function(cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4,
keystream = iv.slice(0);
// Encrypt each byte
for (var i = 0; i < m.length; i++) {
// Generate keystream
if (i % blockSizeInBytes == 0)
cipher._encryptblock(keystream, 0);
// Encrypt byte
m[i] ^= keystream[i % blockSizeInBytes];
}
};
OFB_prototype._doDecrypt = OFB_prototype._doEncrypt;
/**
* Counter
* @author Gergely Risko
*
* After every block the last 4 bytes of the IV is increased by one
* with carry and that IV is used for the next block.
*
* This is a stream cipher mode and does not require padding.
*/
var CTR = C_mode.CTR = function() {
// Call parent constructor
Mode.apply(this, arguments);
};
// Inherit from Mode
var CTR_prototype = CTR.prototype = new Mode;
// Override padding
CTR_prototype._padding = C_pad.NoPadding;
CTR_prototype._doEncrypt = function(cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
var counter = iv.slice(0);
for (var i = 0; i < m.length;) {
// do not lose iv
var keystream = counter.slice(0);
// Generate keystream for next block
cipher._encryptblock(keystream, 0);
// XOR keystream with block
for (var j = 0; i < m.length && j < blockSizeInBytes; j++, i++) {
m[i] ^= keystream[j];
}
// Increase counter
if (++(counter[blockSizeInBytes - 1]) == 256) {
counter[blockSizeInBytes - 1] = 0;
if (++(counter[blockSizeInBytes - 2]) == 256) {
counter[blockSizeInBytes - 2] = 0;
if (++(counter[blockSizeInBytes - 3]) == 256) {
counter[blockSizeInBytes - 3] = 0;
++(counter[blockSizeInBytes - 4]);
}
}
}
}
};
CTR_prototype._doDecrypt = CTR_prototype._doEncrypt;
})(Crypto);
/*!
* Crypto-JS v2.5.4 PBKDF2.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function() {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
C.PBKDF2 = function(password, salt, keylen, options) {
// Convert to byte arrays
if (password.constructor == String) password = UTF8.stringToBytes(password);
if (salt.constructor == String) salt = UTF8.stringToBytes(salt);
/* else, assume byte arrays already */
// Defaults
var hasher = options && options.hasher || C.SHA1,
iterations = options && options.iterations || 1;
// Pseudo-random function
function PRF(password, salt) {
return C.HMAC(hasher, salt, password, {
asBytes: true
});
}
// Generate key
var derivedKeyBytes = [],
blockindex = 1;
while (derivedKeyBytes.length < keylen) {
var block = PRF(password, salt.concat(util.wordsToBytes([blockindex])));
for (var u = block, i = 1; i < iterations; i++) {
u = PRF(password, u);
for (var j = 0; j < block.length; j++) block[j] ^= u[j];
}
derivedKeyBytes = derivedKeyBytes.concat(block);
blockindex++;
}
// Truncate excess bytes
derivedKeyBytes.length = keylen;
return options && options.asBytes ? derivedKeyBytes :
options && options.asString ? Binary.bytesToString(derivedKeyBytes) :
util.bytesToHex(derivedKeyBytes);
};
})();
/*
* Copyright (c) 2010-2011 Intalio Pte, All Rights Reserved
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// https://github.com/cheongwy/node-scrypt-js
(function() {
var MAX_VALUE = 2147483647;
var workerUrl = null;
//function scrypt(byte[] passwd, byte[] salt, int N, int r, int p, int dkLen)
/*
* N = Cpu cost
* r = Memory cost
* p = parallelization cost
*
*/
GLOBAL.Crypto_scrypt = function(passwd, salt, N, r, p, dkLen, callback) {
if (N == 0 || (N & (N - 1)) != 0) throw Error("N must be > 0 and a power of 2");
if (N > MAX_VALUE / 128 / r) throw Error("Parameter N is too large");
if (r > MAX_VALUE / 128 / p) throw Error("Parameter r is too large");
var PBKDF2_opts = {
iterations: 1,
hasher: Crypto.SHA256,
asBytes: true
};
var B = Crypto.PBKDF2(passwd, salt, p * 128 * r, PBKDF2_opts);
try {
var i = 0;
var worksDone = 0;
var makeWorker = function() {
if (!workerUrl) {
var code = '(' + scryptCore.toString() + ')()';
var blob;
try {
blob = new Blob([code], {
type: "text/javascript"
});
} catch (e) {
GLOBAL.BlobBuilder = GLOBAL.BlobBuilder || GLOBAL.WebKitBlobBuilder ||
GLOBAL.MozBlobBuilder ||
GLOBAL.MSBlobBuilder;
blob = new BlobBuilder();
blob.append(code);
blob = blob.getBlob("text/javascript");
}
workerUrl = URL.createObjectURL(blob);
}
var worker = new Worker(workerUrl);
worker.onmessage = function(event) {
var Bi = event.data[0],
Bslice = event.data[1];
worksDone++;
if (i < p) {
worker.postMessage([N, r, p, B, i++]);
}
var length = Bslice.length,
destPos = Bi * 128 * r,
srcPos = 0;
while (length--) {
B[destPos++] = Bslice[srcPos++];
}
if (worksDone == p) {
callback(Crypto.PBKDF2(passwd, B, dkLen, PBKDF2_opts));
}
};
return worker;
};
var workers = [makeWorker(), makeWorker()];
workers[0].postMessage([N, r, p, B, i++]);
if (p > 1) {
workers[1].postMessage([N, r, p, B, i++]);
}
} catch (e) {
GLOBAL.setTimeout(function() {
scryptCore();
callback(Crypto.PBKDF2(passwd, B, dkLen, PBKDF2_opts));
}, 0);
}
// using this function to enclose everything needed to create a worker (but also invokable directly for synchronous use)
function scryptCore() {
var XY = [],
V = [];
if (typeof B === 'undefined') {
onmessage = function(event) {
var data = event.data;
var N = data[0],
r = data[1],
p = data[2],
B = data[3],
i = data[4];
var Bslice = [];
arraycopy32(B, i * 128 * r, Bslice, 0, 128 * r);
smix(Bslice, 0, r, N, V, XY);
postMessage([i, Bslice]);
};
} else {
for (var i = 0; i < p; i++) {
smix(B, i * 128 * r, r, N, V, XY);
}
}
function smix(B, Bi, r, N, V, XY) {
var Xi = 0;
var Yi = 128 * r;
var i;
arraycopy32(B, Bi, XY, Xi, Yi);
for (i = 0; i < N; i++) {
arraycopy32(XY, Xi, V, i * Yi, Yi);
blockmix_salsa8(XY, Xi, Yi, r);
}
for (i = 0; i < N; i++) {
var j = integerify(XY, Xi, r) & (N - 1);
blockxor(V, j * Yi, XY, Xi, Yi);
blockmix_salsa8(XY, Xi, Yi, r);
}
arraycopy32(XY, Xi, B, Bi, Yi);
}
function blockmix_salsa8(BY, Bi, Yi, r) {
var X = [];
var i;
arraycopy32(BY, Bi + (2 * r - 1) * 64, X, 0, 64);
for (i = 0; i < 2 * r; i++) {
blockxor(BY, i * 64, X, 0, 64);
salsa20_8(X);
arraycopy32(X, 0, BY, Yi + (i * 64), 64);
}
for (i = 0; i < r; i++) {
arraycopy32(BY, Yi + (i * 2) * 64, BY, Bi + (i * 64), 64);
}
for (i = 0; i < r; i++) {
arraycopy32(BY, Yi + (i * 2 + 1) * 64, BY, Bi + (i + r) * 64, 64);
}
}
function R(a, b) {
return (a << b) | (a >>> (32 - b));
}
function salsa20_8(B) {
var B32 = new Array(32);
var x = new Array(32);
var i;
for (i = 0; i < 16; i++) {
B32[i] = (B[i * 4 + 0] & 0xff) << 0;
B32[i] |= (B[i * 4 + 1] & 0xff) << 8;
B32[i] |= (B[i * 4 + 2] & 0xff) << 16;
B32[i] |= (B[i * 4 + 3] & 0xff) << 24;
}
arraycopy(B32, 0, x, 0, 16);
for (i = 8; i > 0; i -= 2) {
x[4] ^= R(x[0] + x[12], 7);
x[8] ^= R(x[4] + x[0], 9);
x[12] ^= R(x[8] + x[4], 13);
x[0] ^= R(x[12] + x[8], 18);
x[9] ^= R(x[5] + x[1], 7);
x[13] ^= R(x[9] + x[5], 9);
x[1] ^= R(x[13] + x[9], 13);
x[5] ^= R(x[1] + x[13], 18);
x[14] ^= R(x[10] + x[6], 7);
x[2] ^= R(x[14] + x[10], 9);
x[6] ^= R(x[2] + x[14], 13);
x[10] ^= R(x[6] + x[2], 18);
x[3] ^= R(x[15] + x[11], 7);
x[7] ^= R(x[3] + x[15], 9);
x[11] ^= R(x[7] + x[3], 13);
x[15] ^= R(x[11] + x[7], 18);
x[1] ^= R(x[0] + x[3], 7);
x[2] ^= R(x[1] + x[0], 9);
x[3] ^= R(x[2] + x[1], 13);
x[0] ^= R(x[3] + x[2], 18);
x[6] ^= R(x[5] + x[4], 7);
x[7] ^= R(x[6] + x[5], 9);
x[4] ^= R(x[7] + x[6], 13);
x[5] ^= R(x[4] + x[7], 18);
x[11] ^= R(x[10] + x[9], 7);
x[8] ^= R(x[11] + x[10], 9);
x[9] ^= R(x[8] + x[11], 13);
x[10] ^= R(x[9] + x[8], 18);
x[12] ^= R(x[15] + x[14], 7);
x[13] ^= R(x[12] + x[15], 9);
x[14] ^= R(x[13] + x[12], 13);
x[15] ^= R(x[14] + x[13], 18);
}
for (i = 0; i < 16; ++i) B32[i] = x[i] + B32[i];
for (i = 0; i < 16; i++) {
var bi = i * 4;
B[bi + 0] = (B32[i] >> 0 & 0xff);
B[bi + 1] = (B32[i] >> 8 & 0xff);
B[bi + 2] = (B32[i] >> 16 & 0xff);
B[bi + 3] = (B32[i] >> 24 & 0xff);
}
}
function blockxor(S, Si, D, Di, len) {
var i = len >> 6;
while (i--) {
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
}
}
function integerify(B, bi, r) {
var n;
bi += (2 * r - 1) * 64;
n = (B[bi + 0] & 0xff) << 0;
n |= (B[bi + 1] & 0xff) << 8;
n |= (B[bi + 2] & 0xff) << 16;
n |= (B[bi + 3] & 0xff) << 24;
return n;
}
function arraycopy(src, srcPos, dest, destPos, length) {
while (length--) {
dest[destPos++] = src[srcPos++];
}
}
function arraycopy32(src, srcPos, dest, destPos, length) {
var i = length >> 5;
while (i--) {
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
}
}
} // scryptCore
}; // GLOBAL.Crypto_scrypt
})();
/*!
* Crypto-JS v2.5.4 AES.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function() {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8;
// Precomputed SBOX
var SBOX = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
];
// Compute inverse SBOX lookup table
for (var INVSBOX = [], i = 0; i < 256; i++) INVSBOX[SBOX[i]] = i;
// Compute multiplication in GF(2^8) lookup tables
var MULT2 = [],
MULT3 = [],
MULT9 = [],
MULTB = [],
MULTD = [],
MULTE = [];
function xtime(a, b) {
for (var result = 0, i = 0; i < 8; i++) {
if (b & 1) result ^= a;
var hiBitSet = a & 0x80;
a = (a << 1) & 0xFF;
if (hiBitSet) a ^= 0x1b;
b >>>= 1;
}
return result;
}
for (var i = 0; i < 256; i++) {
MULT2[i] = xtime(i, 2);
MULT3[i] = xtime(i, 3);
MULT9[i] = xtime(i, 9);
MULTB[i] = xtime(i, 0xB);
MULTD[i] = xtime(i, 0xD);
MULTE[i] = xtime(i, 0xE);
}
// Precomputed RCon lookup
var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
// Inner state
var state = [
[],
[],
[],
[]
],
keylength,
nrounds,
keyschedule;
var AES = C.AES = {
/**
* Public API
*/
encrypt: function(message, password, options) {
options = options || {};
// Determine mode
var mode = options.mode || new C.mode.OFB;
// Allow mode to override options
if (mode.fixOptions) mode.fixOptions(options);
var
// Convert to bytes if message is a string
m = (
message.constructor == String ?
UTF8.stringToBytes(message) :
message
),
// Generate random IV
iv = options.iv || util.randomBytes(AES._blocksize * 4),
// Generate key
k = (
password.constructor == String ?
// Derive key from pass-phrase
C.PBKDF2(password, iv, 32, {
asBytes: true
}) :
// else, assume byte array representing cryptographic key
password
);
// Encrypt
AES._init(k);
mode.encrypt(AES, m, iv);
// Return ciphertext
m = options.iv ? m : iv.concat(m);
return (options && options.asBytes) ? m : util.bytesToBase64(m);
},
decrypt: function(ciphertext, password, options) {
options = options || {};
// Determine mode
var mode = options.mode || new C.mode.OFB;
// Allow mode to override options
if (mode.fixOptions) mode.fixOptions(options);
var
// Convert to bytes if ciphertext is a string
c = (
ciphertext.constructor == String ?
util.base64ToBytes(ciphertext) :
ciphertext
),
// Separate IV and message
iv = options.iv || c.splice(0, AES._blocksize * 4),
// Generate key
k = (
password.constructor == String ?
// Derive key from pass-phrase
C.PBKDF2(password, iv, 32, {
asBytes: true
}) :
// else, assume byte array representing cryptographic key
password
);
// Decrypt
AES._init(k);
mode.decrypt(AES, c, iv);
// Return plaintext
return (options && options.asBytes) ? c : UTF8.bytesToString(c);
},
/**
* Package private methods and properties
*/
_blocksize: 4,
_encryptblock: function(m, offset) {
// Set input
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = m[offset + col * 4 + row];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[col][row];
}
for (var round = 1; round < nrounds; round++) {
// Sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = SBOX[state[row][col]];
}
// Shift rows
state[1].push(state[1].shift());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].unshift(state[3].pop());
// Mix columns
for (var col = 0; col < 4; col++) {
var s0 = state[0][col],
s1 = state[1][col],
s2 = state[2][col],
s3 = state[3][col];
state[0][col] = MULT2[s0] ^ MULT3[s1] ^ s2 ^ s3;
state[1][col] = s0 ^ MULT2[s1] ^ MULT3[s2] ^ s3;
state[2][col] = s0 ^ s1 ^ MULT2[s2] ^ MULT3[s3];
state[3][col] = MULT3[s0] ^ s1 ^ s2 ^ MULT2[s3];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[round * 4 + col][row];
}
}
// Sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = SBOX[state[row][col]];
}
// Shift rows
state[1].push(state[1].shift());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].unshift(state[3].pop());
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[nrounds * 4 + col][row];
}
// Set output
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
m[offset + col * 4 + row] = state[row][col];
}
},
_decryptblock: function(c, offset) {
// Set input
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = c[offset + col * 4 + row];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[nrounds * 4 + col][row];
}
for (var round = 1; round < nrounds; round++) {
// Inv shift rows
state[1].unshift(state[1].pop());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].push(state[3].shift());
// Inv sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = INVSBOX[state[row][col]];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[(nrounds - round) * 4 + col][row];
}
// Inv mix columns
for (var col = 0; col < 4; col++) {
var s0 = state[0][col],
s1 = state[1][col],
s2 = state[2][col],
s3 = state[3][col];
state[0][col] = MULTE[s0] ^ MULTB[s1] ^ MULTD[s2] ^ MULT9[s3];
state[1][col] = MULT9[s0] ^ MULTE[s1] ^ MULTB[s2] ^ MULTD[s3];
state[2][col] = MULTD[s0] ^ MULT9[s1] ^ MULTE[s2] ^ MULTB[s3];
state[3][col] = MULTB[s0] ^ MULTD[s1] ^ MULT9[s2] ^ MULTE[s3];
}
}
// Inv shift rows
state[1].unshift(state[1].pop());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].push(state[3].shift());
// Inv sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = INVSBOX[state[row][col]];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[col][row];
}
// Set output
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
c[offset + col * 4 + row] = state[row][col];
}
},
/**
* Private methods
*/
_init: function(k) {
keylength = k.length / 4;
nrounds = keylength + 6;
AES._keyexpansion(k);
},
// Generate a key schedule
_keyexpansion: function(k) {
keyschedule = [];
for (var row = 0; row < keylength; row++) {
keyschedule[row] = [
k[row * 4],
k[row * 4 + 1],
k[row * 4 + 2],
k[row * 4 + 3]
];
}
for (var row = keylength; row < AES._blocksize * (nrounds + 1); row++) {
var temp = [
keyschedule[row - 1][0],
keyschedule[row - 1][1],
keyschedule[row - 1][2],
keyschedule[row - 1][3]
];
if (row % keylength == 0) {
// Rot word
temp.push(temp.shift());
// Sub word
temp[0] = SBOX[temp[0]];
temp[1] = SBOX[temp[1]];
temp[2] = SBOX[temp[2]];
temp[3] = SBOX[temp[3]];
temp[0] ^= RCON[row / keylength];
} else if (keylength > 6 && row % keylength == 4) {
// Sub word
temp[0] = SBOX[temp[0]];
temp[1] = SBOX[temp[1]];
temp[2] = SBOX[temp[2]];
temp[3] = SBOX[temp[3]];
}
keyschedule[row] = [
keyschedule[row - keylength][0] ^ temp[0],
keyschedule[row - keylength][1] ^ temp[1],
keyschedule[row - keylength][2] ^ temp[2],
keyschedule[row - keylength][3] ^ temp[3]
];
}
}
};
})();
/*
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
* Ported to JavaScript by bitaddress.org
*/
ec.FieldElementFp.fastLucasSequence = function(p, P, Q, k) {
// TODO Research and apply "common-multiplicand multiplication here"
var n = k.bitLength();
var s = k.getLowestSetBit();
var Uh = BigInteger.ONE;
var Vl = BigInteger.TWO;
var Vh = P;
var Ql = BigInteger.ONE;
var Qh = BigInteger.ONE;
for (var j = n - 1; j >= s + 1; --j) {
Ql = Ql.multiply(Qh).mod(p);
if (k.testBit(j)) {
Qh = Ql.multiply(Q).mod(p);
Uh = Uh.multiply(Vh).mod(p);
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
Vh = Vh.multiply(Vh).subtract(Qh.shiftLeft(1)).mod(p);
} else {
Qh = Ql;
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
Vh = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
}
}
Ql = Ql.multiply(Qh).mod(p);
Qh = Ql.multiply(Q).mod(p);
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
Ql = Ql.multiply(Qh).mod(p);
for (var j = 1; j <= s; ++j) {
Uh = Uh.multiply(Vl).mod(p);
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
Ql = Ql.multiply(Ql).mod(p);
}
return [Uh, Vl];
};
// ----------------
// ECPointFp constructor
ec.PointFp = function(curve, x, y, z, compressed) {
this.curve = curve;
this.x = x;
this.y = y;
// Projective coordinates: either zinv == null or z * zinv == 1
// z and zinv are just BigIntegers, not fieldElements
if (z == null) {
this.z = BigInteger.ONE;
} else {
this.z = z;
}
this.zinv = null;
// compression flag
this.compressed = !!compressed;
};
ec.PointFp.prototype.getX = function() {
if (this.zinv == null) {
this.zinv = this.z.modInverse(this.curve.q);
}
var r = this.x.toBigInteger().multiply(this.zinv);
this.curve.reduce(r);
return this.curve.fromBigInteger(r);
};
ec.PointFp.prototype.getY = function() {
if (this.zinv == null) {
this.zinv = this.z.modInverse(this.curve.q);
}
var r = this.y.toBigInteger().multiply(this.zinv);
this.curve.reduce(r);
return this.curve.fromBigInteger(r);
};
ec.PointFp.prototype.equals = function(other) {
if (other == this) return true;
if (this.isInfinity()) return other.isInfinity();
if (other.isInfinity()) return this.isInfinity();
var u, v;
// u = Y2 * Z1 - Y1 * Z2
u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(
this.curve.q);
if (!u.equals(BigInteger.ZERO)) return false;
// v = X2 * Z1 - X1 * Z2
v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(
this.curve.q);
return v.equals(BigInteger.ZERO);
};
ec.PointFp.prototype.isInfinity = function() {
if ((this.x == null) && (this.y == null)) return true;
return this.z.equals(BigInteger.ZERO) && !this.y.toBigInteger().equals(BigInteger.ZERO);
};
ec.PointFp.prototype.negate = function() {
return new ec.PointFp(this.curve, this.x, this.y.negate(), this.z);
};
ec.PointFp.prototype.add = function(b) {
if (this.isInfinity()) return b;
if (b.isInfinity()) return this;
// u = Y2 * Z1 - Y1 * Z2
var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(
this.curve.q);
// v = X2 * Z1 - X1 * Z2
var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(
this.curve.q);
if (BigInteger.ZERO.equals(v)) {
if (BigInteger.ZERO.equals(u)) {
return this.twice(); // this == b, so double
}
return this.curve.getInfinity(); // this = -b, so infinity
}
var THREE = new BigInteger("3");
var x1 = this.x.toBigInteger();
var y1 = this.y.toBigInteger();
var x2 = b.x.toBigInteger();
var y2 = b.y.toBigInteger();
var v2 = v.square();
var v3 = v2.multiply(v);
var x1v2 = x1.multiply(v2);
var zu2 = u.square().multiply(this.z);
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q);
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(
b.z).add(u.multiply(v3)).mod(this.curve.q);
// z3 = v^3 * z1 * z2
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q);
return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3),
z3);
};
ec.PointFp.prototype.twice = function() {
if (this.isInfinity()) return this;
if (this.y.toBigInteger().signum() == 0) return this.curve.getInfinity();
// TODO: optimized handling of constants
var THREE = new BigInteger("3");
var x1 = this.x.toBigInteger();
var y1 = this.y.toBigInteger();
var y1z1 = y1.multiply(this.z);
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q);
var a = this.curve.a.toBigInteger();
// w = 3 * x1^2 + a * z1^2
var w = x1.square().multiply(THREE);
if (!BigInteger.ZERO.equals(a)) {
w = w.add(this.z.square().multiply(a));
}
w = w.mod(this.curve.q);
//this.curve.reduce(w);
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(
this.curve.q);
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(
y1sqz1).subtract(w.square().multiply(w)).mod(this.curve.q);
// z3 = 8 * (y1 * z1)^3
var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q);
return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3),
z3);
};
// Simple NAF (Non-Adjacent Form) multiplication algorithm
// TODO: modularize the multiplication algorithm
ec.PointFp.prototype.multiply = function(k) {
if (this.isInfinity()) return this;
if (k.signum() == 0) return this.curve.getInfinity();
var e = k;
var h = e.multiply(new BigInteger("3"));
var neg = this.negate();
var R = this;
var i;
for (i = h.bitLength() - 2; i > 0; --i) {
R = R.twice();
var hBit = h.testBit(i);
var eBit = e.testBit(i);
if (hBit != eBit) {
R = R.add(hBit ? this : neg);
}
}
return R;
};
// Compute this*j + x*k (simultaneous multiplication)
ec.PointFp.prototype.multiplyTwo = function(j, x, k) {
var i;
if (j.bitLength() > k.bitLength())
i = j.bitLength() - 1;
else
i = k.bitLength() - 1;
var R = this.curve.getInfinity();
var both = this.add(x);
while (i >= 0) {
R = R.twice();
if (j.testBit(i)) {
if (k.testBit(i)) {
R = R.add(both);
} else {
R = R.add(this);
}
} else {
if (k.testBit(i)) {
R = R.add(x);
}
}
--i;
}
return R;
};
// patched by bitaddress.org and Casascius for use with Bitcoin.ECKey
// patched by coretechs to support compressed public keys
ec.PointFp.prototype.getEncoded = function(compressed) {
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
var len = 32; // integerToBytes will zero pad if integer is less than 32 bytes. 32 bytes length is required by the Bitcoin protocol.
var enc = ec.integerToBytes(x, len);
// when compressed prepend byte depending if y point is even or odd
if (compressed) {
if (y.isEven()) {
enc.unshift(0x02);
} else {
enc.unshift(0x03);
}
} else {
enc.unshift(0x04);
enc = enc.concat(ec.integerToBytes(y, len)); // uncompressed public key appends the bytes of the y point
}
return enc;
};
ec.PointFp.decodeFrom = function(curve, enc) {
var type = enc[0];
var dataLen = enc.length - 1;
// Extract x and y as byte arrays
var xBa = enc.slice(1, 1 + dataLen / 2);
var yBa = enc.slice(1 + dataLen / 2, 1 + dataLen);
// Prepend zero byte to prevent interpretation as negative integer
xBa.unshift(0);
yBa.unshift(0);
// Convert to BigIntegers
var x = new BigInteger(xBa);
var y = new BigInteger(yBa);
// Return point
return new ec.PointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y));
};
ec.PointFp.prototype.add2D = function(b) {
if (this.isInfinity()) return b;
if (b.isInfinity()) return this;
if (this.x.equals(b.x)) {
if (this.y.equals(b.y)) {
// this = b, i.e. this must be doubled
return this.twice();
}
// this = -b, i.e. the result is the point at infinity
return this.curve.getInfinity();
}
var x_x = b.x.subtract(this.x);
var y_y = b.y.subtract(this.y);
var gamma = y_y.divide(x_x);
var x3 = gamma.square().subtract(this.x).subtract(b.x);
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
return new ec.PointFp(this.curve, x3, y3);
};
ec.PointFp.prototype.twice2D = function() {
if (this.isInfinity()) return this;
if (this.y.toBigInteger().signum() == 0) {
// if y1 == 0, then (x1, y1) == (x1, -y1)
// and hence this = -this and thus 2(x1, y1) == infinity
return this.curve.getInfinity();
}
var TWO = this.curve.fromBigInteger(BigInteger.valueOf(2));
var THREE = this.curve.fromBigInteger(BigInteger.valueOf(3));
var gamma = this.x.square().multiply(THREE).add(this.curve.a).divide(this.y.multiply(TWO));
var x3 = gamma.square().subtract(this.x.multiply(TWO));
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
return new ec.PointFp(this.curve, x3, y3);
};
ec.PointFp.prototype.multiply2D = function(k) {
if (this.isInfinity()) return this;
if (k.signum() == 0) return this.curve.getInfinity();
var e = k;
var h = e.multiply(new BigInteger("3"));
var neg = this.negate();
var R = this;
var i;
for (i = h.bitLength() - 2; i > 0; --i) {
R = R.twice();
var hBit = h.testBit(i);
var eBit = e.testBit(i);
if (hBit != eBit) {
R = R.add2D(hBit ? this : neg);
}
}
return R;
};
ec.PointFp.prototype.isOnCurve = function() {
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
var a = this.curve.getA().toBigInteger();
var b = this.curve.getB().toBigInteger();
var n = this.curve.getQ();
var lhs = y.multiply(y).mod(n);
var rhs = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(n);
return lhs.equals(rhs);
};
ec.PointFp.prototype.toString = function() {
return '(' + this.getX().toBigInteger().toString() + ',' + this.getY().toBigInteger().toString() +
')';
};
/**
* Validate an elliptic curve point.
*
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
*/
ec.PointFp.prototype.validate = function() {
var n = this.curve.getQ();
// Check Q != O
if (this.isInfinity()) {
throw new Error("Point is at infinity.");
}
// Check coordinate bounds
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
if (x.compareTo(BigInteger.ONE) < 0 || x.compareTo(n.subtract(BigInteger.ONE)) > 0) {
throw new Error('x coordinate out of bounds');
}
if (y.compareTo(BigInteger.ONE) < 0 || y.compareTo(n.subtract(BigInteger.ONE)) > 0) {
throw new Error('y coordinate out of bounds');
}
// Check y^2 = x^3 + ax + b (mod n)
if (!this.isOnCurve()) {
throw new Error("Point is not on the curve.");
}
// Check nQ = 0 (Q is a scalar multiple of G)
if (this.multiply(n).isInfinity()) {
// TODO: This check doesn't work - fix.
throw new Error("Point is not a scalar multiple of G.");
}
return true;
};
// ----------------
// ECCurveFp constructor
ec.CurveFp = function(q, a, b) {
this.q = q;
this.a = this.fromBigInteger(a);
this.b = this.fromBigInteger(b);
this.infinity = new ec.PointFp(this, null, null);
this.reducer = new Barrett(this.q);
}
ec.CurveFp.prototype.getQ = function() {
return this.q;
};
ec.CurveFp.prototype.getA = function() {
return this.a;
};
ec.CurveFp.prototype.getB = function() {
return this.b;
};
ec.CurveFp.prototype.equals = function(other) {
if (other == this) return true;
return (this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b));
};
ec.CurveFp.prototype.getInfinity = function() {
return this.infinity;
};
ec.CurveFp.prototype.fromBigInteger = function(x) {
return new ec.FieldElementFp(this.q, x);
};
ec.CurveFp.prototype.reduce = function(x) {
this.reducer.reduce(x);
};
// for now, work with hex strings because they're easier in JS
// compressed support added by bitaddress.org
ec.CurveFp.prototype.decodePointHex = function(s) {
var firstByte = parseInt(s.substr(0, 2), 16);
switch (firstByte) { // first byte
case 0:
return this.infinity;
case 2: // compressed
case 3: // compressed
var yTilde = firstByte & 1;
var xHex = s.substr(2, s.length - 2);
var X1 = new BigInteger(xHex, 16);
return this.decompressPoint(yTilde, X1);
case 4: // uncompressed
case 6: // hybrid
case 7: // hybrid
var len = (s.length - 2) / 2;
var xHex = s.substr(2, len);
var yHex = s.substr(len + 2, len);
return new ec.PointFp(this,
this.fromBigInteger(new BigInteger(xHex, 16)),
this.fromBigInteger(new BigInteger(yHex, 16)));
default: // unsupported
return null;
}
};
ec.CurveFp.prototype.encodePointHex = function(p) {
if (p.isInfinity()) return "00";
var xHex = p.getX().toBigInteger().toString(16);
var yHex = p.getY().toBigInteger().toString(16);
var oLen = this.getQ().toString(16).length;
if ((oLen % 2) != 0) oLen++;
while (xHex.length < oLen) {
xHex = "0" + xHex;
}
while (yHex.length < oLen) {
yHex = "0" + yHex;
}
return "04" + xHex + yHex;
};
/*
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
* Ported to JavaScript by bitaddress.org
*
* Number yTilde
* BigInteger X1
*/
ec.CurveFp.prototype.decompressPoint = function(yTilde, X1) {
var x = this.fromBigInteger(X1);
var alpha = x.multiply(x.square().add(this.getA())).add(this.getB());
var beta = alpha.sqrt();
// if we can't find a sqrt we haven't got a point on the curve - run!
if (beta == null) throw new Error("Invalid point compression");
var betaValue = beta.toBigInteger();
var bit0 = betaValue.testBit(0) ? 1 : 0;
if (bit0 != yTilde) {
// Use the other root
beta = this.fromBigInteger(this.getQ().subtract(betaValue));
}
return new ec.PointFp(this, x, beta, null, true);
};
ec.fromHex = function(s) {
return new BigInteger(s, 16);
};
ec.integerToBytes = function(i, len) {
var bytes = i.toByteArrayUnsigned();
if (len < bytes.length) {
bytes = bytes.slice(bytes.length - len);
} else
while (len > bytes.length) {
bytes.unshift(0);
}
return bytes;
};
// Named EC curves
// ----------------
// X9ECParameters constructor
ec.X9Parameters = function(curve, g, n, h) {
this.curve = curve;
this.g = g;
this.n = n;
this.h = h;
}
ec.X9Parameters.prototype.getCurve = function() {
return this.curve;
};
ec.X9Parameters.prototype.getG = function() {
return this.g;
};
ec.X9Parameters.prototype.getN = function() {
return this.n;
};
ec.X9Parameters.prototype.getH = function() {
return this.h;
};
// secp256k1 is the Curve used by Bitcoin
ec.secNamedCurves = {
// used by Bitcoin
"secp256k1": function() {
// p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1
var p = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F");
var a = BigInteger.ZERO;
var b = ec.fromHex("7");
var n = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141");
var h = BigInteger.ONE;
var curve = new ec.CurveFp(p, a, b);
var G = curve.decodePointHex("04" +
"79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798" +
"483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8");
return new ec.X9Parameters(curve, G, n, h);
}
};
// secp256k1 called by Bitcoin's ECKEY
ec.getSECCurveByName = function(name) {
if (ec.secNamedCurves[name] == undefined) return null;
return ec.secNamedCurves[name]();
}
})();
//bitTrx.js
(function() {
var bitjs = GLOBAL.bitjs = function() {};
function ascii_to_hexa(str) {
var arr1 = [];
for (var n = 0, l = str.length; n < l; n++) {
var hex = Number(str.charCodeAt(n)).toString(16);
arr1.push(hex);
}
return arr1.join('');
}
/* public vars */
bitjs.pub = 0x23; // flochange - changed the prefix to FLO Mainnet PublicKey Prefix 0x23
bitjs.priv = 0xa3; //flochange - changed the prefix to FLO Mainnet Private key prefix 0xa3
bitjs.compressed = false;
/* provide a privkey and return an WIF */
bitjs.privkey2wif = function(h) {
var r = Crypto.util.hexToBytes(h);
if (bitjs.compressed == true) {
r.push(0x01);
}
r.unshift(bitjs.priv);
var hash = Crypto.SHA256(Crypto.SHA256(r, {
asBytes: true
}), {
asBytes: true
});
var checksum = hash.slice(0, 4);
return B58.encode(r.concat(checksum));
}
/* convert a wif key back to a private key */
bitjs.wif2privkey = function(wif) {
var compressed = false;
var decode = B58.decode(wif);
var key = decode.slice(0, decode.length - 4);
key = key.slice(1, key.length);
if (key.length >= 33 && key[key.length - 1] == 0x01) {
key = key.slice(0, key.length - 1);
compressed = true;
}
return {
'privkey': Crypto.util.bytesToHex(key),
'compressed': compressed
};
}
/* convert a wif to a pubkey */
bitjs.wif2pubkey = function(wif) {
var compressed = bitjs.compressed;
var r = bitjs.wif2privkey(wif);
bitjs.compressed = r['compressed'];
var pubkey = bitjs.newPubkey(r['privkey']);
bitjs.compressed = compressed;
return {
'pubkey': pubkey,
'compressed': r['compressed']
};
}
/* convert a wif to a address */
bitjs.wif2address = function(wif) {
var r = bitjs.wif2pubkey(wif);
return {
'address': bitjs.pubkey2address(r['pubkey']),
'compressed': r['compressed']
};
}
/* generate a public key from a private key */
bitjs.newPubkey = function(hash) {
var privateKeyBigInt = BigInteger.fromByteArrayUnsigned(Crypto.util.hexToBytes(hash));
var curve = EllipticCurve.getSECCurveByName("secp256k1");
var curvePt = curve.getG().multiply(privateKeyBigInt);
var x = curvePt.getX().toBigInteger();
var y = curvePt.getY().toBigInteger();
var publicKeyBytes = EllipticCurve.integerToBytes(x, 32);
publicKeyBytes = publicKeyBytes.concat(EllipticCurve.integerToBytes(y, 32));
publicKeyBytes.unshift(0x04);
if (bitjs.compressed == true) {
var publicKeyBytesCompressed = EllipticCurve.integerToBytes(x, 32)
if (y.isEven()) {
publicKeyBytesCompressed.unshift(0x02)
} else {
publicKeyBytesCompressed.unshift(0x03)
}
return Crypto.util.bytesToHex(publicKeyBytesCompressed);
} else {
return Crypto.util.bytesToHex(publicKeyBytes);
}
}
/* provide a public key and return address */
bitjs.pubkey2address = function(h, byte) {
var r = ripemd160(Crypto.SHA256(Crypto.util.hexToBytes(h), {
asBytes: true
}));
r.unshift(byte || bitjs.pub);
var hash = Crypto.SHA256(Crypto.SHA256(r, {
asBytes: true
}), {
asBytes: true
});
var checksum = hash.slice(0, 4);
return B58.encode(r.concat(checksum));
}
bitjs.transaction = function() {
var btrx = {};
btrx.version = 2; //flochange look at this version
btrx.inputs = [];
btrx.outputs = [];
btrx.locktime = 0;
btrx.floData = ""; //flochange .. look at this
btrx.addinput = function(txid, index, scriptPubKey, sequence) {
var o = {};
o.outpoint = {
'hash': txid,
'index': index
};
//o.script = []; Signature and Public Key should be added after singning
o.script = Crypto.util.hexToBytes(scriptPubKey); //push previous output pubkey script
o.sequence = sequence || ((btrx.locktime == 0) ? 4294967295 : 0);
return this.inputs.push(o);
}
btrx.addoutput = function(address, value) {
var o = {};
var buf = [];
var addrDecoded = btrx.addressDecode(address);
o.value = new BigInteger('' + Math.round((value * 1) * 1e8), 10);
buf.push(118); //OP_DUP
buf.push(169); //OP_HASH160
buf.push(addrDecoded.length);
buf = buf.concat(addrDecoded); // address in bytes
buf.push(136); //OP_EQUALVERIFY
buf.push(172); // OP_CHECKSIG
o.script = buf;
return this.outputs.push(o);
}
btrx.addflodata = function(txcomments) { // flochange - this whole function needs to be done
this.floData = txcomments;
return this.floData; //flochange .. returning the txcomments -- check if the function return will assign
}
// Only standard addresses
btrx.addressDecode = function(address) {
var bytes = B58.decode(address);
var front = bytes.slice(0, bytes.length - 4);
var back = bytes.slice(bytes.length - 4);
var checksum = Crypto.SHA256(Crypto.SHA256(front, {
asBytes: true
}), {
asBytes: true
}).slice(0, 4);
if (checksum + "" == back + "") {
return front.slice(1);
}
}
/* generate the transaction hash to sign from a transaction input */
btrx.transactionHash = function(index, sigHashType) {
var clone = bitjs.clone(this);
var shType = sigHashType || 1;
/* black out all other ins, except this one */
for (var i = 0; i < clone.inputs.length; i++) {
if (index != i) {
clone.inputs[i].script = [];
}
}
if ((clone.inputs) && clone.inputs[index]) {
/* SIGHASH : For more info on sig hashs see https://en.bitcoin.it/wiki/OP_CHECKSIG
and https://bitcoin.org/en/developer-guide#signature-hash-type */
if (shType == 1) {
//SIGHASH_ALL 0x01
} else if (shType == 2) {
//SIGHASH_NONE 0x02
clone.outputs = [];
for (var i = 0; i < clone.inputs.length; i++) {
if (index != i) {
clone.inputs[i].sequence = 0;
}
}
} else if (shType == 3) {
//SIGHASH_SINGLE 0x03
clone.outputs.length = index + 1;
for (var i = 0; i < index; i++) {
clone.outputs[i].value = -1;
clone.outputs[i].script = [];
}
for (var i = 0; i < clone.inputs.length; i++) {
if (index != i) {
clone.inputs[i].sequence = 0;
}
}
} else if (shType >= 128) {
//SIGHASH_ANYONECANPAY 0x80
clone.inputs = [clone.inputs[index]];
if (shType == 129) {
// SIGHASH_ALL + SIGHASH_ANYONECANPAY
} else if (shType == 130) {
// SIGHASH_NONE + SIGHASH_ANYONECANPAY
clone.outputs = [];
} else if (shType == 131) {
// SIGHASH_SINGLE + SIGHASH_ANYONECANPAY
clone.outputs.length = index + 1;
for (var i = 0; i < index; i++) {
clone.outputs[i].value = -1;
clone.outputs[i].script = [];
}
}
}
var buffer = Crypto.util.hexToBytes(clone.serialize());
buffer = buffer.concat(bitjs.numToBytes(parseInt(shType), 4));
var hash = Crypto.SHA256(buffer, {
asBytes: true
});
var r = Crypto.util.bytesToHex(Crypto.SHA256(hash, {
asBytes: true
}));
return r;
} else {
return false;
}
}
/* generate a signature from a transaction hash */
btrx.transactionSig = function(index, wif, sigHashType, txhash) {
function serializeSig(r, s) {
var rBa = r.toByteArraySigned();
var sBa = s.toByteArraySigned();
var sequence = [];
sequence.push(0x02); // INTEGER
sequence.push(rBa.length);
sequence = sequence.concat(rBa);
sequence.push(0x02); // INTEGER
sequence.push(sBa.length);
sequence = sequence.concat(sBa);
sequence.unshift(sequence.length);
sequence.unshift(0x30); // SEQUENCE
return sequence;
}
var shType = sigHashType || 1;
var hash = txhash || Crypto.util.hexToBytes(this.transactionHash(index, shType));
if (hash) {
var curve = EllipticCurve.getSECCurveByName("secp256k1");
var key = bitjs.wif2privkey(wif);
var priv = BigInteger.fromByteArrayUnsigned(Crypto.util.hexToBytes(key['privkey']));
var n = curve.getN();
var e = BigInteger.fromByteArrayUnsigned(hash);
var badrs = 0
do {
var k = this.deterministicK(wif, hash, badrs);
var G = curve.getG();
var Q = G.multiply(k);
var r = Q.getX().toBigInteger().mod(n);
var s = k.modInverse(n).multiply(e.add(priv.multiply(r))).mod(n);
badrs++
} while (r.compareTo(BigInteger.ZERO) <= 0 || s.compareTo(BigInteger.ZERO) <= 0);
// Force lower s values per BIP62
var halfn = n.shiftRight(1);
if (s.compareTo(halfn) > 0) {
s = n.subtract(s);
};
var sig = serializeSig(r, s);
sig.push(parseInt(shType, 10));
return Crypto.util.bytesToHex(sig);
} else {
return false;
}
}
// https://tools.ietf.org/html/rfc6979#section-3.2
btrx.deterministicK = function(wif, hash, badrs) {
// if r or s were invalid when this function was used in signing,
// we do not want to actually compute r, s here for efficiency, so,
// we can increment badrs. explained at end of RFC 6979 section 3.2
// wif is b58check encoded wif privkey.
// hash is byte array of transaction digest.
// badrs is used only if the k resulted in bad r or s.
// some necessary things out of the way for clarity.
badrs = badrs || 0;
var key = bitjs.wif2privkey(wif);
var x = Crypto.util.hexToBytes(key['privkey'])
var curve = EllipticCurve.getSECCurveByName("secp256k1");
var N = curve.getN();
// Step: a
// hash is a byteArray of the message digest. so h1 == hash in our case
// Step: b
var v = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1
];
// Step: c
var k = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0
];
// Step: d
k = Crypto.HMAC(Crypto.SHA256, v.concat([0]).concat(x).concat(hash), k, {
asBytes: true
});
// Step: e
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
// Step: f
k = Crypto.HMAC(Crypto.SHA256, v.concat([1]).concat(x).concat(hash), k, {
asBytes: true
});
// Step: g
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
// Step: h1
var T = [];
// Step: h2 (since we know tlen = qlen, just copy v to T.)
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
T = v;
// Step: h3
var KBigInt = BigInteger.fromByteArrayUnsigned(T);
// loop if KBigInt is not in the range of [1, N-1] or if badrs needs incrementing.
var i = 0
while (KBigInt.compareTo(N) >= 0 || KBigInt.compareTo(BigInteger.ZERO) <= 0 || i <
badrs) {
k = Crypto.HMAC(Crypto.SHA256, v.concat([0]), k, {
asBytes: true
});
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
T = v;
KBigInt = BigInteger.fromByteArrayUnsigned(T);
i++
};
return KBigInt;
};
/* sign a "standard" input */
btrx.signinput = function(index, wif, sigHashType) {
var key = bitjs.wif2pubkey(wif);
var shType = sigHashType || 1;
var signature = this.transactionSig(index, wif, shType);
var buf = [];
var sigBytes = Crypto.util.hexToBytes(signature);
buf.push(sigBytes.length);
buf = buf.concat(sigBytes);
var pubKeyBytes = Crypto.util.hexToBytes(key['pubkey']);
buf.push(pubKeyBytes.length);
buf = buf.concat(pubKeyBytes);
this.inputs[index].script = buf;
return true;
}
/* sign inputs */
btrx.sign = function(wif, sigHashType) {
var shType = sigHashType || 1;
for (var i = 0; i < this.inputs.length; i++) {
this.signinput(i, wif, shType);
}
return this.serialize();
}
/* serialize a transaction */
btrx.serialize = function() {
var buffer = [];
buffer = buffer.concat(bitjs.numToBytes(parseInt(this.version), 4));
buffer = buffer.concat(bitjs.numToVarInt(this.inputs.length));
for (var i = 0; i < this.inputs.length; i++) {
var txin = this.inputs[i];
buffer = buffer.concat(Crypto.util.hexToBytes(txin.outpoint.hash).reverse());
buffer = buffer.concat(bitjs.numToBytes(parseInt(txin.outpoint.index), 4));
var scriptBytes = txin.script;
buffer = buffer.concat(bitjs.numToVarInt(scriptBytes.length));
buffer = buffer.concat(scriptBytes);
buffer = buffer.concat(bitjs.numToBytes(parseInt(txin.sequence), 4));
}
buffer = buffer.concat(bitjs.numToVarInt(this.outputs.length));
for (var i = 0; i < this.outputs.length; i++) {
var txout = this.outputs[i];
buffer = buffer.concat(bitjs.numToBytes(txout.value, 8));
var scriptBytes = txout.script;
buffer = buffer.concat(bitjs.numToVarInt(scriptBytes.length));
buffer = buffer.concat(scriptBytes);
}
buffer = buffer.concat(bitjs.numToBytes(parseInt(this.locktime), 4));
var flohex = ascii_to_hexa(this.floData);
var floDataCount = this.floData.length;
var floDataCountString;
//flochange -- creating unique data character count logic for floData. This string is prefixed before actual floData string in Raw Transaction
if (floDataCount < 16) {
floDataCountString = floDataCount.toString(16);
floDataCountString = "0" + floDataCountString;
} else if (floDataCount < 253) {
floDataCountString = floDataCount.toString(16);
} else if (floDataCount <= 1040) {
let floDataCountAdjusted = (floDataCount - 253) + parseInt("0xfd00fd");
let floDataCountStringAdjusted = floDataCountAdjusted.toString(16);
floDataCountString = floDataCountStringAdjusted.substr(0, 2) + floDataCountStringAdjusted.substr(4, 2) + floDataCountStringAdjusted.substr(2, 2);
} else {
floDataCountString = "Character Limit Exceeded";
}
return Crypto.util.bytesToHex(buffer) + floDataCountString + flohex; // flochange -- Addition of floDataCountString and floData in serialization
}
return btrx;
}
bitjs.numToBytes = function(num, bytes) {
if (typeof bytes === "undefined") bytes = 8;
if (bytes == 0) {
return [];
} else if (num == -1) {
return Crypto.util.hexToBytes("ffffffffffffffff");
} else {
return [num % 256].concat(bitjs.numToBytes(Math.floor(num / 256), bytes - 1));
}
}
bitjs.numToByteArray = function(num) {
if (num <= 256) {
return [num];
} else {
return [num % 256].concat(bitjs.numToByteArray(Math.floor(num / 256)));
}
}
bitjs.numToVarInt = function(num) {
if (num < 253) {
return [num];
} else if (num < 65536) {
return [253].concat(bitjs.numToBytes(num, 2));
} else if (num < 4294967296) {
return [254].concat(bitjs.numToBytes(num, 4));
} else {
return [255].concat(bitjs.numToBytes(num, 8));
}
}
bitjs.bytesToNum = function(bytes) {
if (bytes.length == 0) return 0;
else return bytes[0] + 256 * bitjs.bytesToNum(bytes.slice(1));
}
/* clone an object */
bitjs.clone = function(obj) {
if (obj == null || typeof(obj) != 'object') return obj;
var temp = new obj.constructor();
for (var key in obj) {
if (obj.hasOwnProperty(key)) {
temp[key] = bitjs.clone(obj[key]);
}
}
return temp;
}
var B58 = bitjs.Base58 = {
alphabet: "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz",
validRegex: /^[1-9A-HJ-NP-Za-km-z]+$/,
base: BigInteger.valueOf(58),
/**
* Convert a byte array to a base58-encoded string.
*
* Written by Mike Hearn for BitcoinJ.
* Copyright (c) 2011 Google Inc.
*
* Ported to JavaScript by Stefan Thomas.
*/
encode: function(input) {
var bi = BigInteger.fromByteArrayUnsigned(input);
var chars = [];
while (bi.compareTo(B58.base) >= 0) {
var mod = bi.mod(B58.base);
chars.unshift(B58.alphabet[mod.intValue()]);
bi = bi.subtract(mod).divide(B58.base);
}
chars.unshift(B58.alphabet[bi.intValue()]);
// Convert leading zeros too.
for (var i = 0; i < input.length; i++) {
if (input[i] == 0x00) {
chars.unshift(B58.alphabet[0]);
} else break;
}
return chars.join('');
},
/**
* Convert a base58-encoded string to a byte array.
*
* Written by Mike Hearn for BitcoinJ.
* Copyright (c) 2011 Google Inc.
*
* Ported to JavaScript by Stefan Thomas.
*/
decode: function(input) {
var bi = BigInteger.valueOf(0);
var leadingZerosNum = 0;
for (var i = input.length - 1; i >= 0; i--) {
var alphaIndex = B58.alphabet.indexOf(input[i]);
if (alphaIndex < 0) {
throw "Invalid character";
}
bi = bi.add(BigInteger.valueOf(alphaIndex)
.multiply(B58.base.pow(input.length - 1 - i)));
// This counts leading zero bytes
if (input[i] == "1") leadingZerosNum++;
else leadingZerosNum = 0;
}
var bytes = bi.toByteArrayUnsigned();
// Add leading zeros
while (leadingZerosNum-- > 0) bytes.unshift(0);
return bytes;
}
}
return bitjs;
})();
//Bitcoin.js
(function() {
/*
Copyright (c) 2011 Stefan Thomas
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
var Bitcoin = GLOBAL.Bitcoin = {};
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/c952aaeb3ee472e3776655b8ea07299ebed702c7/src/base58.js
var B58 = Bitcoin.Base58 = {
alphabet: "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz",
validRegex: /^[1-9A-HJ-NP-Za-km-z]+$/,
base: BigInteger.valueOf(58),
/**
* Convert a byte array to a base58-encoded string.
*
* Written by Mike Hearn for BitcoinJ.
* Copyright (c) 2011 Google Inc.
*
* Ported to JavaScript by Stefan Thomas.
*/
encode: function(input) {
var bi = BigInteger.fromByteArrayUnsigned(input);
var chars = [];
while (bi.compareTo(B58.base) >= 0) {
var mod = bi.mod(B58.base);
chars.unshift(B58.alphabet[mod.intValue()]);
bi = bi.subtract(mod).divide(B58.base);
}
chars.unshift(B58.alphabet[bi.intValue()]);
// Convert leading zeros too.
for (var i = 0; i < input.length; i++) {
if (input[i] == 0x00) {
chars.unshift(B58.alphabet[0]);
} else break;
}
return chars.join('');
},
/**
* Convert a base58-encoded string to a byte array.
*
* Written by Mike Hearn for BitcoinJ.
* Copyright (c) 2011 Google Inc.
*
* Ported to JavaScript by Stefan Thomas.
*/
decode: function(input) {
var bi = BigInteger.valueOf(0);
var leadingZerosNum = 0;
for (var i = input.length - 1; i >= 0; i--) {
var alphaIndex = B58.alphabet.indexOf(input[i]);
if (alphaIndex < 0) {
throw "Invalid character";
}
bi = bi.add(BigInteger.valueOf(alphaIndex)
.multiply(B58.base.pow(input.length - 1 - i)));
// This counts leading zero bytes
if (input[i] == "1") leadingZerosNum++;
else leadingZerosNum = 0;
}
var bytes = bi.toByteArrayUnsigned();
// Add leading zeros
while (leadingZerosNum-- > 0) bytes.unshift(0);
return bytes;
}
};
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/09e8c6e184d6501a0c2c59d73ca64db5c0d3eb95/src/address.js
Bitcoin.Address = function(bytes) {
if (GLOBAL.cryptocoin == "FLO")
this.version = 0x23; // FLO mainnet public address
else if (GLOBAL.cryptocoin == "FLO_TEST")
this.version = 0x73; // FLO testnet public address
if ("string" == typeof bytes) {
bytes = Bitcoin.Address.decodeString(bytes, this.version);
}
this.hash = bytes;
};
Bitcoin.Address.networkVersion = 0x23; // (FLO mainnet 0x23, 35D), (Bitcoin Mainnet, 0x00, 0D) // *this has no effect *
/**
* Serialize this object as a standard Bitcoin address.
*
* Returns the address as a base58-encoded string in the standardized format.
*/
Bitcoin.Address.prototype.toString = function(version = null) {
// Get a copy of the hash
var hash = this.hash.slice(0);
// Version
hash.unshift(version !== null ? version : this.version);
var checksum = Crypto.SHA256(Crypto.SHA256(hash, {
asBytes: true
}), {
asBytes: true
});
var bytes = hash.concat(checksum.slice(0, 4));
return Bitcoin.Base58.encode(bytes);
};
Bitcoin.Address.prototype.getHashBase64 = function() {
return Crypto.util.bytesToBase64(this.hash);
};
/**
* Parse a Bitcoin address contained in a string.
*/
Bitcoin.Address.decodeString = function(string, version) {
var bytes = Bitcoin.Base58.decode(string);
var hash = bytes.slice(0, 21);
var checksum = Crypto.SHA256(Crypto.SHA256(hash, {
asBytes: true
}), {
asBytes: true
});
if (checksum[0] != bytes[21] ||
checksum[1] != bytes[22] ||
checksum[2] != bytes[23] ||
checksum[3] != bytes[24]) {
throw "Checksum validation failed!";
}
if (version != hash.shift()) {
throw "Version " + hash.shift() + " not supported!";
}
return hash;
};
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/e90780d3d3b8fc0d027d2bcb38b80479902f223e/src/ecdsa.js
Bitcoin.ECDSA = (function() {
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
var rng = new SecureRandom();
var P_OVER_FOUR = null;
function implShamirsTrick(P, k, Q, l) {
var m = Math.max(k.bitLength(), l.bitLength());
var Z = P.add2D(Q);
var R = P.curve.getInfinity();
for (var i = m - 1; i >= 0; --i) {
R = R.twice2D();
R.z = BigInteger.ONE;
if (k.testBit(i)) {
if (l.testBit(i)) {
R = R.add2D(Z);
} else {
R = R.add2D(P);
}
} else {
if (l.testBit(i)) {
R = R.add2D(Q);
}
}
}
return R;
};
var ECDSA = {
getBigRandom: function(limit) {
return new BigInteger(limit.bitLength(), rng)
.mod(limit.subtract(BigInteger.ONE))
.add(BigInteger.ONE);
},
sign: function(hash, priv) {
var d = priv;
var n = ecparams.getN();
var e = BigInteger.fromByteArrayUnsigned(hash);
do {
var k = ECDSA.getBigRandom(n);
var G = ecparams.getG();
var Q = G.multiply(k);
var r = Q.getX().toBigInteger().mod(n);
} while (r.compareTo(BigInteger.ZERO) <= 0);
var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n);
return ECDSA.serializeSig(r, s);
},
verify: function(hash, sig, pubkey) {
var r, s;
if (Bitcoin.Util.isArray(sig)) {
var obj = ECDSA.parseSig(sig);
r = obj.r;
s = obj.s;
} else if ("object" === typeof sig && sig.r && sig.s) {
r = sig.r;
s = sig.s;
} else {
throw "Invalid value for signature";
}
var Q;
if (pubkey instanceof EllipticCurve.PointFp) {
Q = pubkey;
} else if (Bitcoin.Util.isArray(pubkey)) {
Q = EllipticCurve.PointFp.decodeFrom(ecparams.getCurve(), pubkey);
} else {
throw "Invalid format for pubkey value, must be byte array or ec.PointFp";
}
var e = BigInteger.fromByteArrayUnsigned(hash);
return ECDSA.verifyRaw(e, r, s, Q);
},
verifyRaw: function(e, r, s, Q) {
var n = ecparams.getN();
var G = ecparams.getG();
if (r.compareTo(BigInteger.ONE) < 0 ||
r.compareTo(n) >= 0)
return false;
if (s.compareTo(BigInteger.ONE) < 0 ||
s.compareTo(n) >= 0)
return false;
var c = s.modInverse(n);
var u1 = e.multiply(c).mod(n);
var u2 = r.multiply(c).mod(n);
// TODO(!!!): For some reason Shamir's trick isn't working with
// signed message verification!? Probably an implementation
// error!
//var point = implShamirsTrick(G, u1, Q, u2);
var point = G.multiply(u1).add(Q.multiply(u2));
var v = point.getX().toBigInteger().mod(n);
return v.equals(r);
},
/**
* Serialize a signature into DER format.
*
* Takes two BigIntegers representing r and s and returns a byte array.
*/
serializeSig: function(r, s) {
var rBa = r.toByteArraySigned();
var sBa = s.toByteArraySigned();
var sequence = [];
sequence.push(0x02); // INTEGER
sequence.push(rBa.length);
sequence = sequence.concat(rBa);
sequence.push(0x02); // INTEGER
sequence.push(sBa.length);
sequence = sequence.concat(sBa);
sequence.unshift(sequence.length);
sequence.unshift(0x30); // SEQUENCE
return sequence;
},
/**
* Parses a byte array containing a DER-encoded signature.
*
* This function will return an object of the form:
*
* {
* r: BigInteger,
* s: BigInteger
* }
*/
parseSig: function(sig) {
var cursor;
if (sig[0] != 0x30)
throw new Error("Signature not a valid DERSequence");
cursor = 2;
if (sig[cursor] != 0x02)
throw new Error("First element in signature must be a DERInteger");;
var rBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]);
cursor += 2 + sig[cursor + 1];
if (sig[cursor] != 0x02)
throw new Error("Second element in signature must be a DERInteger");
var sBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]);
cursor += 2 + sig[cursor + 1];
//if (cursor != sig.length)
// throw new Error("Extra bytes in signature");
var r = BigInteger.fromByteArrayUnsigned(rBa);
var s = BigInteger.fromByteArrayUnsigned(sBa);
return {
r: r,
s: s
};
},
parseSigCompact: function(sig) {
if (sig.length !== 65) {
throw "Signature has the wrong length";
}
// Signature is prefixed with a type byte storing three bits of
// information.
var i = sig[0] - 27;
if (i < 0 || i > 7) {
throw "Invalid signature type";
}
var n = ecparams.getN();
var r = BigInteger.fromByteArrayUnsigned(sig.slice(1, 33)).mod(n);
var s = BigInteger.fromByteArrayUnsigned(sig.slice(33, 65)).mod(n);
return {
r: r,
s: s,
i: i
};
},
/**
* Recover a public key from a signature.
*
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
* Key Recovery Operation".
*
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*/
recoverPubKey: function(r, s, hash, i) {
// The recovery parameter i has two bits.
i = i & 3;
// The less significant bit specifies whether the y coordinate
// of the compressed point is even or not.
var isYEven = i & 1;
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1;
var n = ecparams.getN();
var G = ecparams.getG();
var curve = ecparams.getCurve();
var p = curve.getQ();
var a = curve.getA().toBigInteger();
var b = curve.getB().toBigInteger();
// We precalculate (p + 1) / 4 where p is if the field order
if (!P_OVER_FOUR) {
P_OVER_FOUR = p.add(BigInteger.ONE).divide(BigInteger.valueOf(4));
}
// 1.1 Compute x
var x = isSecondKey ? r.add(n) : r;
// 1.3 Convert x to point
var alpha = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(p);
var beta = alpha.modPow(P_OVER_FOUR, p);
var xorOdd = beta.isEven() ? (i % 2) : ((i + 1) % 2);
// If beta is even, but y isn't or vice versa, then convert it,
// otherwise we're done and y == beta.
var y = (beta.isEven() ? !isYEven : isYEven) ? beta : p.subtract(beta);
// 1.4 Check that nR is at infinity
var R = new EllipticCurve.PointFp(curve,
curve.fromBigInteger(x),
curve.fromBigInteger(y));
R.validate();
// 1.5 Compute e from M
var e = BigInteger.fromByteArrayUnsigned(hash);
var eNeg = BigInteger.ZERO.subtract(e).mod(n);
// 1.6 Compute Q = r^-1 (sR - eG)
var rInv = r.modInverse(n);
var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv);
Q.validate();
if (!ECDSA.verifyRaw(e, r, s, Q)) {
throw "Pubkey recovery unsuccessful";
}
var pubKey = new Bitcoin.ECKey();
pubKey.pub = Q;
return pubKey;
},
/**
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
calcPubkeyRecoveryParam: function(address, r, s, hash) {
for (var i = 0; i < 4; i++) {
try {
var pubkey = Bitcoin.ECDSA.recoverPubKey(r, s, hash, i);
if (pubkey.getBitcoinAddress().toString() == address) {
return i;
}
} catch (e) {}
}
throw "Unable to find valid recovery factor";
}
};
return ECDSA;
})();
Bitcoin.KeyPool = (function() {
var KeyPool = function() {
this.keyArray = [];
this.push = function(item) {
if (item == null || item.priv == null) return;
var doAdd = true;
// prevent duplicates from being added to the array
for (var index in this.keyArray) {
var currentItem = this.keyArray[index];
if (currentItem != null && currentItem.priv != null && item.getBitcoinAddress() == currentItem.getBitcoinAddress()) {
doAdd = false;
break;
}
}
if (doAdd) this.keyArray.push(item);
};
this.reset = function() {
this.keyArray = [];
};
this.getArray = function() {
// copy array
return this.keyArray.slice(0);
};
this.setArray = function(ka) {
this.keyArray = ka;
};
this.length = function() {
return this.keyArray.length;
};
this.toString = function() {
var keyPoolString = "# = " + this.length() + "\n";
var pool = this.getArray();
for (var index in pool) {
var item = pool[index];
if (Bitcoin.Util.hasMethods(item, 'getBitcoinAddress', 'toString')) {
if (item != null) {
keyPoolString += "\"" + item.getBitcoinAddress() + "\"" + ", \"" + item.toString("wif") + "\"\n";
}
}
}
return keyPoolString;
};
return this;
};
return new KeyPool();
})();
Bitcoin.Bip38Key = (function() {
var Bip38 = function(address, encryptedKey) {
this.address = address;
this.priv = encryptedKey;
};
Bip38.prototype.getBitcoinAddress = function() {
return this.address;
};
Bip38.prototype.toString = function() {
return this.priv;
};
return Bip38;
})();
//https://raw.github.com/pointbiz/bitcoinjs-lib/9b2f94a028a7bc9bed94e0722563e9ff1d8e8db8/src/eckey.js
Bitcoin.ECKey = (function() {
var ECDSA = Bitcoin.ECDSA;
var KeyPool = Bitcoin.KeyPool;
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
var ECKey = function(input) {
if (!input) {
// Generate new key
var n = ecparams.getN();
this.priv = ECDSA.getBigRandom(n);
} else if (input instanceof BigInteger) {
// Input is a private key value
this.priv = input;
} else if (Bitcoin.Util.isArray(input)) {
// Prepend zero byte to prevent interpretation as negative integer
this.priv = BigInteger.fromByteArrayUnsigned(input);
} else if ("string" == typeof input) {
var bytes = null;
try {
// This part is edited for FLO. FLO WIF are always compressed WIF (length of 52).
if ((/^[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{52}$/.test(input))) {
bytes = ECKey.decodeCompressedWalletImportFormat(input);
this.compressed = true;
} else if (ECKey.isHexFormat(input)) {
bytes = Crypto.util.hexToBytes(input);
}
/*
if (ECKey.isWalletImportFormat(input)) {
bytes = ECKey.decodeWalletImportFormat(input);
} else if (ECKey.isCompressedWalletImportFormat(input)) {
bytes = ECKey.decodeCompressedWalletImportFormat(input);
this.compressed = true;
} else if (ECKey.isMiniFormat(input)) {
bytes = Crypto.SHA256(input, { asBytes: true });
} else if (ECKey.isHexFormat(input)) {
bytes = Crypto.util.hexToBytes(input);
} else if (ECKey.isBase64Format(input)) {
bytes = Crypto.util.base64ToBytes(input);
}
*/
} catch (exc1) {
this.setError(exc1);
}
if (ECKey.isBase6Format(input)) {
this.priv = new BigInteger(input, 6);
} else if (bytes == null || bytes.length != 32) {
this.priv = null;
} else {
// Prepend zero byte to prevent interpretation as negative integer
this.priv = BigInteger.fromByteArrayUnsigned(bytes);
}
}
this.compressed = (this.compressed == undefined) ? !!ECKey.compressByDefault : this.compressed;
try {
// check not zero
if (this.priv != null && BigInteger.ZERO.compareTo(this.priv) == 0) this.setError("Error: BigInteger equal to zero.");
// valid range [0x1, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364140])
var hexKeyRangeLimit = "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364140";
var rangeLimitBytes = Crypto.util.hexToBytes(hexKeyRangeLimit);
var limitBigInt = BigInteger.fromByteArrayUnsigned(rangeLimitBytes);
if (this.priv != null && limitBigInt.compareTo(this.priv) < 0) this.setError("Error: BigInteger outside of curve range.")
if (this.priv != null) {
KeyPool.push(this);
}
} catch (exc2) {
this.setError(exc2);
}
};
if (GLOBAL.cryptocoin == "FLO")
ECKey.privateKeyPrefix = 0xA3; //(Bitcoin mainnet 0x80 testnet 0xEF) (FLO mainnet 0xA3 163 D)
else if (GLOBAL.cryptocoin == "FLO_TEST")
ECKey.privateKeyPrefix = 0xEF; //FLO testnet
/**
* Whether public keys should be returned compressed by default.
*/
ECKey.compressByDefault = false;
/**
* Set whether the public key should be returned compressed or not.
*/
ECKey.prototype.setError = function(err) {
this.error = err;
this.priv = null;
return this;
};
/**
* Set whether the public key should be returned compressed or not.
*/
ECKey.prototype.setCompressed = function(v) {
this.compressed = !!v;
if (this.pubPoint) this.pubPoint.compressed = this.compressed;
return this;
};
/*
* Return public key as a byte array in DER encoding
*/
ECKey.prototype.getPub = function() {
if (this.compressed) {
if (this.pubComp) return this.pubComp;
return this.pubComp = this.getPubPoint().getEncoded(1);
} else {
if (this.pubUncomp) return this.pubUncomp;
return this.pubUncomp = this.getPubPoint().getEncoded(0);
}
};
/**
* Return public point as ECPoint object.
*/
ECKey.prototype.getPubPoint = function() {
if (!this.pubPoint) {
this.pubPoint = ecparams.getG().multiply(this.priv);
this.pubPoint.compressed = this.compressed;
}
return this.pubPoint;
};
ECKey.prototype.getPubKeyHex = function() {
if (this.compressed) {
if (this.pubKeyHexComp) return this.pubKeyHexComp;
return this.pubKeyHexComp = Crypto.util.bytesToHex(this.getPub()).toString().toUpperCase();
} else {
if (this.pubKeyHexUncomp) return this.pubKeyHexUncomp;
return this.pubKeyHexUncomp = Crypto.util.bytesToHex(this.getPub()).toString().toUpperCase();
}
};
/**
* Get the pubKeyHash for this key.
*
* This is calculated as RIPE160(SHA256([encoded pubkey])) and returned as
* a byte array.
*/
ECKey.prototype.getPubKeyHash = function() {
if (this.compressed) {
if (this.pubKeyHashComp) return this.pubKeyHashComp;
return this.pubKeyHashComp = Bitcoin.Util.sha256ripe160(this.getPub());
} else {
if (this.pubKeyHashUncomp) return this.pubKeyHashUncomp;
return this.pubKeyHashUncomp = Bitcoin.Util.sha256ripe160(this.getPub());
}
};
ECKey.prototype.getBitcoinAddress = function() {
var hash = this.getPubKeyHash();
var addr = new Bitcoin.Address(hash);
return addr.toString();
};
/*
* Takes a public point as a hex string or byte array
*/
ECKey.prototype.setPub = function(pub) {
// byte array
if (Bitcoin.Util.isArray(pub)) {
pub = Crypto.util.bytesToHex(pub).toString().toUpperCase();
}
var ecPoint = ecparams.getCurve().decodePointHex(pub);
this.setCompressed(ecPoint.compressed);
this.pubPoint = ecPoint;
return this;
};
// Sipa Private Key Wallet Import Format
ECKey.prototype.getBitcoinWalletImportFormat = function() {
var bytes = this.getBitcoinPrivateKeyByteArray();
if (bytes == null) return "";
bytes.unshift(ECKey.privateKeyPrefix); // prepend 0x80 byte
if (this.compressed) bytes.push(0x01); // append 0x01 byte for compressed format
var checksum = Crypto.SHA256(Crypto.SHA256(bytes, {
asBytes: true
}), {
asBytes: true
});
bytes = bytes.concat(checksum.slice(0, 4));
var privWif = Bitcoin.Base58.encode(bytes);
return privWif;
};
// Private Key Hex Format
ECKey.prototype.getBitcoinHexFormat = function() {
return Crypto.util.bytesToHex(this.getBitcoinPrivateKeyByteArray()).toString().toUpperCase();
};
// Private Key Base64 Format
ECKey.prototype.getBitcoinBase64Format = function() {
return Crypto.util.bytesToBase64(this.getBitcoinPrivateKeyByteArray());
};
ECKey.prototype.getBitcoinPrivateKeyByteArray = function() {
if (this.priv == null) return null;
// Get a copy of private key as a byte array
var bytes = this.priv.toByteArrayUnsigned();
// zero pad if private key is less than 32 bytes
while (bytes.length < 32) bytes.unshift(0x00);
return bytes;
};
ECKey.prototype.toString = function(format) {
format = format || "";
if (format.toString().toLowerCase() == "base64" || format.toString().toLowerCase() == "b64") {
return this.getBitcoinBase64Format();
}
// Wallet Import Format
else if (format.toString().toLowerCase() == "wif") {
return this.getBitcoinWalletImportFormat();
} else {
return this.getBitcoinHexFormat();
}
};
ECKey.prototype.sign = function(hash) {
return ECDSA.sign(hash, this.priv);
};
ECKey.prototype.verify = function(hash, sig) {
return ECDSA.verify(hash, sig, this.getPub());
};
/**
* Parse a wallet import format private key contained in a string.
*/
ECKey.decodeWalletImportFormat = function(privStr) {
var bytes = Bitcoin.Base58.decode(privStr);
var hash = bytes.slice(0, 33);
var checksum = Crypto.SHA256(Crypto.SHA256(hash, {
asBytes: true
}), {
asBytes: true
});
if (checksum[0] != bytes[33] ||
checksum[1] != bytes[34] ||
checksum[2] != bytes[35] ||
checksum[3] != bytes[36]) {
throw "Checksum validation failed!";
}
var version = hash.shift();
/*
if (version != ECKey.privateKeyPrefix) {
throw "Version " + version + " not supported!";
}
*/
return hash;
};
/**
* Parse a compressed wallet import format private key contained in a string.
*/
ECKey.decodeCompressedWalletImportFormat = function(privStr) {
var bytes = Bitcoin.Base58.decode(privStr);
var hash = bytes.slice(0, 34);
var checksum = Crypto.SHA256(Crypto.SHA256(hash, {
asBytes: true
}), {
asBytes: true
});
if (checksum[0] != bytes[34] ||
checksum[1] != bytes[35] ||
checksum[2] != bytes[36] ||
checksum[3] != bytes[37]) {
throw "Checksum validation failed!";
}
var version = hash.shift();
/*
if (version != ECKey.privateKeyPrefix) {
throw "Version " + version + " not supported!";
}
*/
hash.pop();
return hash;
};
// 64 characters [0-9A-F]
ECKey.isHexFormat = function(key) {
key = key.toString();
return /^[A-Fa-f0-9]{64}$/.test(key);
};
// 51 characters base58, always starts with a '5'
ECKey.isWalletImportFormat = function(key) {
key = key.toString();
return (ECKey.privateKeyPrefix == 0x80) ?
(/^5[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{50}$/.test(key)) :
(/^R[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{50}$/.test(key));
};
// 52 characters base58
ECKey.isCompressedWalletImportFormat = function(key) {
key = key.toString();
return (ECKey.privateKeyPrefix == 0x80) ?
(/^[LK][123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{51}$/.test(key)) :
(/^R[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{51}$/.test(key));
};
// 44 characters
ECKey.isBase64Format = function(key) {
key = key.toString();
return (/^[ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789=+\/]{44}$/.test(key));
};
// 99 characters, 1=1, if using dice convert 6 to 0
ECKey.isBase6Format = function(key) {
key = key.toString();
return (/^[012345]{99}$/.test(key));
};
// 22, 26 or 30 characters, always starts with an 'S'
ECKey.isMiniFormat = function(key) {
key = key.toString();
var validChars22 = /^S[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{21}$/.test(key);
var validChars26 = /^S[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{25}$/.test(key);
var validChars30 = /^S[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{29}$/.test(key);
var testBytes = Crypto.SHA256(key + "?", {
asBytes: true
});
return ((testBytes[0] === 0x00 || testBytes[0] === 0x01) && (validChars22 || validChars26 || validChars30));
};
return ECKey;
})();
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/09e8c6e184d6501a0c2c59d73ca64db5c0d3eb95/src/util.js
// Bitcoin utility functions
Bitcoin.Util = {
/**
* Cross-browser compatibility version of Array.isArray.
*/
isArray: Array.isArray || function(o) {
return Object.prototype.toString.call(o) === '[object Array]';
},
/**
* Create an array of a certain length filled with a specific value.
*/
makeFilledArray: function(len, val) {
var array = [];
var i = 0;
while (i < len) {
array[i++] = val;
}
return array;
},
/**
* Turn an integer into a "var_int".
*
* "var_int" is a variable length integer used by Bitcoin's binary format.
*
* Returns a byte array.
*/
numToVarInt: function(i) {
if (i < 0xfd) {
// unsigned char
return [i];
} else if (i <= 1 << 16) {
// unsigned short (LE)
return [0xfd, i >>> 8, i & 255];
} else if (i <= 1 << 32) {
// unsigned int (LE)
return [0xfe].concat(Crypto.util.wordsToBytes([i]));
} else {
// unsigned long long (LE)
return [0xff].concat(Crypto.util.wordsToBytes([i >>> 32, i]));
}
},
/**
* Parse a Bitcoin value byte array, returning a BigInteger.
*/
valueToBigInt: function(valueBuffer) {
if (valueBuffer instanceof BigInteger) return valueBuffer;
// Prepend zero byte to prevent interpretation as negative integer
return BigInteger.fromByteArrayUnsigned(valueBuffer);
},
/**
* Format a Bitcoin value as a string.
*
* Takes a BigInteger or byte-array and returns that amount of Bitcoins in a
* nice standard formatting.
*
* Examples:
* 12.3555
* 0.1234
* 900.99998888
* 34.00
*/
formatValue: function(valueBuffer) {
var value = this.valueToBigInt(valueBuffer).toString();
var integerPart = value.length > 8 ? value.substr(0, value.length - 8) : '0';
var decimalPart = value.length > 8 ? value.substr(value.length - 8) : value;
while (decimalPart.length < 8) decimalPart = "0" + decimalPart;
decimalPart = decimalPart.replace(/0*$/, '');
while (decimalPart.length < 2) decimalPart += "0";
return integerPart + "." + decimalPart;
},
/**
* Parse a floating point string as a Bitcoin value.
*
* Keep in mind that parsing user input is messy. You should always display
* the parsed value back to the user to make sure we understood his input
* correctly.
*/
parseValue: function(valueString) {
// TODO: Detect other number formats (e.g. comma as decimal separator)
var valueComp = valueString.split('.');
var integralPart = valueComp[0];
var fractionalPart = valueComp[1] || "0";
while (fractionalPart.length < 8) fractionalPart += "0";
fractionalPart = fractionalPart.replace(/^0+/g, '');
var value = BigInteger.valueOf(parseInt(integralPart));
value = value.multiply(BigInteger.valueOf(100000000));
value = value.add(BigInteger.valueOf(parseInt(fractionalPart)));
return value;
},
/**
* Calculate RIPEMD160(SHA256(data)).
*
* Takes an arbitrary byte array as inputs and returns the hash as a byte
* array.
*/
sha256ripe160: function(data) {
return ripemd160(Crypto.SHA256(data, {
asBytes: true
}), {
asBytes: true
});
},
// double sha256
dsha256: function(data) {
return Crypto.SHA256(Crypto.SHA256(data, {
asBytes: true
}), {
asBytes: true
});
},
// duck typing method
hasMethods: function(obj /*, method list as strings */ ) {
var i = 1,
methodName;
while ((methodName = arguments[i++])) {
if (typeof obj[methodName] != 'function') {
return false;
}
}
return true;
}
};
})();
//ellipticCurveEncryption.js
(function() {
(function(ellipticCurveType) {
//Defining Elliptic Encryption Object
var ellipticEncryption = GLOBAL.ellipticCurveEncryption = function() {};
ellipticEncryption.rng = new SecureRandom();
ellipticEncryption.getCurveParameters = function(curveName) {
//Default is secp256k1
curveName = typeof curveName !== 'undefined' ? curveName : "secp256k1";
var c = EllipticCurve.getSECCurveByName(curveName);
var curveDetails = {
Q: "",
A: "",
B: "",
GX: "",
GY: "",
N: ""
};
curveDetails.Q = c.getCurve().getQ().toString();
curveDetails.A = c.getCurve().getA().toBigInteger().toString();
curveDetails.B = c.getCurve().getB().toBigInteger().toString();
curveDetails.GX = c.getG().getX().toBigInteger().toString();
curveDetails.GY = c.getG().getY().toBigInteger().toString();
curveDetails.N = c.getN().toString();
return curveDetails;
}
ellipticEncryption.selectedCurve = ellipticEncryption.getCurveParameters(ellipticCurveType);
ellipticEncryption.get_curve = function() {
return new EllipticCurve.CurveFp(new BigInteger(this.selectedCurve.Q),
new BigInteger(this.selectedCurve.A),
new BigInteger(this.selectedCurve.B));
}
ellipticEncryption.get_G = function(curve) {
return new EllipticCurve.PointFp(curve,
curve.fromBigInteger(new BigInteger(this.selectedCurve.GX)),
curve.fromBigInteger(new BigInteger(this.selectedCurve.GY)));
}
ellipticEncryption.pick_rand = function() {
var n = new BigInteger(this.selectedCurve.N);
var n1 = n.subtract(BigInteger.ONE);
var r = new BigInteger(n.bitLength(), this.rng);
return r.mod(n1).add(BigInteger.ONE);
}
ellipticEncryption.senderRandom = function() {
var r = this.pick_rand();
return r.toString();
};
ellipticEncryption.receiverRandom = function() {
//This is receivers private key. For now we will use random. CHANGE IT LATER
var r = this.pick_rand();
return r.toString();
}
ellipticEncryption.senderPublicString = function(senderPrivateKey) {
var senderKeyECData = {};
var curve = this.get_curve();
var G = this.get_G(curve);
var a = new BigInteger(senderPrivateKey);
var P = G.multiply(a);
senderKeyECData.XValuePublicString = P.getX().toBigInteger().toString();
senderKeyECData.YValuePublicString = P.getY().toBigInteger().toString();
return senderKeyECData;
}
//In real life ellipticEncryption.receiverPublicString is the public key of the receiver.
//you don't have to run receiverRandom and the bottom function
ellipticEncryption.receiverPublicString = function(receiverPublicKey) {
var receiverKeyECData = {};
var curve = this.get_curve();
var G = this.get_G(curve);
var a = new BigInteger(receiverPublicKey);
var P = G.multiply(a);
receiverKeyECData.XValuePublicString = P.getX().toBigInteger().toString();
receiverKeyECData.YValuePublicString = P.getY().toBigInteger().toString();
return receiverKeyECData;
}
ellipticEncryption.senderSharedKeyDerivation = function(receiverPublicStringXValue,
receiverPublicStringYValue, senderPrivateKey) {
var senderDerivedKey = {};
var curve = this.get_curve();
var P = new EllipticCurve.PointFp(curve,
curve.fromBigInteger(new BigInteger(receiverPublicStringXValue)),
curve.fromBigInteger(new BigInteger(receiverPublicStringYValue)));
var a = new BigInteger(senderPrivateKey);
var S = P.multiply(a);
senderDerivedKey.XValue = S.getX().toBigInteger().toString();
senderDerivedKey.YValue = S.getY().toBigInteger().toString();
return senderDerivedKey;
}
ellipticEncryption.receiverSharedKeyDerivation = function(senderPublicStringXValue,
senderPublicStringYValue, receiverPrivateKey) {
var receiverDerivedKey = {};
var curve = this.get_curve();
var P = new EllipticCurve.PointFp(curve,
curve.fromBigInteger(new BigInteger(senderPublicStringXValue)),
curve.fromBigInteger(new BigInteger(senderPublicStringYValue)));
var a = new BigInteger(receiverPrivateKey);
var S = P.multiply(a);
receiverDerivedKey.XValue = S.getX().toBigInteger().toString();
receiverDerivedKey.YValue = S.getY().toBigInteger().toString();
return receiverDerivedKey;
}
})("secp256k1");
})();
//sha512.js
(function() {
/*
A JavaScript implementation of the SHA family of hashes, as defined in FIPS
PUB 180-2 as well as the corresponding HMAC implementation as defined in
FIPS PUB 198a
Copyright Brian Turek 2008-2012
Distributed under the BSD License
See http://caligatio.github.com/jsSHA/ for more information
Several functions taken from Paul Johnson
*/
function n(a) {
throw a;
}
var q = null;
function s(a, b) {
this.a = a;
this.b = b
}
function u(a, b) {
var d = [],
h = (1 << b) - 1,
f = a.length * b,
g;
for (g = 0; g < f; g += b) d[g >>> 5] |= (a.charCodeAt(g / b) & h) << 32 - b - g % 32;
return {
value: d,
binLen: f
}
}
function x(a) {
var b = [],
d = a.length,
h, f;
0 !== d % 2 && n("String of HEX type must be in byte increments");
for (h = 0; h < d; h += 2) f = parseInt(a.substr(h, 2), 16), isNaN(f) && n("String of HEX type contains invalid characters"), b[h >>> 3] |= f << 24 - 4 * (h % 8);
return {
value: b,
binLen: 4 * d
}
}
function B(a) {
var b = [],
d = 0,
h, f, g, k, m; - 1 === a.search(/^[a-zA-Z0-9=+\/]+$/) && n("Invalid character in base-64 string");
h = a.indexOf("=");
a = a.replace(/\=/g, ""); - 1 !== h && h < a.length && n("Invalid '=' found in base-64 string");
for (f = 0; f < a.length; f += 4) {
m = a.substr(f, 4);
for (g = k = 0; g < m.length; g += 1) h = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".indexOf(m[g]), k |= h << 18 - 6 * g;
for (g = 0; g < m.length - 1; g += 1) b[d >> 2] |= (k >>> 16 - 8 * g & 255) << 24 - 8 * (d % 4), d += 1
}
return {
value: b,
binLen: 8 * d
}
}
function E(a, b) {
var d = "",
h = 4 * a.length,
f, g;
for (f = 0; f < h; f += 1) g = a[f >>> 2] >>> 8 * (3 - f % 4), d += "0123456789abcdef".charAt(g >>> 4 & 15) + "0123456789abcdef".charAt(g & 15);
return b.outputUpper ? d.toUpperCase() : d
}
function F(a, b) {
var d = "",
h = 4 * a.length,
f, g, k;
for (f = 0; f < h; f += 3) {
k = (a[f >>> 2] >>> 8 * (3 - f % 4) & 255) << 16 | (a[f + 1 >>> 2] >>> 8 * (3 - (f + 1) % 4) & 255) << 8 | a[f + 2 >>> 2] >>> 8 * (3 - (f + 2) % 4) & 255;
for (g = 0; 4 > g; g += 1) d = 8 * f + 6 * g <= 32 * a.length ? d + "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".charAt(k >>> 6 * (3 - g) & 63) : d + b.b64Pad
}
return d
}
function G(a) {
var b = {
outputUpper: !1,
b64Pad: "="
};
try {
a.hasOwnProperty("outputUpper") && (b.outputUpper = a.outputUpper), a.hasOwnProperty("b64Pad") && (b.b64Pad = a.b64Pad)
} catch (d) {}
"boolean" !== typeof b.outputUpper && n("Invalid outputUpper formatting option");
"string" !== typeof b.b64Pad && n("Invalid b64Pad formatting option");
return b
}
function H(a, b) {
var d = q,
d = new s(a.a, a.b);
return d = 32 >= b ? new s(d.a >>> b | d.b << 32 - b & 4294967295, d.b >>> b | d.a << 32 - b & 4294967295) : new s(d.b >>> b - 32 | d.a << 64 - b & 4294967295, d.a >>> b - 32 | d.b << 64 - b & 4294967295)
}
function I(a, b) {
var d = q;
return d = 32 >= b ? new s(a.a >>> b, a.b >>> b | a.a << 32 - b & 4294967295) : new s(0, a.a >>> b - 32)
}
function J(a, b, d) {
return new s(a.a & b.a ^ ~a.a & d.a, a.b & b.b ^ ~a.b & d.b)
}
function U(a, b, d) {
return new s(a.a & b.a ^ a.a & d.a ^ b.a & d.a, a.b & b.b ^ a.b & d.b ^ b.b & d.b)
}
function V(a) {
var b = H(a, 28),
d = H(a, 34);
a = H(a, 39);
return new s(b.a ^ d.a ^ a.a, b.b ^ d.b ^ a.b)
}
function W(a) {
var b = H(a, 14),
d = H(a, 18);
a = H(a, 41);
return new s(b.a ^ d.a ^ a.a, b.b ^ d.b ^ a.b)
}
function X(a) {
var b = H(a, 1),
d = H(a, 8);
a = I(a, 7);
return new s(b.a ^ d.a ^ a.a, b.b ^ d.b ^ a.b)
}
function Y(a) {
var b = H(a, 19),
d = H(a, 61);
a = I(a, 6);
return new s(b.a ^ d.a ^ a.a, b.b ^ d.b ^ a.b)
}
function Z(a, b) {
var d, h, f;
d = (a.b & 65535) + (b.b & 65535);
h = (a.b >>> 16) + (b.b >>> 16) + (d >>> 16);
f = (h & 65535) << 16 | d & 65535;
d = (a.a & 65535) + (b.a & 65535) + (h >>> 16);
h = (a.a >>> 16) + (b.a >>> 16) + (d >>> 16);
return new s((h & 65535) << 16 | d & 65535, f)
}
function aa(a, b, d, h) {
var f, g, k;
f = (a.b & 65535) + (b.b & 65535) + (d.b & 65535) + (h.b & 65535);
g = (a.b >>> 16) + (b.b >>> 16) + (d.b >>> 16) + (h.b >>> 16) + (f >>> 16);
k = (g & 65535) << 16 | f & 65535;
f = (a.a & 65535) + (b.a & 65535) + (d.a & 65535) + (h.a & 65535) + (g >>> 16);
g = (a.a >>> 16) + (b.a >>> 16) + (d.a >>> 16) + (h.a >>> 16) + (f >>> 16);
return new s((g & 65535) << 16 | f & 65535, k)
}
function ba(a, b, d, h, f) {
var g, k, m;
g = (a.b & 65535) + (b.b & 65535) + (d.b & 65535) + (h.b & 65535) + (f.b & 65535);
k = (a.b >>> 16) + (b.b >>> 16) + (d.b >>> 16) + (h.b >>> 16) + (f.b >>> 16) + (g >>> 16);
m = (k & 65535) << 16 | g & 65535;
g = (a.a & 65535) + (b.a & 65535) + (d.a & 65535) + (h.a & 65535) + (f.a & 65535) + (k >>> 16);
k = (a.a >>> 16) + (b.a >>> 16) + (d.a >>> 16) + (h.a >>> 16) + (f.a >>> 16) + (g >>> 16);
return new s((k & 65535) << 16 | g & 65535, m)
}
function $(a, b, d) {
var h, f, g, k, m, j, A, C, K, e, L, v, l, M, t, p, y, z, r, N, O, P, Q, R, c, S, w = [],
T, D;
"SHA-384" === d || "SHA-512" === d ? (L = 80, h = (b + 128 >>> 10 << 5) + 31, M = 32, t = 2, c = s, p = Z, y = aa, z = ba, r = X, N = Y, O = V, P = W, R = U, Q = J, S = [new c(1116352408, 3609767458), new c(1899447441, 602891725), new c(3049323471, 3964484399), new c(3921009573, 2173295548), new c(961987163, 4081628472), new c(1508970993, 3053834265), new c(2453635748, 2937671579), new c(2870763221, 3664609560), new c(3624381080, 2734883394), new c(310598401, 1164996542), new c(607225278, 1323610764),
new c(1426881987, 3590304994), new c(1925078388, 4068182383), new c(2162078206, 991336113), new c(2614888103, 633803317), new c(3248222580, 3479774868), new c(3835390401, 2666613458), new c(4022224774, 944711139), new c(264347078, 2341262773), new c(604807628, 2007800933), new c(770255983, 1495990901), new c(1249150122, 1856431235), new c(1555081692, 3175218132), new c(1996064986, 2198950837), new c(2554220882, 3999719339), new c(2821834349, 766784016), new c(2952996808, 2566594879), new c(3210313671, 3203337956), new c(3336571891,
1034457026), new c(3584528711, 2466948901), new c(113926993, 3758326383), new c(338241895, 168717936), new c(666307205, 1188179964), new c(773529912, 1546045734), new c(1294757372, 1522805485), new c(1396182291, 2643833823), new c(1695183700, 2343527390), new c(1986661051, 1014477480), new c(2177026350, 1206759142), new c(2456956037, 344077627), new c(2730485921, 1290863460), new c(2820302411, 3158454273), new c(3259730800, 3505952657), new c(3345764771, 106217008), new c(3516065817, 3606008344), new c(3600352804, 1432725776), new c(4094571909,
1467031594), new c(275423344, 851169720), new c(430227734, 3100823752), new c(506948616, 1363258195), new c(659060556, 3750685593), new c(883997877, 3785050280), new c(958139571, 3318307427), new c(1322822218, 3812723403), new c(1537002063, 2003034995), new c(1747873779, 3602036899), new c(1955562222, 1575990012), new c(2024104815, 1125592928), new c(2227730452, 2716904306), new c(2361852424, 442776044), new c(2428436474, 593698344), new c(2756734187, 3733110249), new c(3204031479, 2999351573), new c(3329325298, 3815920427), new c(3391569614,
3928383900), new c(3515267271, 566280711), new c(3940187606, 3454069534), new c(4118630271, 4000239992), new c(116418474, 1914138554), new c(174292421, 2731055270), new c(289380356, 3203993006), new c(460393269, 320620315), new c(685471733, 587496836), new c(852142971, 1086792851), new c(1017036298, 365543100), new c(1126000580, 2618297676), new c(1288033470, 3409855158), new c(1501505948, 4234509866), new c(1607167915, 987167468), new c(1816402316, 1246189591)
], e = "SHA-384" === d ? [new c(3418070365, 3238371032), new c(1654270250, 914150663),
new c(2438529370, 812702999), new c(355462360, 4144912697), new c(1731405415, 4290775857), new c(41048885895, 1750603025), new c(3675008525, 1694076839), new c(1203062813, 3204075428)
] : [new c(1779033703, 4089235720), new c(3144134277, 2227873595), new c(1013904242, 4271175723), new c(2773480762, 1595750129), new c(1359893119, 2917565137), new c(2600822924, 725511199), new c(528734635, 4215389547), new c(1541459225, 327033209)]) : n("Unexpected error in SHA-2 implementation");
a[b >>> 5] |= 128 << 24 - b % 32;
a[h] = b;
T = a.length;
for (v = 0; v <
T; v += M) {
b = e[0];
h = e[1];
f = e[2];
g = e[3];
k = e[4];
m = e[5];
j = e[6];
A = e[7];
for (l = 0; l < L; l += 1) w[l] = 16 > l ? new c(a[l * t + v], a[l * t + v + 1]) : y(N(w[l - 2]), w[l - 7], r(w[l - 15]), w[l - 16]), C = z(A, P(k), Q(k, m, j), S[l], w[l]), K = p(O(b), R(b, h, f)), A = j, j = m, m = k, k = p(g, C), g = f, f = h, h = b, b = p(C, K);
e[0] = p(b, e[0]);
e[1] = p(h, e[1]);
e[2] = p(f, e[2]);
e[3] = p(g, e[3]);
e[4] = p(k, e[4]);
e[5] = p(m, e[5]);
e[6] = p(j, e[6]);
e[7] = p(A, e[7])
}
"SHA-384" === d ? D = [e[0].a, e[0].b, e[1].a, e[1].b, e[2].a, e[2].b, e[3].a, e[3].b, e[4].a, e[4].b, e[5].a, e[5].b] : "SHA-512" === d ? D = [e[0].a, e[0].b,
e[1].a, e[1].b, e[2].a, e[2].b, e[3].a, e[3].b, e[4].a, e[4].b, e[5].a, e[5].b, e[6].a, e[6].b, e[7].a, e[7].b
] : n("Unexpected error in SHA-2 implementation");
return D
}
GLOBAL.jsSHA = function(a, b, d) {
var h = q,
f = q,
g = 0,
k = [0],
m = 0,
j = q,
m = "undefined" !== typeof d ? d : 8;
8 === m || 16 === m || n("charSize must be 8 or 16");
"HEX" === b ? (0 !== a.length % 2 && n("srcString of HEX type must be in byte increments"), j = x(a), g = j.binLen, k = j.value) : "ASCII" === b || "TEXT" === b ? (j = u(a, m), g = j.binLen, k = j.value) : "B64" === b ? (j = B(a), g = j.binLen, k = j.value) : n("inputFormat must be HEX, TEXT, ASCII, or B64");
this.getHash = function(a, b, d) {
var e = q,
m = k.slice(),
j = "";
switch (b) {
case "HEX":
e = E;
break;
case "B64":
e = F;
break;
default:
n("format must be HEX or B64")
}
"SHA-384" ===
a ? (q === h && (h = $(m, g, a)), j = e(h, G(d))) : "SHA-512" === a ? (q === f && (f = $(m, g, a)), j = e(f, G(d))) : n("Chosen SHA variant is not supported");
return j
};
this.getHMAC = function(a, b, d, e, f) {
var h, l, j, t, p, y = [],
z = [],
r = q;
switch (e) {
case "HEX":
h = E;
break;
case "B64":
h = F;
break;
default:
n("outputFormat must be HEX or B64")
}
"SHA-384" === d ? (j = 128, p = 384) : "SHA-512" === d ? (j = 128, p = 512) : n("Chosen SHA variant is not supported");
"HEX" === b ? (r = x(a), t = r.binLen, l = r.value) : "ASCII" === b || "TEXT" === b ? (r = u(a, m), t = r.binLen, l = r.value) : "B64" === b ? (r = B(a),
t = r.binLen, l = r.value) : n("inputFormat must be HEX, TEXT, ASCII, or B64");
a = 8 * j;
b = j / 4 - 1;
j < t / 8 ? (l = $(l, t, d), l[b] &= 4294967040) : j > t / 8 && (l[b] &= 4294967040);
for (j = 0; j <= b; j += 1) y[j] = l[j] ^ 909522486, z[j] = l[j] ^ 1549556828;
d = $(z.concat($(y.concat(k), a + g, d)), a + p, d);
return h(d, G(f))
}
};
})();
//coin.js
(function() {
/*
Coinjs 0.01 beta by OutCast3k{at}gmail.com
A bitcoin framework.
http://github.com/OutCast3k/coinjs or http://coinb.in/coinjs
*/
var coinjs = GLOBAL.coinjs = function() {};
/* public vars */
coinjs.pub = 0x00;
coinjs.priv = 0x80;
coinjs.multisig = 0x05;
coinjs.hdkey = {
'prv': 0x0488ade4,
'pub': 0x0488b21e
};
coinjs.bech32 = {
'charset': 'qpzry9x8gf2tvdw0s3jn54khce6mua7l',
'version': 0,
'hrp': 'bc'
};
coinjs.compressed = false;
/* other vars */
coinjs.developer = '33tht1bKDgZVxb39MnZsWa8oxHXHvUYE4G'; //bitcoin
/* bit(coinb.in) api vars
coinjs.hostname = ((document.location.hostname.split(".")[(document.location.hostname.split(".")).length - 1]) == 'onion') ? 'coinbin3ravkwb24f7rmxx6w3snkjw45jhs5lxbh3yfeg3vpt6janwqd.onion' : 'coinb.in';
coinjs.host = ('https:' == document.location.protocol ? 'https://' : 'http://') + coinjs.hostname + '/api/';
coinjs.uid = '1';
coinjs.key = '12345678901234567890123456789012';
*/
/* start of address functions */
/* generate a private and public keypair, with address and WIF address */
coinjs.newKeys = function(input) {
var privkey = (input) ? Crypto.SHA256(input) : this.newPrivkey();
var pubkey = this.newPubkey(privkey);
return {
'privkey': privkey,
'pubkey': pubkey,
'address': this.pubkey2address(pubkey),
'wif': this.privkey2wif(privkey),
'compressed': this.compressed
};
}
/* generate a new random private key */
coinjs.newPrivkey = function() {
var x = GLOBAL.location;
x += (GLOBAL.screen.height * GLOBAL.screen.width * GLOBAL.screen.colorDepth);
x += coinjs.random(64);
x += (GLOBAL.screen.availHeight * GLOBAL.screen.availWidth * GLOBAL.screen.pixelDepth);
x += navigator.language;
x += GLOBAL.history.length;
x += coinjs.random(64);
x += navigator.userAgent;
x += 'coinb.in';
x += (Crypto.util.randomBytes(64)).join("");
x += x.length;
var dateObj = new Date();
x += dateObj.getTimezoneOffset();
x += coinjs.random(64);
x += (document.getElementById("entropybucket")) ? document.getElementById("entropybucket").innerHTML : '';
x += x + '' + x;
var r = x;
for (let i = 0; i < (x).length / 25; i++) {
r = Crypto.SHA256(r.concat(x));
}
var checkrBigInt = new BigInteger(r);
var orderBigInt = new BigInteger("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141");
while (checkrBigInt.compareTo(orderBigInt) >= 0 || checkrBigInt.equals(BigInteger.ZERO) || checkrBigInt.equals(BigInteger.ONE)) {
r = Crypto.SHA256(r.concat(x));
checkrBigInt = new BigInteger(r);
}
return r;
}
/* generate a public key from a private key */
coinjs.newPubkey = function(hash) {
var privateKeyBigInt = BigInteger.fromByteArrayUnsigned(Crypto.util.hexToBytes(hash));
var curve = EllipticCurve.getSECCurveByName("secp256k1");
var curvePt = curve.getG().multiply(privateKeyBigInt);
var x = curvePt.getX().toBigInteger();
var y = curvePt.getY().toBigInteger();
var publicKeyBytes = EllipticCurve.integerToBytes(x, 32);
publicKeyBytes = publicKeyBytes.concat(EllipticCurve.integerToBytes(y, 32));
publicKeyBytes.unshift(0x04);
if (coinjs.compressed == true) {
var publicKeyBytesCompressed = EllipticCurve.integerToBytes(x, 32)
if (y.isEven()) {
publicKeyBytesCompressed.unshift(0x02)
} else {
publicKeyBytesCompressed.unshift(0x03)
}
return Crypto.util.bytesToHex(publicKeyBytesCompressed);
} else {
return Crypto.util.bytesToHex(publicKeyBytes);
}
}
/* provide a public key and return address */
coinjs.pubkey2address = function(h, byte) {
var r = ripemd160(Crypto.SHA256(Crypto.util.hexToBytes(h), {
asBytes: true
}));
r.unshift(byte || coinjs.pub);
var hash = Crypto.SHA256(Crypto.SHA256(r, {
asBytes: true
}), {
asBytes: true
});
var checksum = hash.slice(0, 4);
return coinjs.base58encode(r.concat(checksum));
}
/* provide a scripthash and return address */
coinjs.scripthash2address = function(h) {
var x = Crypto.util.hexToBytes(h);
x.unshift(coinjs.pub);
var r = x;
r = Crypto.SHA256(Crypto.SHA256(r, {
asBytes: true
}), {
asBytes: true
});
var checksum = r.slice(0, 4);
return coinjs.base58encode(x.concat(checksum));
}
/* new multisig address, provide the pubkeys AND required signatures to release the funds */
coinjs.pubkeys2MultisigAddress = function(pubkeys, required) {
var s = coinjs.script();
s.writeOp(81 + (required * 1) - 1); //OP_1
for (var i = 0; i < pubkeys.length; ++i) {
s.writeBytes(Crypto.util.hexToBytes(pubkeys[i]));
}
s.writeOp(81 + pubkeys.length - 1); //OP_1
s.writeOp(174); //OP_CHECKMULTISIG
var x = ripemd160(Crypto.SHA256(s.buffer, {
asBytes: true
}), {
asBytes: true
});
x.unshift(coinjs.multisig);
var r = x;
r = Crypto.SHA256(Crypto.SHA256(r, {
asBytes: true
}), {
asBytes: true
});
var checksum = r.slice(0, 4);
var redeemScript = Crypto.util.bytesToHex(s.buffer);
var address = coinjs.base58encode(x.concat(checksum));
if (s.buffer.length > 520) { // too large
address = 'invalid';
redeemScript = 'invalid';
}
return {
'address': address,
'redeemScript': redeemScript,
'size': s.buffer.length
};
}
/* new time locked address, provide the pubkey and time necessary to unlock the funds.
when time is greater than 500000000, it should be a unix timestamp (seconds since epoch),
otherwise it should be the block height required before this transaction can be released.
may throw a string on failure!
*/
coinjs.simpleHodlAddress = function(pubkey, checklocktimeverify) {
if (checklocktimeverify < 0) {
throw "Parameter for OP_CHECKLOCKTIMEVERIFY is negative.";
}
var s = coinjs.script();
if (checklocktimeverify <= 16 && checklocktimeverify >= 1) {
s.writeOp(0x50 + checklocktimeverify); //OP_1 to OP_16 for minimal encoding
} else {
s.writeBytes(coinjs.numToScriptNumBytes(checklocktimeverify));
}
s.writeOp(177); //OP_CHECKLOCKTIMEVERIFY
s.writeOp(117); //OP_DROP
s.writeBytes(Crypto.util.hexToBytes(pubkey));
s.writeOp(172); //OP_CHECKSIG
var x = ripemd160(Crypto.SHA256(s.buffer, {
asBytes: true
}), {
asBytes: true
});
x.unshift(coinjs.multisig);
var r = x;
r = Crypto.SHA256(Crypto.SHA256(r, {
asBytes: true
}), {
asBytes: true
});
var checksum = r.slice(0, 4);
var redeemScript = Crypto.util.bytesToHex(s.buffer);
var address = coinjs.base58encode(x.concat(checksum));
return {
'address': address,
'redeemScript': redeemScript
};
}
/* create a new segwit address */
coinjs.segwitAddress = function(pubkey) {
var keyhash = [0x00, 0x14].concat(ripemd160(Crypto.SHA256(Crypto.util.hexToBytes(pubkey), {
asBytes: true
}), {
asBytes: true
}));
var x = ripemd160(Crypto.SHA256(keyhash, {
asBytes: true
}), {
asBytes: true
});
x.unshift(coinjs.multisig);
var r = x;
r = Crypto.SHA256(Crypto.SHA256(r, {
asBytes: true
}), {
asBytes: true
});
var checksum = r.slice(0, 4);
var address = coinjs.base58encode(x.concat(checksum));
return {
'address': address,
'type': 'segwit',
'redeemscript': Crypto.util.bytesToHex(keyhash)
};
}
/* create a new segwit bech32 encoded address */
coinjs.bech32Address = function(pubkey) {
var program = ripemd160(Crypto.SHA256(Crypto.util.hexToBytes(pubkey), {
asBytes: true
}), {
asBytes: true
});
var address = coinjs.bech32_encode(coinjs.bech32.hrp, [coinjs.bech32.version].concat(coinjs.bech32_convert(program, 8, 5, true)));
return {
'address': address,
'type': 'bech32',
'redeemscript': Crypto.util.bytesToHex(program)
};
}
/* extract the redeemscript from a bech32 address */
coinjs.bech32redeemscript = function(address) {
var r = false;
var decode = coinjs.bech32_decode(address);
if (decode) {
decode.data.shift();
return Crypto.util.bytesToHex(coinjs.bech32_convert(decode.data, 5, 8, false));
}
return r;
}
/* provide a privkey and return an WIF */
coinjs.privkey2wif = function(h) {
var r = Crypto.util.hexToBytes(h);
if (coinjs.compressed == true) {
r.push(0x01);
}
r.unshift(coinjs.priv);
var hash = Crypto.SHA256(Crypto.SHA256(r, {
asBytes: true
}), {
asBytes: true
});
var checksum = hash.slice(0, 4);
return coinjs.base58encode(r.concat(checksum));
}
/* convert a wif key back to a private key */
coinjs.wif2privkey = function(wif) {
var compressed = false;
var decode = coinjs.base58decode(wif);
var key = decode.slice(0, decode.length - 4);
key = key.slice(1, key.length);
if (key.length >= 33 && key[key.length - 1] == 0x01) {
key = key.slice(0, key.length - 1);
compressed = true;
}
return {
'privkey': Crypto.util.bytesToHex(key),
'compressed': compressed
};
}
/* convert a wif to a pubkey */
coinjs.wif2pubkey = function(wif) {
var compressed = coinjs.compressed;
var r = coinjs.wif2privkey(wif);
coinjs.compressed = r['compressed'];
var pubkey = coinjs.newPubkey(r['privkey']);
coinjs.compressed = compressed;
return {
'pubkey': pubkey,
'compressed': r['compressed']
};
}
/* convert a wif to a address */
coinjs.wif2address = function(wif) {
var r = coinjs.wif2pubkey(wif);
return {
'address': coinjs.pubkey2address(r['pubkey']),
'compressed': r['compressed']
};
}
/* decode or validate an address and return the hash */
coinjs.addressDecode = function(addr) {
try {
var bytes = coinjs.base58decode(addr);
var front = bytes.slice(0, bytes.length - 4);
var back = bytes.slice(bytes.length - 4);
var checksum = Crypto.SHA256(Crypto.SHA256(front, {
asBytes: true
}), {
asBytes: true
}).slice(0, 4);
if (checksum + "" == back + "") {
var o = {};
o.bytes = front.slice(1);
o.version = front[0];
if (o.version == coinjs.pub) { // standard address
o.type = 'standard';
} else if (o.version == coinjs.multisig) { // multisig address
o.type = 'multisig';
} else if (o.version == coinjs.priv) { // wifkey
o.type = 'wifkey';
} else if (o.version == 42) { // stealth address
o.type = 'stealth';
o.option = front[1];
if (o.option != 0) {
alert("Stealth Address option other than 0 is currently not supported!");
return false;
};
o.scankey = Crypto.util.bytesToHex(front.slice(2, 35));
o.n = front[35];
if (o.n > 1) {
alert("Stealth Multisig is currently not supported!");
return false;
};
o.spendkey = Crypto.util.bytesToHex(front.slice(36, 69));
o.m = front[69];
o.prefixlen = front[70];
if (o.prefixlen > 0) {
alert("Stealth Address Prefixes are currently not supported!");
return false;
};
o.prefix = front.slice(71);
} else { // everything else
o.type = 'other'; // address is still valid but unknown version
}
return o;
} else {
throw "Invalid checksum";
}
} catch (e) {
let bech32rs = coinjs.bech32redeemscript(addr);
if (bech32rs) {
return {
'type': 'bech32',
'redeemscript': bech32rs
};
} else {
return false;
}
}
}
/* retreive the balance from a given address */
coinjs.addressBalance = function(address, callback) {
coinjs.ajax(coinjs.host + '?uid=' + coinjs.uid + '&key=' + coinjs.key + '&setmodule=addresses&request=bal&address=' + address + '&r=' + Math.random(), callback, "GET");
}
/* decompress an compressed public key */
coinjs.pubkeydecompress = function(pubkey) {
if ((typeof(pubkey) == 'string') && pubkey.match(/^[a-f0-9]+$/i)) {
var curve = EllipticCurve.getSECCurveByName("secp256k1");
try {
var pt = curve.curve.decodePointHex(pubkey);
var x = pt.getX().toBigInteger();
var y = pt.getY().toBigInteger();
var publicKeyBytes = EllipticCurve.integerToBytes(x, 32);
publicKeyBytes = publicKeyBytes.concat(EllipticCurve.integerToBytes(y, 32));
publicKeyBytes.unshift(0x04);
return Crypto.util.bytesToHex(publicKeyBytes);
} catch (e) {
// console.log(e);
return false;
}
}
return false;
}
coinjs.bech32_polymod = function(values) {
var chk = 1;
var BECH32_GENERATOR = [0x3b6a57b2, 0x26508e6d, 0x1ea119fa, 0x3d4233dd, 0x2a1462b3];
for (var p = 0; p < values.length; ++p) {
var top = chk >> 25;
chk = (chk & 0x1ffffff) << 5 ^ values[p];
for (var i = 0; i < 5; ++i) {
if ((top >> i) & 1) {
chk ^= BECH32_GENERATOR[i];
}
}
}
return chk;
}
coinjs.bech32_hrpExpand = function(hrp) {
var ret = [];
var p;
for (p = 0; p < hrp.length; ++p) {
ret.push(hrp.charCodeAt(p) >> 5);
}
ret.push(0);
for (p = 0; p < hrp.length; ++p) {
ret.push(hrp.charCodeAt(p) & 31);
}
return ret;
}
coinjs.bech32_verifyChecksum = function(hrp, data) {
return coinjs.bech32_polymod(coinjs.bech32_hrpExpand(hrp).concat(data)) === 1;
}
coinjs.bech32_createChecksum = function(hrp, data) {
var values = coinjs.bech32_hrpExpand(hrp).concat(data).concat([0, 0, 0, 0, 0, 0]);
var mod = coinjs.bech32_polymod(values) ^ 1;
var ret = [];
for (var p = 0; p < 6; ++p) {
ret.push((mod >> 5 * (5 - p)) & 31);
}
return ret;
}
coinjs.bech32_encode = function(hrp, data) {
var combined = data.concat(coinjs.bech32_createChecksum(hrp, data));
var ret = hrp + '1';
for (var p = 0; p < combined.length; ++p) {
ret += coinjs.bech32.charset.charAt(combined[p]);
}
return ret;
}
coinjs.bech32_decode = function(bechString) {
var p;
var has_lower = false;
var has_upper = false;
for (p = 0; p < bechString.length; ++p) {
if (bechString.charCodeAt(p) < 33 || bechString.charCodeAt(p) > 126) {
return null;
}
if (bechString.charCodeAt(p) >= 97 && bechString.charCodeAt(p) <= 122) {
has_lower = true;
}
if (bechString.charCodeAt(p) >= 65 && bechString.charCodeAt(p) <= 90) {
has_upper = true;
}
}
if (has_lower && has_upper) {
return null;
}
bechString = bechString.toLowerCase();
var pos = bechString.lastIndexOf('1');
if (pos < 1 || pos + 7 > bechString.length || bechString.length > 90) {
return null;
}
var hrp = bechString.substring(0, pos);
var data = [];
for (p = pos + 1; p < bechString.length; ++p) {
var d = coinjs.bech32.charset.indexOf(bechString.charAt(p));
if (d === -1) {
return null;
}
data.push(d);
}
if (!coinjs.bech32_verifyChecksum(hrp, data)) {
return null;
}
return {
hrp: hrp,
data: data.slice(0, data.length - 6)
};
}
coinjs.bech32_convert = function(data, inBits, outBits, pad) {
var value = 0;
var bits = 0;
var maxV = (1 << outBits) - 1;
var result = [];
for (var i = 0; i < data.length; ++i) {
value = (value << inBits) | data[i];
bits += inBits;
while (bits >= outBits) {
bits -= outBits;
result.push((value >> bits) & maxV);
}
}
if (pad) {
if (bits > 0) {
result.push((value << (outBits - bits)) & maxV);
}
} else {
if (bits >= inBits) throw new Error('Excess padding');
if ((value << (outBits - bits)) & maxV) throw new Error('Non-zero padding');
}
return result;
}
coinjs.testdeterministicK = function() {
// https://github.com/bitpay/bitcore/blob/9a5193d8e94b0bd5b8e7f00038e7c0b935405a03/test/crypto/ecdsa.js
// Line 21 and 22 specify digest hash and privkey for the first 2 test vectors.
// Line 96-117 tells expected result.
var tx = coinjs.transaction();
var test_vectors = [{
'message': 'test data',
'privkey': 'fee0a1f7afebf9d2a5a80c0c98a31c709681cce195cbcd06342b517970c0be1e',
'k_bad00': 'fcce1de7a9bcd6b2d3defade6afa1913fb9229e3b7ddf4749b55c4848b2a196e',
'k_bad01': '727fbcb59eb48b1d7d46f95a04991fc512eb9dbf9105628e3aec87428df28fd8',
'k_bad15': '398f0e2c9f79728f7b3d84d447ac3a86d8b2083c8f234a0ffa9c4043d68bd258'
},
{
'message': 'Everything should be made as simple as possible, but not simpler.',
'privkey': '0000000000000000000000000000000000000000000000000000000000000001',
'k_bad00': 'ec633bd56a5774a0940cb97e27a9e4e51dc94af737596a0c5cbb3d30332d92a5',
'k_bad01': 'df55b6d1b5c48184622b0ead41a0e02bfa5ac3ebdb4c34701454e80aabf36f56',
'k_bad15': 'def007a9a3c2f7c769c75da9d47f2af84075af95cadd1407393dc1e26086ef87'
},
{
'message': 'Satoshi Nakamoto',
'privkey': '0000000000000000000000000000000000000000000000000000000000000002',
'k_bad00': 'd3edc1b8224e953f6ee05c8bbf7ae228f461030e47caf97cde91430b4607405e',
'k_bad01': 'f86d8e43c09a6a83953f0ab6d0af59fb7446b4660119902e9967067596b58374',
'k_bad15': '241d1f57d6cfd2f73b1ada7907b199951f95ef5ad362b13aed84009656e0254a'
},
{
'message': 'Diffie Hellman',
'privkey': '7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f',
'k_bad00': 'c378a41cb17dce12340788dd3503635f54f894c306d52f6e9bc4b8f18d27afcc',
'k_bad01': '90756c96fef41152ac9abe08819c4e95f16da2af472880192c69a2b7bac29114',
'k_bad15': '7b3f53300ab0ccd0f698f4d67db87c44cf3e9e513d9df61137256652b2e94e7c'
},
{
'message': 'Japan',
'privkey': '8080808080808080808080808080808080808080808080808080808080808080',
'k_bad00': 'f471e61b51d2d8db78f3dae19d973616f57cdc54caaa81c269394b8c34edcf59',
'k_bad01': '6819d85b9730acc876fdf59e162bf309e9f63dd35550edf20869d23c2f3e6d17',
'k_bad15': 'd8e8bae3ee330a198d1f5e00ad7c5f9ed7c24c357c0a004322abca5d9cd17847'
},
{
'message': 'Bitcoin',
'privkey': 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364140',
'k_bad00': '36c848ffb2cbecc5422c33a994955b807665317c1ce2a0f59c689321aaa631cc',
'k_bad01': '4ed8de1ec952a4f5b3bd79d1ff96446bcd45cabb00fc6ca127183e14671bcb85',
'k_bad15': '56b6f47babc1662c011d3b1f93aa51a6e9b5f6512e9f2e16821a238d450a31f8'
},
{
'message': 'i2FLPP8WEus5WPjpoHwheXOMSobUJVaZM1JPMQZq',
'privkey': 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364140',
'k_bad00': '6e9b434fcc6bbb081a0463c094356b47d62d7efae7da9c518ed7bac23f4e2ed6',
'k_bad01': 'ae5323ae338d6117ce8520a43b92eacd2ea1312ae514d53d8e34010154c593bb',
'k_bad15': '3eaa1b61d1b8ab2f1ca71219c399f2b8b3defa624719f1e96fe3957628c2c4ea'
},
{
'message': 'lEE55EJNP7aLrMtjkeJKKux4Yg0E8E1SAJnWTCEh',
'privkey': '3881e5286abc580bb6139fe8e83d7c8271c6fe5e5c2d640c1f0ed0e1ee37edc9',
'k_bad00': '5b606665a16da29cc1c5411d744ab554640479dd8abd3c04ff23bd6b302e7034',
'k_bad01': 'f8b25263152c042807c992eacd2ac2cc5790d1e9957c394f77ea368e3d9923bd',
'k_bad15': 'ea624578f7e7964ac1d84adb5b5087dd14f0ee78b49072aa19051cc15dab6f33'
},
{
'message': '2SaVPvhxkAPrayIVKcsoQO5DKA8Uv5X/esZFlf+y',
'privkey': '7259dff07922de7f9c4c5720d68c9745e230b32508c497dd24cb95ef18856631',
'k_bad00': '3ab6c19ab5d3aea6aa0c6da37516b1d6e28e3985019b3adb388714e8f536686b',
'k_bad01': '19af21b05004b0ce9cdca82458a371a9d2cf0dc35a813108c557b551c08eb52e',
'k_bad15': '117a32665fca1b7137a91c4739ac5719fec0cf2e146f40f8e7c21b45a07ebc6a'
},
{
'message': '00A0OwO2THi7j5Z/jp0FmN6nn7N/DQd6eBnCS+/b',
'privkey': '0d6ea45d62b334777d6995052965c795a4f8506044b4fd7dc59c15656a28f7aa',
'k_bad00': '79487de0c8799158294d94c0eb92ee4b567e4dc7ca18addc86e49d31ce1d2db6',
'k_bad01': '9561d2401164a48a8f600882753b3105ebdd35e2358f4f808c4f549c91490009',
'k_bad15': 'b0d273634129ff4dbdf0df317d4062a1dbc58818f88878ffdb4ec511c77976c0'
}
];
var result_txt = '\n----------------------\nResults\n----------------------\n\n';
for (i = 0; i < test_vectors.length; i++) {
var hash = Crypto.SHA256(test_vectors[i]['message'].split('').map(function(c) {
return c.charCodeAt(0);
}), {
asBytes: true
});
var wif = coinjs.privkey2wif(test_vectors[i]['privkey']);
var KBigInt = tx.deterministicK(wif, hash);
var KBigInt0 = tx.deterministicK(wif, hash, 0);
var KBigInt1 = tx.deterministicK(wif, hash, 1);
var KBigInt15 = tx.deterministicK(wif, hash, 15);
var K = Crypto.util.bytesToHex(KBigInt.toByteArrayUnsigned());
var K0 = Crypto.util.bytesToHex(KBigInt0.toByteArrayUnsigned());
var K1 = Crypto.util.bytesToHex(KBigInt1.toByteArrayUnsigned());
var K15 = Crypto.util.bytesToHex(KBigInt15.toByteArrayUnsigned());
if (K != test_vectors[i]['k_bad00']) {
result_txt += 'Failed Test #' + (i + 1) + '\n K = ' + K + '\nExpected = ' + test_vectors[i]['k_bad00'] + '\n\n';
} else if (K0 != test_vectors[i]['k_bad00']) {
result_txt += 'Failed Test #' + (i + 1) + '\n K0 = ' + K0 + '\nExpected = ' + test_vectors[i]['k_bad00'] + '\n\n';
} else if (K1 != test_vectors[i]['k_bad01']) {
result_txt += 'Failed Test #' + (i + 1) + '\n K1 = ' + K1 + '\nExpected = ' + test_vectors[i]['k_bad01'] + '\n\n';
} else if (K15 != test_vectors[i]['k_bad15']) {
result_txt += 'Failed Test #' + (i + 1) + '\n K15 = ' + K15 + '\nExpected = ' + test_vectors[i]['k_bad15'] + '\n\n';
};
};
if (result_txt.length < 60) {
result_txt = 'All Tests OK!';
};
return result_txt;
};
/* start of hd functions, thanks bip32.org */
coinjs.hd = function(data) {
var r = {};
/* some hd value parsing */
r.parse = function() {
var bytes = [];
// some quick validation
if (typeof(data) == 'string') {
var decoded = coinjs.base58decode(data);
if (decoded.length == 82) {
var checksum = decoded.slice(78, 82);
var hash = Crypto.SHA256(Crypto.SHA256(decoded.slice(0, 78), {
asBytes: true
}), {
asBytes: true
});
if (checksum[0] == hash[0] && checksum[1] == hash[1] && checksum[2] == hash[2] && checksum[3] == hash[3]) {
bytes = decoded.slice(0, 78);
}
}
}
// actual parsing code
if (bytes && bytes.length > 0) {
r.version = coinjs.uint(bytes.slice(0, 4), 4);
r.depth = coinjs.uint(bytes.slice(4, 5), 1);
r.parent_fingerprint = bytes.slice(5, 9);
r.child_index = coinjs.uint(bytes.slice(9, 13), 4);
r.chain_code = bytes.slice(13, 45);
r.key_bytes = bytes.slice(45, 78);
var c = coinjs.compressed; // get current default
coinjs.compressed = true;
if (r.key_bytes[0] == 0x00) {
r.type = 'private';
var privkey = (r.key_bytes).slice(1, 33);
var privkeyHex = Crypto.util.bytesToHex(privkey);
var pubkey = coinjs.newPubkey(privkeyHex);
r.keys = {
'privkey': privkeyHex,
'pubkey': pubkey,
'address': coinjs.pubkey2address(pubkey),
'wif': coinjs.privkey2wif(privkeyHex)
};
} else if (r.key_bytes[0] == 0x02 || r.key_bytes[0] == 0x03) {
r.type = 'public';
var pubkeyHex = Crypto.util.bytesToHex(r.key_bytes);
r.keys = {
'pubkey': pubkeyHex,
'address': coinjs.pubkey2address(pubkeyHex)
};
} else {
r.type = 'invalid';
}
r.keys_extended = r.extend();
coinjs.compressed = c; // reset to default
}
return r;
}
// extend prv/pub key
r.extend = function() {
var hd = coinjs.hd();
return hd.make({
'depth': (this.depth * 1) + 1,
'parent_fingerprint': this.parent_fingerprint,
'child_index': this.child_index,
'chain_code': this.chain_code,
'privkey': this.keys.privkey,
'pubkey': this.keys.pubkey
});
}
// derive from path
r.derive_path = function(path) {
if (path == 'm' || path == 'M' || path == 'm\'' || path == 'M\'') return this;
var p = path.split('/');
var hdp = coinjs.clone(this); // clone hd path
for (var i in p) {
if (((i == 0) && c != 'm') || i == 'remove') {
continue;
}
var c = p[i];
var use_private = (c.length > 1) && (c[c.length - 1] == '\'');
var child_index = parseInt(use_private ? c.slice(0, c.length - 1) : c) & 0x7fffffff;
if (use_private)
child_index += 0x80000000;
hdp = hdp.derive(child_index);
var key = ((hdp.keys_extended.privkey) && hdp.keys_extended.privkey != '') ? hdp.keys_extended.privkey : hdp.keys_extended.pubkey;
hdp = coinjs.hd(key);
}
return hdp;
}
// derive key from index
r.derive = function(i) {
i = (i) ? i : 0;
var blob = (Crypto.util.hexToBytes(this.keys.pubkey)).concat(coinjs.numToBytes(i, 4).reverse());
var j = new jsSHA(Crypto.util.bytesToHex(blob), 'HEX');
var hash = j.getHMAC(Crypto.util.bytesToHex(r.chain_code), "HEX", "SHA-512", "HEX");
var il = new BigInteger(hash.slice(0, 64), 16);
var ir = Crypto.util.hexToBytes(hash.slice(64, 128));
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
var curve = ecparams.getCurve();
var k, key, pubkey, o;
o = coinjs.clone(this);
o.chain_code = ir;
o.child_index = i;
if (this.type == 'private') {
// derive key pair from from a xprv key
k = il.add(new BigInteger([0].concat(Crypto.util.hexToBytes(this.keys.privkey)))).mod(ecparams.getN());
key = Crypto.util.bytesToHex(k.toByteArrayUnsigned());
pubkey = coinjs.newPubkey(key);
o.keys = {
'privkey': key,
'pubkey': pubkey,
'wif': coinjs.privkey2wif(key),
'address': coinjs.pubkey2address(pubkey)
};
} else if (this.type == 'public') {
// derive xpub key from an xpub key
q = ecparams.curve.decodePointHex(this.keys.pubkey);
var curvePt = ecparams.getG().multiply(il).add(q);
var x = curvePt.getX().toBigInteger();
var y = curvePt.getY().toBigInteger();
var publicKeyBytesCompressed = EllipticCurve.integerToBytes(x, 32)
if (y.isEven()) {
publicKeyBytesCompressed.unshift(0x02)
} else {
publicKeyBytesCompressed.unshift(0x03)
}
pubkey = Crypto.util.bytesToHex(publicKeyBytesCompressed);
o.keys = {
'pubkey': pubkey,
'address': coinjs.pubkey2address(pubkey)
}
} else {
// fail
}
o.parent_fingerprint = (ripemd160(Crypto.SHA256(Crypto.util.hexToBytes(r.keys.pubkey), {
asBytes: true
}), {
asBytes: true
})).slice(0, 4);
o.keys_extended = o.extend();
return o;
}
// make a master hd xprv/xpub
r.master = function(pass) {
var seed = (pass) ? Crypto.SHA256(pass) : coinjs.newPrivkey();
var hasher = new jsSHA(seed, 'HEX');
var I = hasher.getHMAC("Bitcoin seed", "TEXT", "SHA-512", "HEX");
var privkey = Crypto.util.hexToBytes(I.slice(0, 64));
var chain = Crypto.util.hexToBytes(I.slice(64, 128));
var hd = coinjs.hd();
return hd.make({
'depth': 0,
'parent_fingerprint': [0, 0, 0, 0],
'child_index': 0,
'chain_code': chain,
'privkey': I.slice(0, 64),
'pubkey': coinjs.newPubkey(I.slice(0, 64))
});
}
// encode data to a base58 string
r.make = function(data) { // { (int) depth, (array) parent_fingerprint, (int) child_index, (byte array) chain_code, (hex str) privkey, (hex str) pubkey}
var k = [];
//depth
k.push(data.depth * 1);
//parent fingerprint
k = k.concat(data.parent_fingerprint);
//child index
k = k.concat((coinjs.numToBytes(data.child_index, 4)).reverse());
//Chain code
k = k.concat(data.chain_code);
var o = {}; // results
//encode xprv key
if (data.privkey) {
var prv = (coinjs.numToBytes(coinjs.hdkey.prv, 4)).reverse();
prv = prv.concat(k);
prv.push(0x00);
prv = prv.concat(Crypto.util.hexToBytes(data.privkey));
var hash = Crypto.SHA256(Crypto.SHA256(prv, {
asBytes: true
}), {
asBytes: true
});
var checksum = hash.slice(0, 4);
var ret = prv.concat(checksum);
o.privkey = coinjs.base58encode(ret);
}
//encode xpub key
if (data.pubkey) {
var pub = (coinjs.numToBytes(coinjs.hdkey.pub, 4)).reverse();
pub = pub.concat(k);
pub = pub.concat(Crypto.util.hexToBytes(data.pubkey));
var hash = Crypto.SHA256(Crypto.SHA256(pub, {
asBytes: true
}), {
asBytes: true
});
var checksum = hash.slice(0, 4);
var ret = pub.concat(checksum);
o.pubkey = coinjs.base58encode(ret);
}
return o;
}
return r.parse();
}
/* start of script functions */
coinjs.script = function(data) {
var r = {};
if (!data) {
r.buffer = [];
} else if ("string" == typeof data) {
r.buffer = Crypto.util.hexToBytes(data);
} else if (coinjs.isArray(data)) {
r.buffer = data;
} else if (data instanceof coinjs.script) {
r.buffer = data.buffer;
} else {
r.buffer = data;
}
/* parse buffer array */
r.parse = function() {
var self = this;
r.chunks = [];
var i = 0;
function readChunk(n) {
self.chunks.push(self.buffer.slice(i, i + n));
i += n;
};
while (i < this.buffer.length) {
var opcode = this.buffer[i++];
if (opcode >= 0xF0) {
opcode = (opcode << 8) | this.buffer[i++];
}
var len;
if (opcode > 0 && opcode < 76) { //OP_PUSHDATA1
readChunk(opcode);
} else if (opcode == 76) { //OP_PUSHDATA1
len = this.buffer[i++];
readChunk(len);
} else if (opcode == 77) { //OP_PUSHDATA2
len = (this.buffer[i++] << 8) | this.buffer[i++];
readChunk(len);
} else if (opcode == 78) { //OP_PUSHDATA4
len = (this.buffer[i++] << 24) | (this.buffer[i++] << 16) | (this.buffer[i++] << 8) | this.buffer[i++];
readChunk(len);
} else {
this.chunks.push(opcode);
}
if (i < 0x00) {
break;
}
}
return true;
};
/* decode the redeemscript of a multisignature transaction */
r.decodeRedeemScript = function(script) {
var r = false;
try {
var s = coinjs.script(Crypto.util.hexToBytes(script));
if ((s.chunks.length >= 3) && s.chunks[s.chunks.length - 1] == 174) { //OP_CHECKMULTISIG
r = {};
r.signaturesRequired = s.chunks[0] - 80;
var pubkeys = [];
for (var i = 1; i < s.chunks.length - 2; i++) {
pubkeys.push(Crypto.util.bytesToHex(s.chunks[i]));
}
r.pubkeys = pubkeys;
var multi = coinjs.pubkeys2MultisigAddress(pubkeys, r.signaturesRequired);
r.address = multi['address'];
r.type = 'multisig__'; // using __ for now to differentiat from the other object .type == "multisig"
var rs = Crypto.util.bytesToHex(s.buffer);
r.redeemscript = rs;
} else if ((s.chunks.length == 2) && (s.buffer[0] == 0 && s.buffer[1] == 20)) { // SEGWIT
r = {};
r.type = "segwit__";
var rs = Crypto.util.bytesToHex(s.buffer);
r.address = coinjs.pubkey2address(rs, coinjs.multisig);
r.redeemscript = rs;
} else if (s.chunks.length == 5 && s.chunks[1] == 177 && s.chunks[2] == 117 && s.chunks[4] == 172) {
// ^ <unlocktime> OP_CHECKLOCKTIMEVERIFY OP_DROP <pubkey> OP_CHECKSIG ^
r = {}
r.pubkey = Crypto.util.bytesToHex(s.chunks[3]);
r.checklocktimeverify = coinjs.bytesToNum(s.chunks[0].slice());
r.address = coinjs.simpleHodlAddress(r.pubkey, r.checklocktimeverify).address;
var rs = Crypto.util.bytesToHex(s.buffer);
r.redeemscript = rs;
r.type = "hodl__";
}
} catch (e) {
// console.log(e);
r = false;
}
return r;
}
/* create output script to spend */
r.spendToScript = function(address) {
var addr = coinjs.addressDecode(address);
var s = coinjs.script();
if (addr.type == "bech32") {
s.writeOp(0);
s.writeBytes(Crypto.util.hexToBytes(addr.redeemscript));
} else if (addr.version == coinjs.multisig) { // multisig address
s.writeOp(169); //OP_HASH160
s.writeBytes(addr.bytes);
s.writeOp(135); //OP_EQUAL
} else { // regular address
s.writeOp(118); //OP_DUP
s.writeOp(169); //OP_HASH160
s.writeBytes(addr.bytes);
s.writeOp(136); //OP_EQUALVERIFY
s.writeOp(172); //OP_CHECKSIG
}
return s;
}
/* geneate a (script) pubkey hash of the address - used for when signing */
r.pubkeyHash = function(address) {
var addr = coinjs.addressDecode(address);
var s = coinjs.script();
s.writeOp(118); //OP_DUP
s.writeOp(169); //OP_HASH160
s.writeBytes(addr.bytes);
s.writeOp(136); //OP_EQUALVERIFY
s.writeOp(172); //OP_CHECKSIG
return s;
}
/* write to buffer */
r.writeOp = function(op) {
this.buffer.push(op);
this.chunks.push(op);
return true;
}
/* write bytes to buffer */
r.writeBytes = function(data) {
if (data.length < 76) { //OP_PUSHDATA1
this.buffer.push(data.length);
} else if (data.length <= 0xff) {
this.buffer.push(76); //OP_PUSHDATA1
this.buffer.push(data.length);
} else if (data.length <= 0xffff) {
this.buffer.push(77); //OP_PUSHDATA2
this.buffer.push(data.length & 0xff);
this.buffer.push((data.length >>> 8) & 0xff);
} else {
this.buffer.push(78); //OP_PUSHDATA4
this.buffer.push(data.length & 0xff);
this.buffer.push((data.length >>> 8) & 0xff);
this.buffer.push((data.length >>> 16) & 0xff);
this.buffer.push((data.length >>> 24) & 0xff);
}
this.buffer = this.buffer.concat(data);
this.chunks.push(data);
return true;
}
r.parse();
return r;
}
/* start of transaction functions */
/* create a new transaction object */
coinjs.transaction = function() {
var r = {};
r.version = 1;
r.lock_time = 0;
r.ins = [];
r.outs = [];
r.witness = false;
r.timestamp = null;
r.block = null;
/* add an input to a transaction */
r.addinput = function(txid, index, script, sequence) {
var o = {};
o.outpoint = {
'hash': txid,
'index': index
};
o.script = coinjs.script(script || []);
o.sequence = sequence || ((r.lock_time == 0) ? 4294967295 : 0);
return this.ins.push(o);
}
/* add an output to a transaction */
r.addoutput = function(address, value) {
var o = {};
o.value = new BigInteger('' + Math.round((value * 1) * 1e8), 10);
var s = coinjs.script();
o.script = s.spendToScript(address);
return this.outs.push(o);
}
/* add two outputs for stealth addresses to a transaction */
r.addstealth = function(stealth, value) {
var ephemeralKeyBigInt = BigInteger.fromByteArrayUnsigned(Crypto.util.hexToBytes(coinjs.newPrivkey()));
var curve = EllipticCurve.getSECCurveByName("secp256k1");
var p = EllipticCurve.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F");
var a = BigInteger.ZERO;
var b = EllipticCurve.fromHex("7");
var calccurve = new EllipticCurve.CurveFp(p, a, b);
var ephemeralPt = curve.getG().multiply(ephemeralKeyBigInt);
var scanPt = calccurve.decodePointHex(stealth.scankey);
var sharedPt = scanPt.multiply(ephemeralKeyBigInt);
var stealthindexKeyBigInt = BigInteger.fromByteArrayUnsigned(Crypto.SHA256(sharedPt.getEncoded(true), {
asBytes: true
}));
var stealthindexPt = curve.getG().multiply(stealthindexKeyBigInt);
var spendPt = calccurve.decodePointHex(stealth.spendkey);
var addressPt = spendPt.add(stealthindexPt);
var sendaddress = coinjs.pubkey2address(Crypto.util.bytesToHex(addressPt.getEncoded(true)));
var OPRETBytes = [6].concat(Crypto.util.randomBytes(4)).concat(ephemeralPt.getEncoded(true)); // ephemkey data
var q = coinjs.script();
q.writeOp(106); // OP_RETURN
q.writeBytes(OPRETBytes);
v = {};
v.value = 0;
v.script = q;
this.outs.push(v);
var o = {};
o.value = new BigInteger('' + Math.round((value * 1) * 1e8), 10);
var s = coinjs.script();
o.script = s.spendToScript(sendaddress);
return this.outs.push(o);
}
/* add data to a transaction */
r.adddata = function(data) {
var r = false;
if (((data.match(/^[a-f0-9]+$/gi)) && data.length < 160) && (data.length % 2) == 0) {
var s = coinjs.script();
s.writeOp(106); // OP_RETURN
s.writeBytes(Crypto.util.hexToBytes(data));
o = {};
o.value = 0;
o.script = s;
return this.outs.push(o);
}
return r;
}
/* list unspent transactions */
r.listUnspent = function(address, callback) {
coinjs.ajax(coinjs.host + '?uid=' + coinjs.uid + '&key=' + coinjs.key + '&setmodule=addresses&request=unspent&address=' + address + '&r=' + Math.random(), callback, "GET");
}
/* list transaction data */
r.getTransaction = function(txid, callback) {
coinjs.ajax(coinjs.host + '?uid=' + coinjs.uid + '&key=' + coinjs.key + '&setmodule=bitcoin&request=gettransaction&txid=' + txid + '&r=' + Math.random(), callback, "GET");
}
/* add unspent to transaction */
r.addUnspent = function(address, callback, script, segwit, sequence) {
var self = this;
this.listUnspent(address, function(data) {
var s = coinjs.script();
var value = 0;
var total = 0;
var x = {};
if (GLOBAL.DOMParser) {
parser = new DOMParser();
xmlDoc = parser.parseFromString(data, "text/xml");
} else {
xmlDoc = new ActiveXObject("Microsoft.XMLDOM");
xmlDoc.async = false;
xmlDoc.loadXML(data);
}
var unspent = xmlDoc.getElementsByTagName("unspent")[0];
if (unspent) {
for (i = 1; i <= unspent.childElementCount; i++) {
var u = xmlDoc.getElementsByTagName("unspent_" + i)[0]
var txhash = (u.getElementsByTagName("tx_hash")[0].childNodes[0].nodeValue).match(/.{1,2}/g).reverse().join("") + '';
var n = u.getElementsByTagName("tx_output_n")[0].childNodes[0].nodeValue;
var scr = script || u.getElementsByTagName("script")[0].childNodes[0].nodeValue;
if (segwit) {
/* this is a small hack to include the value with the redeemscript to make the signing procedure smoother.
It is not standard and removed during the signing procedure. */
s = coinjs.script();
s.writeBytes(Crypto.util.hexToBytes(script));
s.writeOp(0);
s.writeBytes(coinjs.numToBytes(u.getElementsByTagName("value")[0].childNodes[0].nodeValue * 1, 8));
scr = Crypto.util.bytesToHex(s.buffer);
}
var seq = sequence || false;
self.addinput(txhash, n, scr, seq);
value += u.getElementsByTagName("value")[0].childNodes[0].nodeValue * 1;
total++;
}
}
x.result = xmlDoc.getElementsByTagName("result")[0].childNodes[0].nodeValue;
x.unspent = unspent;
x.value = value;
x.total = total;
x.response = xmlDoc.getElementsByTagName("response")[0].childNodes[0].nodeValue;
return callback(x);
});
}
/* add unspent and sign */
r.addUnspentAndSign = function(wif, callback) {
var self = this;
var address = coinjs.wif2address(wif);
self.addUnspent(address['address'], function(data) {
self.sign(wif);
return callback(data);
});
}
/* broadcast a transaction */
r.broadcast = function(callback, txhex) {
var tx = txhex || this.serialize();
coinjs.ajax(coinjs.host + '?uid=' + coinjs.uid + '&key=' + coinjs.key + '&setmodule=bitcoin&request=sendrawtransaction', callback, "POST", ["rawtx=" + tx]);
}
/* generate the transaction hash to sign from a transaction input */
r.transactionHash = function(index, sigHashType) {
var clone = coinjs.clone(this);
var shType = sigHashType || 1;
/* black out all other ins, except this one */
for (var i = 0; i < clone.ins.length; i++) {
if (index != i) {
clone.ins[i].script = coinjs.script();
}
}
var extract = this.extractScriptKey(index);
clone.ins[index].script = coinjs.script(extract['script']);
if ((clone.ins) && clone.ins[index]) {
/* SIGHASH : For more info on sig hashs see https://en.bitcoin.it/wiki/OP_CHECKSIG
and https://bitcoin.org/en/developer-guide#signature-hash-type */
if (shType == 1) {
//SIGHASH_ALL 0x01
} else if (shType == 2) {
//SIGHASH_NONE 0x02
clone.outs = [];
for (var i = 0; i < clone.ins.length; i++) {
if (index != i) {
clone.ins[i].sequence = 0;
}
}
} else if (shType == 3) {
//SIGHASH_SINGLE 0x03
clone.outs.length = index + 1;
for (var i = 0; i < index; i++) {
clone.outs[i].value = -1;
clone.outs[i].script.buffer = [];
}
for (var i = 0; i < clone.ins.length; i++) {
if (index != i) {
clone.ins[i].sequence = 0;
}
}
} else if (shType >= 128) {
//SIGHASH_ANYONECANPAY 0x80
clone.ins = [clone.ins[index]];
if (shType == 129) {
// SIGHASH_ALL + SIGHASH_ANYONECANPAY
} else if (shType == 130) {
// SIGHASH_NONE + SIGHASH_ANYONECANPAY
clone.outs = [];
} else if (shType == 131) {
// SIGHASH_SINGLE + SIGHASH_ANYONECANPAY
clone.outs.length = index + 1;
for (var i = 0; i < index; i++) {
clone.outs[i].value = -1;
clone.outs[i].script.buffer = [];
}
}
}
var buffer = Crypto.util.hexToBytes(clone.serialize());
buffer = buffer.concat(coinjs.numToBytes(parseInt(shType), 4));
var hash = Crypto.SHA256(buffer, {
asBytes: true
});
var r = Crypto.util.bytesToHex(Crypto.SHA256(hash, {
asBytes: true
}));
return r;
} else {
return false;
}
}
/* generate a segwit transaction hash to sign from a transaction input */
r.transactionHashSegWitV0 = function(index, sigHashType) {
/*
Notice: coinb.in by default, deals with segwit transactions in a non-standard way.
Segwit transactions require that input values are included in the transaction hash.
To save wasting resources and potentially slowing down this service, we include the amount with the
redeem script to generate the transaction hash and remove it after its signed.
*/
// start redeem script check
var extract = this.extractScriptKey(index);
if (extract['type'] != 'segwit') {
return {
'result': 0,
'fail': 'redeemscript',
'response': 'redeemscript missing or not valid for segwit'
};
}
if (extract['value'] == -1) {
return {
'result': 0,
'fail': 'value',
'response': 'unable to generate a valid segwit hash without a value'
};
}
var scriptcode = Crypto.util.hexToBytes(extract['script']);
// end of redeem script check
/* P2WPKH */
if (scriptcode.length == 20) {
scriptcode = [0x00, 0x14].concat(scriptcode);
}
if (scriptcode.length == 22) {
scriptcode = scriptcode.slice(1);
scriptcode.unshift(25, 118, 169);
scriptcode.push(136, 172);
}
var value = coinjs.numToBytes(extract['value'], 8);
// start
var zero = coinjs.numToBytes(0, 32);
var version = coinjs.numToBytes(parseInt(this.version), 4);
var bufferTmp = [];
if (!(sigHashType >= 80)) { // not sighash anyonecanpay
for (var i = 0; i < this.ins.length; i++) {
bufferTmp = bufferTmp.concat(Crypto.util.hexToBytes(this.ins[i].outpoint.hash).reverse());
bufferTmp = bufferTmp.concat(coinjs.numToBytes(this.ins[i].outpoint.index, 4));
}
}
var hashPrevouts = bufferTmp.length >= 1 ? Crypto.SHA256(Crypto.SHA256(bufferTmp, {
asBytes: true
}), {
asBytes: true
}) : zero;
var bufferTmp = [];
if (!(sigHashType >= 80) && sigHashType != 2 && sigHashType != 3) { // not sighash anyonecanpay & single & none
for (var i = 0; i < this.ins.length; i++) {
bufferTmp = bufferTmp.concat(coinjs.numToBytes(this.ins[i].sequence, 4));
}
}
var hashSequence = bufferTmp.length >= 1 ? Crypto.SHA256(Crypto.SHA256(bufferTmp, {
asBytes: true
}), {
asBytes: true
}) : zero;
var outpoint = Crypto.util.hexToBytes(this.ins[index].outpoint.hash).reverse();
outpoint = outpoint.concat(coinjs.numToBytes(this.ins[index].outpoint.index, 4));
var nsequence = coinjs.numToBytes(this.ins[index].sequence, 4);
var hashOutputs = zero;
var bufferTmp = [];
if (sigHashType != 2 && sigHashType != 3) { // not sighash single & none
for (var i = 0; i < this.outs.length; i++) {
bufferTmp = bufferTmp.concat(coinjs.numToBytes(this.outs[i].value, 8));
bufferTmp = bufferTmp.concat(coinjs.numToVarInt(this.outs[i].script.buffer.length));
bufferTmp = bufferTmp.concat(this.outs[i].script.buffer);
}
hashOutputs = Crypto.SHA256(Crypto.SHA256(bufferTmp, {
asBytes: true
}), {
asBytes: true
});
} else if ((sigHashType == 2) && index < this.outs.length) { // is sighash single
bufferTmp = bufferTmp.concat(coinjs.numToBytes(this.outs[index].value, 8));
bufferTmp = bufferTmp.concat(coinjs.numToVarInt(this.outs[i].script.buffer.length));
bufferTmp = bufferTmp.concat(this.outs[index].script.buffer);
hashOutputs = Crypto.SHA256(Crypto.SHA256(bufferTmp, {
asBytes: true
}), {
asBytes: true
});
}
var locktime = coinjs.numToBytes(this.lock_time, 4);
var sighash = coinjs.numToBytes(sigHashType, 4);
var buffer = [];
buffer = buffer.concat(version);
buffer = buffer.concat(hashPrevouts);
buffer = buffer.concat(hashSequence);
buffer = buffer.concat(outpoint);
buffer = buffer.concat(scriptcode);
buffer = buffer.concat(value);
buffer = buffer.concat(nsequence);
buffer = buffer.concat(hashOutputs);
buffer = buffer.concat(locktime);
buffer = buffer.concat(sighash);
var hash = Crypto.SHA256(buffer, {
asBytes: true
});
return {
'result': 1,
'hash': Crypto.util.bytesToHex(Crypto.SHA256(hash, {
asBytes: true
})),
'response': 'hash generated'
};
}
/* extract the scriptSig, used in the transactionHash() function */
r.extractScriptKey = function(index) {
if (this.ins[index]) {
if ((this.ins[index].script.chunks.length == 5) && this.ins[index].script.chunks[4] == 172 && coinjs.isArray(this.ins[index].script.chunks[2])) { //OP_CHECKSIG
// regular scriptPubkey (not signed)
return {
'type': 'scriptpubkey',
'signed': 'false',
'signatures': 0,
'script': Crypto.util.bytesToHex(this.ins[index].script.buffer)
};
} else if ((this.ins[index].script.chunks.length == 2) && this.ins[index].script.chunks[0][0] == 48 && this.ins[index].script.chunks[1].length == 5 && this.ins[index].script.chunks[1][1] == 177) { //OP_CHECKLOCKTIMEVERIFY
// hodl script (signed)
return {
'type': 'hodl',
'signed': 'true',
'signatures': 1,
'script': Crypto.util.bytesToHex(this.ins[index].script.buffer)
};
} else if ((this.ins[index].script.chunks.length == 2) && this.ins[index].script.chunks[0][0] == 48) {
// regular scriptPubkey (probably signed)
return {
'type': 'scriptpubkey',
'signed': 'true',
'signatures': 1,
'script': Crypto.util.bytesToHex(this.ins[index].script.buffer)
};
} else if (this.ins[index].script.chunks.length == 5 && this.ins[index].script.chunks[1] == 177) { //OP_CHECKLOCKTIMEVERIFY
// hodl script (not signed)
return {
'type': 'hodl',
'signed': 'false',
'signatures': 0,
'script': Crypto.util.bytesToHex(this.ins[index].script.buffer)
};
} else if ((this.ins[index].script.chunks.length <= 3 && this.ins[index].script.chunks.length > 0) && ((this.ins[index].script.chunks[0].length == 22 && this.ins[index].script.chunks[0][0] == 0) || (this.ins[index].script.chunks[0].length == 20 && this.ins[index].script.chunks[1] == 0))) {
var signed = ((this.witness[index]) && this.witness[index].length == 2) ? 'true' : 'false';
var sigs = (signed == 'true') ? 1 : 0;
var value = -1; // no value found
if ((this.ins[index].script.chunks[2]) && this.ins[index].script.chunks[2].length == 8) {
value = coinjs.bytesToNum(this.ins[index].script.chunks[2]); // value found encoded in transaction (THIS IS NON STANDARD)
}
return {
'type': 'segwit',
'signed': signed,
'signatures': sigs,
'script': Crypto.util.bytesToHex(this.ins[index].script.chunks[0]),
'value': value
};
} else if (this.ins[index].script.chunks[0] == 0 && this.ins[index].script.chunks[this.ins[index].script.chunks.length - 1][this.ins[index].script.chunks[this.ins[index].script.chunks.length - 1].length - 1] == 174) { // OP_CHECKMULTISIG
// multisig script, with signature(s) included
var sigcount = 0;
for (let i = 1; i < this.ins[index].script.chunks.length - 1; i++) {
if (this.ins[index].script.chunks[i] != 0) {
sigcount++;
}
}
return {
'type': 'multisig',
'signed': 'true',
'signatures': sigcount,
'script': Crypto.util.bytesToHex(this.ins[index].script.chunks[this.ins[index].script.chunks.length - 1])
};
} else if (this.ins[index].script.chunks[0] >= 80 && this.ins[index].script.chunks[this.ins[index].script.chunks.length - 1] == 174) { // OP_CHECKMULTISIG
// multisig script, without signature!
return {
'type': 'multisig',
'signed': 'false',
'signatures': 0,
'script': Crypto.util.bytesToHex(this.ins[index].script.buffer)
};
} else if (this.ins[index].script.chunks.length == 0) {
// empty
//bech32 witness check
var signed = ((this.witness[index]) && this.witness[index].length == 2) ? 'true' : 'false';
var sigs = (signed == 'true') ? 1 : 0;
return {
'type': 'empty',
'signed': signed,
'signatures': sigs,
'script': ''
};
} else {
// something else
return {
'type': 'unknown',
'signed': 'false',
'signatures': 0,
'script': Crypto.util.bytesToHex(this.ins[index].script.buffer)
};
}
} else {
return false;
}
}
/* generate a signature from a transaction hash */
r.transactionSig = function(index, wif, sigHashType, txhash) {
function serializeSig(r, s) {
var rBa = r.toByteArraySigned();
var sBa = s.toByteArraySigned();
var sequence = [];
sequence.push(0x02); // INTEGER
sequence.push(rBa.length);
sequence = sequence.concat(rBa);
sequence.push(0x02); // INTEGER
sequence.push(sBa.length);
sequence = sequence.concat(sBa);
sequence.unshift(sequence.length);
sequence.unshift(0x30); // SEQUENCE
return sequence;
}
var shType = sigHashType || 1;
var hash = txhash || Crypto.util.hexToBytes(this.transactionHash(index, shType));
if (hash) {
var curve = EllipticCurve.getSECCurveByName("secp256k1");
var key = coinjs.wif2privkey(wif);
var priv = BigInteger.fromByteArrayUnsigned(Crypto.util.hexToBytes(key['privkey']));
var n = curve.getN();
var e = BigInteger.fromByteArrayUnsigned(hash);
var badrs = 0
do {
var k = this.deterministicK(wif, hash, badrs);
var G = curve.getG();
var Q = G.multiply(k);
var r = Q.getX().toBigInteger().mod(n);
var s = k.modInverse(n).multiply(e.add(priv.multiply(r))).mod(n);
badrs++
} while (r.compareTo(BigInteger.ZERO) <= 0 || s.compareTo(BigInteger.ZERO) <= 0);
// Force lower s values per BIP62
var halfn = n.shiftRight(1);
if (s.compareTo(halfn) > 0) {
s = n.subtract(s);
};
var sig = serializeSig(r, s);
sig.push(parseInt(shType, 10));
return Crypto.util.bytesToHex(sig);
} else {
return false;
}
}
// https://tools.ietf.org/html/rfc6979#section-3.2
r.deterministicK = function(wif, hash, badrs) {
// if r or s were invalid when this function was used in signing,
// we do not want to actually compute r, s here for efficiency, so,
// we can increment badrs. explained at end of RFC 6979 section 3.2
// wif is b58check encoded wif privkey.
// hash is byte array of transaction digest.
// badrs is used only if the k resulted in bad r or s.
// some necessary things out of the way for clarity.
badrs = badrs || 0;
var key = coinjs.wif2privkey(wif);
var x = Crypto.util.hexToBytes(key['privkey'])
var curve = EllipticCurve.getSECCurveByName("secp256k1");
var N = curve.getN();
// Step: a
// hash is a byteArray of the message digest. so h1 == hash in our case
// Step: b
var v = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1];
// Step: c
var k = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
// Step: d
k = Crypto.HMAC(Crypto.SHA256, v.concat([0]).concat(x).concat(hash), k, {
asBytes: true
});
// Step: e
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
// Step: f
k = Crypto.HMAC(Crypto.SHA256, v.concat([1]).concat(x).concat(hash), k, {
asBytes: true
});
// Step: g
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
// Step: h1
var T = [];
// Step: h2 (since we know tlen = qlen, just copy v to T.)
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
T = v;
// Step: h3
var KBigInt = BigInteger.fromByteArrayUnsigned(T);
// loop if KBigInt is not in the range of [1, N-1] or if badrs needs incrementing.
var i = 0
while (KBigInt.compareTo(N) >= 0 || KBigInt.compareTo(BigInteger.ZERO) <= 0 || i < badrs) {
k = Crypto.HMAC(Crypto.SHA256, v.concat([0]), k, {
asBytes: true
});
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
T = v;
KBigInt = BigInteger.fromByteArrayUnsigned(T);
i++
};
return KBigInt;
};
/* sign a "standard" input */
r.signinput = function(index, wif, sigHashType) {
var key = coinjs.wif2pubkey(wif);
var shType = sigHashType || 1;
var signature = this.transactionSig(index, wif, shType);
var s = coinjs.script();
s.writeBytes(Crypto.util.hexToBytes(signature));
s.writeBytes(Crypto.util.hexToBytes(key['pubkey']));
this.ins[index].script = s;
return true;
}
/* signs a time locked / hodl input */
r.signhodl = function(index, wif, sigHashType) {
var shType = sigHashType || 1;
var signature = this.transactionSig(index, wif, shType);
var redeemScript = this.ins[index].script.buffer
var s = coinjs.script();
s.writeBytes(Crypto.util.hexToBytes(signature));
s.writeBytes(redeemScript);
this.ins[index].script = s;
return true;
}
/* sign a multisig input */
r.signmultisig = function(index, wif, sigHashType) {
function scriptListPubkey(redeemScript) {
var r = {};
for (var i = 1; i < redeemScript.chunks.length - 2; i++) {
r[i] = Crypto.util.hexToBytes(coinjs.pubkeydecompress(Crypto.util.bytesToHex(redeemScript.chunks[i])));
}
return r;
}
function scriptListSigs(scriptSig) {
var r = {};
var c = 0;
if (scriptSig.chunks[0] == 0 && scriptSig.chunks[scriptSig.chunks.length - 1][scriptSig.chunks[scriptSig.chunks.length - 1].length - 1] == 174) {
for (var i = 1; i < scriptSig.chunks.length - 1; i++) {
if (scriptSig.chunks[i] != 0) {
c++;
r[c] = scriptSig.chunks[i];
}
}
}
return r;
}
var redeemScript = (this.ins[index].script.chunks[this.ins[index].script.chunks.length - 1] == 174) ? this.ins[index].script.buffer : this.ins[index].script.chunks[this.ins[index].script.chunks.length - 1];
var pubkeyList = scriptListPubkey(coinjs.script(redeemScript));
var sigsList = scriptListSigs(this.ins[index].script);
var shType = sigHashType || 1;
var sighash = Crypto.util.hexToBytes(this.transactionHash(index, shType));
var signature = Crypto.util.hexToBytes(this.transactionSig(index, wif, shType));
sigsList[coinjs.countObject(sigsList) + 1] = signature;
var s = coinjs.script();
s.writeOp(0);
for (let x in pubkeyList) {
for (let y in sigsList) {
this.ins[index].script.buffer = redeemScript;
sighash = Crypto.util.hexToBytes(this.transactionHash(index, sigsList[y].slice(-1)[0] * 1));
if (coinjs.verifySignature(sighash, sigsList[y], pubkeyList[x])) {
s.writeBytes(sigsList[y]);
}
}
}
s.writeBytes(redeemScript);
this.ins[index].script = s;
return true;
}
/* sign segwit input */
r.signsegwit = function(index, wif, sigHashType) {
var shType = sigHashType || 1;
var wif2 = coinjs.wif2pubkey(wif);
var segwit = coinjs.segwitAddress(wif2['pubkey']);
var bech32 = coinjs.bech32Address(wif2['pubkey']);
if ((segwit['redeemscript'] == Crypto.util.bytesToHex(this.ins[index].script.chunks[0])) || (bech32['redeemscript'] == Crypto.util.bytesToHex(this.ins[index].script.chunks[0]))) {
var txhash = this.transactionHashSegWitV0(index, shType);
if (txhash.result == 1) {
var segwitHash = Crypto.util.hexToBytes(txhash.hash);
var signature = this.transactionSig(index, wif, shType, segwitHash);
// remove any non standard data we store, i.e. input value
var script = coinjs.script();
script.writeBytes(this.ins[index].script.chunks[0]);
this.ins[index].script = script;
if (!coinjs.isArray(this.witness)) {
this.witness = new Array(this.ins.length);
this.witness.fill([]);
}
this.witness[index] = ([signature, wif2['pubkey']]);
// bech32, empty redeemscript
if (bech32['redeemscript'] == Crypto.util.bytesToHex(this.ins[index].script.chunks[0])) {
this.ins[index].script = coinjs.script();
}
/* attempt to reorder witness data as best as we can.
data can't be easily validated at this stage as
we dont have access to the inputs value and
making a web call will be too slow. */
/*
var witness_order = [];
var witness_used = [];
for (var i = 0; i < this.ins.length; i++) {
for (var y = 0; y < this.witness.length; y++) {
if (!witness_used.includes(y)) {
var sw = coinjs.segwitAddress(this.witness[y][1]);
var b32 = coinjs.bech32Address(this.witness[y][1]);
var rs = '';
if (this.ins[i].script.chunks.length >= 1) {
rs = Crypto.util.bytesToHex(this.ins[i].script.chunks[0]);
} else if (this.ins[i].script.chunks.length == 0) {
rs = b32['redeemscript'];
}
if ((sw['redeemscript'] == rs) || (b32['redeemscript'] == rs)) {
witness_order.push(this.witness[y]);
witness_used.push(y);
// bech32, empty redeemscript
if (b32['redeemscript'] == rs) {
this.ins[index].script = coinjs.script();
}
break;
}
}
}
}
this.witness = witness_order;
*/
}
}
return true;
}
/* sign inputs */
r.sign = function(wif, sigHashType) {
var shType = sigHashType || 1;
for (var i = 0; i < this.ins.length; i++) {
var d = this.extractScriptKey(i);
var w2a = coinjs.wif2address(wif);
var script = coinjs.script();
var pubkeyHash = script.pubkeyHash(w2a['address']);
if (((d['type'] == 'scriptpubkey' && d['script'] == Crypto.util.bytesToHex(pubkeyHash.buffer)) || d['type'] == 'empty') && d['signed'] == "false") {
this.signinput(i, wif, shType);
} else if (d['type'] == 'hodl' && d['signed'] == "false") {
this.signhodl(i, wif, shType);
} else if (d['type'] == 'multisig') {
this.signmultisig(i, wif, shType);
} else if (d['type'] == 'segwit') {
this.signsegwit(i, wif, shType);
} else {
// could not sign
}
}
return this.serialize();
}
/* serialize a transaction */
r.serialize = function() {
var buffer = [];
buffer = buffer.concat(coinjs.numToBytes(parseInt(this.version), 4));
if (coinjs.isArray(this.witness)) {
buffer = buffer.concat([0x00, 0x01]);
}
buffer = buffer.concat(coinjs.numToVarInt(this.ins.length));
for (var i = 0; i < this.ins.length; i++) {
var txin = this.ins[i];
buffer = buffer.concat(Crypto.util.hexToBytes(txin.outpoint.hash).reverse());
buffer = buffer.concat(coinjs.numToBytes(parseInt(txin.outpoint.index), 4));
var scriptBytes = txin.script.buffer;
buffer = buffer.concat(coinjs.numToVarInt(scriptBytes.length));
buffer = buffer.concat(scriptBytes);
buffer = buffer.concat(coinjs.numToBytes(parseInt(txin.sequence), 4));
}
buffer = buffer.concat(coinjs.numToVarInt(this.outs.length));
for (var i = 0; i < this.outs.length; i++) {
var txout = this.outs[i];
buffer = buffer.concat(coinjs.numToBytes(txout.value, 8));
var scriptBytes = txout.script.buffer;
buffer = buffer.concat(coinjs.numToVarInt(scriptBytes.length));
buffer = buffer.concat(scriptBytes);
}
if ((coinjs.isArray(this.witness)) && this.witness.length >= 1) {
for (var i = 0; i < this.witness.length; i++) {
buffer = buffer.concat(coinjs.numToVarInt(this.witness[i].length));
for (var x = 0; x < this.witness[i].length; x++) {
buffer = buffer.concat(coinjs.numToVarInt(Crypto.util.hexToBytes(this.witness[i][x]).length));
buffer = buffer.concat(Crypto.util.hexToBytes(this.witness[i][x]));
}
}
}
buffer = buffer.concat(coinjs.numToBytes(parseInt(this.lock_time), 4));
return Crypto.util.bytesToHex(buffer);
}
/* deserialize a transaction */
r.deserialize = function(buffer) {
if (typeof buffer == "string") {
buffer = Crypto.util.hexToBytes(buffer)
}
var pos = 0;
var witness = false;
var readAsInt = function(bytes) {
if (bytes == 0) return 0;
pos++;
return buffer[pos - 1] + readAsInt(bytes - 1) * 256;
}
var readVarInt = function() {
pos++;
if (buffer[pos - 1] < 253) {
return buffer[pos - 1];
}
return readAsInt(buffer[pos - 1] - 251);
}
var readBytes = function(bytes) {
pos += bytes;
return buffer.slice(pos - bytes, pos);
}
var readVarString = function() {
var size = readVarInt();
return readBytes(size);
}
var obj = new coinjs.transaction();
obj.version = readAsInt(4);
if (buffer[pos] == 0x00 && buffer[pos + 1] == 0x01) {
// segwit transaction
witness = true;
obj.witness = [];
pos += 2;
}
var ins = readVarInt();
for (var i = 0; i < ins; i++) {
obj.ins.push({
outpoint: {
hash: Crypto.util.bytesToHex(readBytes(32).reverse()),
index: readAsInt(4)
},
script: coinjs.script(readVarString()),
sequence: readAsInt(4)
});
}
var outs = readVarInt();
for (var i = 0; i < outs; i++) {
obj.outs.push({
value: coinjs.bytesToNum(readBytes(8)),
script: coinjs.script(readVarString())
});
}
if (witness == true) {
for (i = 0; i < ins; ++i) {
var count = readVarInt();
var vector = [];
if (!coinjs.isArray(obj.witness[i])) {
obj.witness[i] = [];
}
for (var y = 0; y < count; y++) {
var slice = readVarInt();
pos += slice;
obj.witness[i].push(Crypto.util.bytesToHex(buffer.slice(pos - slice, pos)));
}
}
}
obj.lock_time = readAsInt(4);
return obj;
}
r.size = function() {
return ((this.serialize()).length / 2).toFixed(0);
}
return r;
}
/* start of signature vertification functions */
coinjs.verifySignature = function(hash, sig, pubkey) {
function parseSig(sig) {
var cursor;
if (sig[0] != 0x30)
throw new Error("Signature not a valid DERSequence");
cursor = 2;
if (sig[cursor] != 0x02)
throw new Error("First element in signature must be a DERInteger");;
var rBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]);
cursor += 2 + sig[cursor + 1];
if (sig[cursor] != 0x02)
throw new Error("Second element in signature must be a DERInteger");
var sBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]);
cursor += 2 + sig[cursor + 1];
var r = BigInteger.fromByteArrayUnsigned(rBa);
var s = BigInteger.fromByteArrayUnsigned(sBa);
return {
r: r,
s: s
};
}
var r, s;
if (coinjs.isArray(sig)) {
var obj = parseSig(sig);
r = obj.r;
s = obj.s;
} else if ("object" === typeof sig && sig.r && sig.s) {
r = sig.r;
s = sig.s;
} else {
throw "Invalid value for signature";
}
var Q;
if (coinjs.isArray(pubkey)) {
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
Q = EllipticCurve.PointFp.decodeFrom(ecparams.getCurve(), pubkey);
} else {
throw "Invalid format for pubkey value, must be byte array";
}
var e = BigInteger.fromByteArrayUnsigned(hash);
return coinjs.verifySignatureRaw(e, r, s, Q);
}
coinjs.verifySignatureRaw = function(e, r, s, Q) {
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
var n = ecparams.getN();
var G = ecparams.getG();
if (r.compareTo(BigInteger.ONE) < 0 || r.compareTo(n) >= 0)
return false;
if (s.compareTo(BigInteger.ONE) < 0 || s.compareTo(n) >= 0)
return false;
var c = s.modInverse(n);
var u1 = e.multiply(c).mod(n);
var u2 = r.multiply(c).mod(n);
var point = G.multiply(u1).add(Q.multiply(u2));
var v = point.getX().toBigInteger().mod(n);
return v.equals(r);
}
/* start of privates functions */
/* base58 encode function */
coinjs.base58encode = function(buffer) {
var alphabet = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
var base = BigInteger.valueOf(58);
var bi = BigInteger.fromByteArrayUnsigned(buffer);
var chars = [];
while (bi.compareTo(base) >= 0) {
var mod = bi.mod(base);
chars.unshift(alphabet[mod.intValue()]);
bi = bi.subtract(mod).divide(base);
}
chars.unshift(alphabet[bi.intValue()]);
for (var i = 0; i < buffer.length; i++) {
if (buffer[i] == 0x00) {
chars.unshift(alphabet[0]);
} else break;
}
return chars.join('');
}
/* base58 decode function */
coinjs.base58decode = function(buffer) {
var alphabet = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
var base = BigInteger.valueOf(58);
var validRegex = /^[1-9A-HJ-NP-Za-km-z]+$/;
var bi = BigInteger.valueOf(0);
var leadingZerosNum = 0;
for (var i = buffer.length - 1; i >= 0; i--) {
var alphaIndex = alphabet.indexOf(buffer[i]);
if (alphaIndex < 0) {
throw "Invalid character";
}
bi = bi.add(BigInteger.valueOf(alphaIndex).multiply(base.pow(buffer.length - 1 - i)));
if (buffer[i] == "1") leadingZerosNum++;
else leadingZerosNum = 0;
}
var bytes = bi.toByteArrayUnsigned();
while (leadingZerosNum-- > 0) bytes.unshift(0);
return bytes;
}
/* raw ajax function to avoid needing bigger frame works like jquery, mootools etc */
coinjs.ajax = function(u, f, m, a) {
var x = false;
try {
x = new ActiveXObject('Msxml2.XMLHTTP')
} catch (e) {
try {
x = new ActiveXObject('Microsoft.XMLHTTP')
} catch (e) {
x = new XMLHttpRequest()
}
}
if (x == false) {
return false;
}
x.open(m, u, true);
x.onreadystatechange = function() {
if ((x.readyState == 4) && f)
f(x.responseText);
};
if (m == 'POST') {
x.setRequestHeader('Content-type', 'application/x-www-form-urlencoded');
}
x.send(a);
}
/* clone an object */
coinjs.clone = function(obj) {
if (obj == null || typeof(obj) != 'object') return obj;
var temp = new obj.constructor();
for (var key in obj) {
if (obj.hasOwnProperty(key)) {
temp[key] = coinjs.clone(obj[key]);
}
}
return temp;
}
coinjs.numToBytes = function(num, bytes) {
if (typeof bytes === "undefined") bytes = 8;
if (bytes == 0) {
return [];
} else if (num == -1) {
return Crypto.util.hexToBytes("ffffffffffffffff");
} else {
return [num % 256].concat(coinjs.numToBytes(Math.floor(num / 256), bytes - 1));
}
}
function scriptNumSize(i) {
return i > 0x7fffffff ? 5 :
i > 0x7fffff ? 4 :
i > 0x7fff ? 3 :
i > 0x7f ? 2 :
i > 0x00 ? 1 :
0;
}
coinjs.numToScriptNumBytes = function(_number) {
var value = Math.abs(_number);
var size = scriptNumSize(value);
var result = [];
for (var i = 0; i < size; ++i) {
result.push(0);
}
var negative = _number < 0;
for (i = 0; i < size; ++i) {
result[i] = value & 0xff;
value = Math.floor(value / 256);
}
if (negative) {
result[size - 1] |= 0x80;
}
return result;
}
coinjs.numToVarInt = function(num) {
if (num < 253) {
return [num];
} else if (num < 65536) {
return [253].concat(coinjs.numToBytes(num, 2));
} else if (num < 4294967296) {
return [254].concat(coinjs.numToBytes(num, 4));
} else {
return [255].concat(coinjs.numToBytes(num, 8));
}
}
coinjs.bytesToNum = function(bytes) {
if (bytes.length == 0) return 0;
else return bytes[0] + 256 * coinjs.bytesToNum(bytes.slice(1));
}
coinjs.uint = function(f, size) {
if (f.length < size)
throw new Error("not enough data");
var n = 0;
for (var i = 0; i < size; i++) {
n *= 256;
n += f[i];
}
return n;
}
coinjs.isArray = function(o) {
return Object.prototype.toString.call(o) === '[object Array]';
}
coinjs.countObject = function(obj) {
var count = 0;
var i;
for (i in obj) {
if (obj.hasOwnProperty(i)) {
count++;
}
}
return count;
}
coinjs.random = function(length) {
var r = "";
var l = length || 25;
var chars = "!$%^&*()_+{}:@~?><|\./;'#][=-abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";
for (let x = 0; x < l; x++) {
r += chars.charAt(Math.floor(Math.random() * 62));
}
return r;
}
})();
//secrets.js
(function() {
//Shamir Secret Share by Alexander Stetsyuk - released under MIT License
var SecretShare = GLOBAL.shamirSecretShare = {};
var defaults = {
bits: 8, // default number of bits
radix: 16, // work with HEX by default
minBits: 3,
maxBits: 20, // this permits 1,048,575 shares, though going this high is NOT recommended in JS!
bytesPerChar: 2,
maxBytesPerChar: 6, // Math.pow(256,7) > Math.pow(2,53)
// Primitive polynomials (in decimal form) for Galois Fields GF(2^n), for 2 <= n <= 30
// The index of each term in the array corresponds to the n for that polynomial
// i.e. to get the polynomial for n=16, use primitivePolynomials[16]
primitivePolynomials: [null, null, 1, 3, 3, 5, 3, 3, 29, 17, 9, 5, 83, 27, 43, 3, 45, 9, 39, 39,
9, 5, 3, 33, 27, 9, 71, 39, 9, 5, 83
],
// warning for insecure PRNG
warning: 'WARNING:\nA secure random number generator was not found.\nUsing Math.random(), which is NOT cryptographically strong!'
};
// Protected settings object
var config = {};
/** @expose **/
SecretShare.getConfig = function() {
return {
'bits': config.bits,
'unsafePRNG': config.unsafePRNG
};
};
function init(bits) {
if (bits && (typeof bits !== 'number' || bits % 1 !== 0 || bits < defaults.minBits || bits >
defaults.maxBits)) {
throw new Error('Number of bits must be an integer between ' + defaults.minBits + ' and ' +
defaults.maxBits + ', inclusive.')
}
config.radix = defaults.radix;
config.bits = bits || defaults.bits;
config.size = Math.pow(2, config.bits);
config.max = config.size - 1;
// Construct the exp and log tables for multiplication.
var logs = [],
exps = [],
x = 1,
primitive = defaults.primitivePolynomials[config.bits];
for (var i = 0; i < config.size; i++) {
exps[i] = x;
logs[x] = i;
x <<= 1;
if (x >= config.size) {
x ^= primitive;
x &= config.max;
}
}
config.logs = logs;
config.exps = exps;
};
/** @expose **/
SecretShare.init = init;
function isInited() {
if (!config.bits || !config.size || !config.max || !config.logs || !config.exps || config.logs.length !==
config.size || config.exps.length !== config.size) {
return false;
}
return true;
};
// Returns a pseudo-random number generator of the form function(bits){}
// which should output a random string of 1's and 0's of length `bits`
function getRNG() {
var randomBits, crypto;
function construct(bits, arr, radix, size) {
var str = '',
i = 0,
len = arr.length - 1;
while (i < len || (str.length < bits)) {
str += padLeft(parseInt(arr[i], radix).toString(2), size);
i++;
}
str = str.substr(-bits);
if ((str.match(/0/g) || []).length === str.length) { // all zeros?
return null;
} else {
return str;
}
}
// node.js crypto.randomBytes()
if (typeof require === 'function') {
return function(bits) {
var bytes = Math.ceil(bits / 8),
str = null;
while (str === null) {
str = construct(bits, require('crypto').randomBytes(bytes).toString('hex'), 16, 4);
}
return str;
}
}
// browsers with window.crypto.getRandomValues()
if (GLOBAL['crypto'] && typeof GLOBAL['crypto']['getRandomValues'] === 'function' && typeof GLOBAL['Uint32Array'] === 'function') {
crypto = GLOBAL['crypto'];
return function(bits) {
var elems = Math.ceil(bits / 32),
str = null,
arr = new GLOBAL['Uint32Array'](elems);
while (str === null) {
crypto['getRandomValues'](arr);
str = construct(bits, arr, 10, 32);
}
return str;
}
}
// A totally insecure RNG!!! (except in Safari)
// Will produce a warning every time it is called.
config.unsafePRNG = true;
warn();
var bitsPerNum = 32;
var max = Math.pow(2, bitsPerNum) - 1;
return function(bits) {
var elems = Math.ceil(bits / bitsPerNum);
var arr = [],
str = null;
while (str === null) {
for (var i = 0; i < elems; i++) {
arr[i] = Math.floor(Math.random() * max + 1);
}
str = construct(bits, arr, 10, bitsPerNum);
}
return str;
};
};
// Warn about using insecure rng.
// Called when Math.random() is being used.
function warn() {
GLOBAL['console']['warn'](defaults.warning);
if (typeof GLOBAL['alert'] === 'function' && config.alert) {
GLOBAL['alert'](defaults.warning);
}
}
// Set the PRNG to use. If no RNG function is supplied, pick a default using getRNG()
/** @expose **/
SecretShare.setRNG = function(rng, alert) {
if (!isInited()) {
this.init();
}
config.unsafePRNG = false;
rng = rng || getRNG();
// test the RNG (5 times)
if (typeof rng !== 'function' || typeof rng(config.bits) !== 'string' || !parseInt(rng(config.bits),
2) || rng(config.bits).length > config.bits || rng(config.bits).length < config.bits) {
throw new Error(
"Random number generator is invalid. Supply an RNG of the form function(bits){} that returns a string containing 'bits' number of random 1's and 0's."
)
} else {
config.rng = rng;
}
config.alert = !!alert;
return !!config.unsafePRNG;
};
function isSetRNG() {
return typeof config.rng === 'function';
};
// Generates a random bits-length number string using the PRNG
/** @expose **/
SecretShare.random = function(bits) {
if (!isSetRNG()) {
this.setRNG();
}
if (typeof bits !== 'number' || bits % 1 !== 0 || bits < 2) {
throw new Error('Number of bits must be an integer greater than 1.')
}
if (config.unsafePRNG) {
warn();
}
return bin2hex(config.rng(bits));
}
// Divides a `secret` number String str expressed in radix `inputRadix` (optional, default 16)
// into `numShares` shares, each expressed in radix `outputRadix` (optional, default to `inputRadix`),
// requiring `threshold` number of shares to reconstruct the secret.
// Optionally, zero-pads the secret to a length that is a multiple of padLength before sharing.
/** @expose **/
SecretShare.share = function(secret, numShares, threshold, padLength, withoutPrefix) {
if (!isInited()) {
this.init();
}
if (!isSetRNG()) {
this.setRNG();
}
padLength = padLength || 0;
if (typeof secret !== 'string') {
throw new Error('Secret must be a string.');
}
if (typeof numShares !== 'number' || numShares % 1 !== 0 || numShares < 2) {
throw new Error('Number of shares must be an integer between 2 and 2^bits-1 (' + config.max +
'), inclusive.')
}
if (numShares > config.max) {
var neededBits = Math.ceil(Math.log(numShares + 1) / Math.LN2);
throw new Error('Number of shares must be an integer between 2 and 2^bits-1 (' + config.max +
'), inclusive. To create ' + numShares + ' shares, use at least ' + neededBits +
' bits.')
}
if (typeof threshold !== 'number' || threshold % 1 !== 0 || threshold < 2) {
throw new Error('Threshold number of shares must be an integer between 2 and 2^bits-1 (' +
config.max + '), inclusive.');
}
if (threshold > config.max) {
var neededBits = Math.ceil(Math.log(threshold + 1) / Math.LN2);
throw new Error('Threshold number of shares must be an integer between 2 and 2^bits-1 (' +
config.max + '), inclusive. To use a threshold of ' + threshold +
', use at least ' + neededBits + ' bits.');
}
if (typeof padLength !== 'number' || padLength % 1 !== 0) {
throw new Error('Zero-pad length must be an integer greater than 1.');
}
if (config.unsafePRNG) {
warn();
}
secret = '1' + hex2bin(secret); // append a 1 so that we can preserve the correct number of leading zeros in our secret
secret = split(secret, padLength);
var x = new Array(numShares),
y = new Array(numShares);
for (var i = 0, len = secret.length; i < len; i++) {
var subShares = this._getShares(secret[i], numShares, threshold);
for (var j = 0; j < numShares; j++) {
x[j] = x[j] || subShares[j].x.toString(config.radix);
y[j] = padLeft(subShares[j].y.toString(2)) + (y[j] ? y[j] : '');
}
}
var padding = config.max.toString(config.radix).length;
if (withoutPrefix) {
for (var i = 0; i < numShares; i++) {
x[i] = bin2hex(y[i]);
}
} else {
for (var i = 0; i < numShares; i++) {
x[i] = config.bits.toString(36).toUpperCase() + padLeft(x[i], padding) + bin2hex(y[i]);
}
}
return x;
};
// This is the basic polynomial generation and evaluation function
// for a `config.bits`-length secret (NOT an arbitrary length)
// Note: no error-checking at this stage! If `secrets` is NOT
// a NUMBER less than 2^bits-1, the output will be incorrect!
/** @expose **/
SecretShare._getShares = function(secret, numShares, threshold) {
var shares = [];
var coeffs = [secret];
for (var i = 1; i < threshold; i++) {
coeffs[i] = parseInt(config.rng(config.bits), 2);
}
for (var i = 1, len = numShares + 1; i < len; i++) {
shares[i - 1] = {
x: i,
y: horner(i, coeffs)
}
}
return shares;
};
// Polynomial evaluation at `x` using Horner's Method
// TODO: this can possibly be sped up using other methods
// NOTE: fx=fx * x + coeff[i] -> exp(log(fx) + log(x)) + coeff[i],
// so if fx===0, just set fx to coeff[i] because
// using the exp/log form will result in incorrect value
function horner(x, coeffs) {
var logx = config.logs[x];
var fx = 0;
for (var i = coeffs.length - 1; i >= 0; i--) {
if (fx === 0) {
fx = coeffs[i];
continue;
}
fx = config.exps[(logx + config.logs[fx]) % config.max] ^ coeffs[i];
}
return fx;
};
function inArray(arr, val) {
for (var i = 0, len = arr.length; i < len; i++) {
if (arr[i] === val) {
return true;
}
}
return false;
};
function processShare(share) {
var bits = parseInt(share[0], 36);
if (bits && (typeof bits !== 'number' || bits % 1 !== 0 || bits < defaults.minBits || bits >
defaults.maxBits)) {
throw new Error('Number of bits must be an integer between ' + defaults.minBits + ' and ' +
defaults.maxBits + ', inclusive.')
}
var max = Math.pow(2, bits) - 1;
var idLength = max.toString(config.radix).length;
var id = parseInt(share.substr(1, idLength), config.radix);
if (typeof id !== 'number' || id % 1 !== 0 || id < 1 || id > max) {
throw new Error('Share id must be an integer between 1 and ' + config.max + ', inclusive.');
}
share = share.substr(idLength + 1);
if (!share.length) {
throw new Error('Invalid share: zero-length share.')
}
return {
'bits': bits,
'id': id,
'value': share
};
};
/** @expose **/
SecretShare._processShare = processShare;
// Protected method that evaluates the Lagrange interpolation
// polynomial at x=`at` for individual config.bits-length
// segments of each share in the `shares` Array.
// Each share is expressed in base `inputRadix`. The output
// is expressed in base `outputRadix'
function combine(at, shares) {
var setBits, share, x = [],
y = [],
result = '',
idx;
for (var i = 0, len = shares.length; i < len; i++) {
share = processShare(shares[i]);
if (typeof setBits === 'undefined') {
setBits = share['bits'];
} else if (share['bits'] !== setBits) {
throw new Error('Mismatched shares: Different bit settings.')
}
if (config.bits !== setBits) {
init(setBits);
}
if (inArray(x, share['id'])) { // repeated x value?
continue;
}
idx = x.push(share['id']) - 1;
share = split(hex2bin(share['value']));
for (var j = 0, len2 = share.length; j < len2; j++) {
y[j] = y[j] || [];
y[j][idx] = share[j];
}
}
for (var i = 0, len = y.length; i < len; i++) {
result = padLeft(lagrange(at, x, y[i]).toString(2)) + result;
}
if (at === 0) { // reconstructing the secret
var idx = result.indexOf('1'); //find the first 1
return bin2hex(result.slice(idx + 1));
} else { // generating a new share
return bin2hex(result);
}
};
// Combine `shares` Array into the original secret
/** @expose **/
SecretShare.combine = function(shares) {
return combine(0, shares);
};
// Generate a new share with id `id` (a number between 1 and 2^bits-1)
// `id` can be a Number or a String in the default radix (16)
/** @expose **/
SecretShare.newShare = function(id, shares) {
if (typeof id === 'string') {
id = parseInt(id, config.radix);
}
var share = processShare(shares[0]);
var max = Math.pow(2, share['bits']) - 1;
if (typeof id !== 'number' || id % 1 !== 0 || id < 1 || id > max) {
throw new Error('Share id must be an integer between 1 and ' + config.max + ', inclusive.');
}
var padding = max.toString(config.radix).length;
return config.bits.toString(36).toUpperCase() + padLeft(id.toString(config.radix), padding) +
combine(id, shares);
};
// Evaluate the Lagrange interpolation polynomial at x = `at`
// using x and y Arrays that are of the same length, with
// corresponding elements constituting points on the polynomial.
function lagrange(at, x, y) {
var sum = 0,
product,
i, j;
for (var i = 0, len = x.length; i < len; i++) {
if (!y[i]) {
continue;
}
product = config.logs[y[i]];
for (var j = 0; j < len; j++) {
if (i === j) {
continue;
}
if (at === x[j]) { // happens when computing a share that is in the list of shares used to compute it
product = -1; // fix for a zero product term, after which the sum should be sum^0 = sum, not sum^1
break;
}
product = (product + config.logs[at ^ x[j]] - config.logs[x[i] ^ x[j]] + config.max /* to make sure it's not negative */ ) %
config.max;
}
sum = product === -1 ? sum : sum ^ config.exps[product]; // though exps[-1]= undefined and undefined ^ anything = anything in chrome, this behavior may not hold everywhere, so do the check
}
return sum;
};
/** @expose **/
SecretShare._lagrange = lagrange;
// Splits a number string `bits`-length segments, after first
// optionally zero-padding it to a length that is a multiple of `padLength.
// Returns array of integers (each less than 2^bits-1), with each element
// representing a `bits`-length segment of the input string from right to left,
// i.e. parts[0] represents the right-most `bits`-length segment of the input string.
function split(str, padLength) {
if (padLength) {
str = padLeft(str, padLength)
}
var parts = [];
for (var i = str.length; i > config.bits; i -= config.bits) {
parts.push(parseInt(str.slice(i - config.bits, i), 2));
}
parts.push(parseInt(str.slice(0, i), 2));
return parts;
};
// Pads a string `str` with zeros on the left so that its length is a multiple of `bits`
function padLeft(str, bits) {
bits = bits || config.bits
var missing = str.length % bits;
return (missing ? new Array(bits - missing + 1).join('0') : '') + str;
};
function hex2bin(str) {
var bin = '',
num;
for (var i = str.length - 1; i >= 0; i--) {
num = parseInt(str[i], 16)
if (isNaN(num)) {
throw new Error('Invalid hex character.')
}
bin = padLeft(num.toString(2), 4) + bin;
}
return bin;
}
function bin2hex(str) {
var hex = '',
num;
str = padLeft(str, 4);
for (var i = str.length; i >= 4; i -= 4) {
num = parseInt(str.slice(i - 4, i), 2);
if (isNaN(num)) {
throw new Error('Invalid binary character.')
}
hex = num.toString(16) + hex;
}
return hex;
}
// Converts a given UTF16 character string to the HEX representation.
// Each character of the input string is represented by
// `bytesPerChar` bytes in the output string.
/** @expose **/
SecretShare.str2hex = function(str, bytesPerChar) {
if (typeof str !== 'string') {
throw new Error('Input must be a character string.');
}
bytesPerChar = bytesPerChar || defaults.bytesPerChar;
if (typeof bytesPerChar !== 'number' || bytesPerChar % 1 !== 0 || bytesPerChar < 1 ||
bytesPerChar > defaults.maxBytesPerChar) {
throw new Error('Bytes per character must be an integer between 1 and ' + defaults.maxBytesPerChar +
', inclusive.')
}
var hexChars = 2 * bytesPerChar;
var max = Math.pow(16, hexChars) - 1;
var out = '',
num;
for (var i = 0, len = str.length; i < len; i++) {
num = str[i].charCodeAt();
if (isNaN(num)) {
throw new Error('Invalid character: ' + str[i]);
} else if (num > max) {
var neededBytes = Math.ceil(Math.log(num + 1) / Math.log(256));
throw new Error('Invalid character code (' + num +
'). Maximum allowable is 256^bytes-1 (' + max +
'). To convert this character, use at least ' + neededBytes + ' bytes.')
} else {
out = padLeft(num.toString(16), hexChars) + out;
}
}
return out;
};
// Converts a given HEX number string to a UTF16 character string.
/** @expose **/
SecretShare.hex2str = function(str, bytesPerChar) {
if (typeof str !== 'string') {
throw new Error('Input must be a hexadecimal string.');
}
bytesPerChar = bytesPerChar || defaults.bytesPerChar;
if (typeof bytesPerChar !== 'number' || bytesPerChar % 1 !== 0 || bytesPerChar < 1 ||
bytesPerChar > defaults.maxBytesPerChar) {
throw new Error('Bytes per character must be an integer between 1 and ' + defaults.maxBytesPerChar +
', inclusive.')
}
var hexChars = 2 * bytesPerChar;
var out = '';
str = padLeft(str, hexChars);
for (var i = 0, len = str.length; i < len; i += hexChars) {
out = String.fromCharCode(parseInt(str.slice(i, i + hexChars), 16)) + out;
}
return out;
};
// by default, initialize without an RNG
SecretShare.init();
})();
//kbucket.js
(function() {
const getRandomValues = function(buf) {
if (typeof require === 'function') {
var bytes = require('crypto').randomBytes(buf.length);
buf.set(bytes)
return buf;
} else if (GLOBAL.crypto && GLOBAL.crypto.getRandomValues)
return GLOBAL.crypto.getRandomValues(buf);
else
return null;
}
// Kademlia DHT K-bucket implementation as a binary tree.
// by 'Tristan Slominski' under 'MIT License'
GLOBAL.BuildKBucket = function KBucket(options = {}) {
if (!(this instanceof KBucket))
return new KBucket(options);
this.localNodeId = options.localNodeId || getRandomValues(new Uint8Array(20))
this.numberOfNodesPerKBucket = options.numberOfNodesPerKBucket || 20
this.numberOfNodesToPing = options.numberOfNodesToPing || 3
this.distance = options.distance || this.distance
this.arbiter = options.arbiter || this.arbiter
this.metadata = Object.assign({}, options.metadata)
this.createNode = function() {
return {
contacts: [],
dontSplit: false,
left: null,
right: null
}
}
this.ensureInt8 = function(name, val) {
if (!(val instanceof Uint8Array))
throw new TypeError(name + ' is not a Uint8Array')
}
this.arrayEquals = function(array1, array2) {
if (array1 === array2)
return true
if (array1.length !== array2.length)
return false
for (let i = 0, length = array1.length; i < length; ++i)
if (array1[i] !== array2[i])
return false
return true
}
this.ensureInt8('option.localNodeId as parameter 1', this.localNodeId)
this.root = this.createNode()
this.arbiter = function(incumbent, candidate) {
return incumbent.vectorClock > candidate.vectorClock ? incumbent : candidate
}
this.distance = function(firstId, secondId) {
let distance = 0
let i = 0
const min = Math.min(firstId.length, secondId.length)
const max = Math.max(firstId.length, secondId.length)
for (; i < min; ++i)
distance = distance * 256 + (firstId[i] ^ secondId[i])
for (; i < max; ++i) distance = distance * 256 + 255
return distance
}
this.add = function(contact) {
this.ensureInt8('contact.id', (contact || {}).id)
let bitIndex = 0
let node = this.root
while (node.contacts === null)
node = this._determineNode(node, contact.id, bitIndex++)
const index = this._indexOf(node, contact.id)
if (index >= 0) {
this._update(node, index, contact)
return this
}
if (node.contacts.length < this.numberOfNodesPerKBucket) {
node.contacts.push(contact)
return this
}
if (node.dontSplit)
return this
this._split(node, bitIndex)
return this.add(contact)
}
this.closest = function(id, n = Infinity) {
this.ensureInt8('id', id)
if ((!Number.isInteger(n) && n !== Infinity) || n <= 0)
throw new TypeError('n is not positive number')
let contacts = []
for (let nodes = [this.root], bitIndex = 0; nodes.length > 0 && contacts.length < n;) {
const node = nodes.pop()
if (node.contacts === null) {
const detNode = this._determineNode(node, id, bitIndex++)
nodes.push(node.left === detNode ? node.right : node.left)
nodes.push(detNode)
} else
contacts = contacts.concat(node.contacts)
}
return contacts
.map(a => [this.distance(a.id, id), a])
.sort((a, b) => a[0] - b[0])
.slice(0, n)
.map(a => a[1])
}
this.count = function() {
let count = 0
for (const nodes = [this.root]; nodes.length > 0;) {
const node = nodes.pop()
if (node.contacts === null)
nodes.push(node.right, node.left)
else
count += node.contacts.length
}
return count
}
this._determineNode = function(node, id, bitIndex) {
const bytesDescribedByBitIndex = bitIndex >> 3
const bitIndexWithinByte = bitIndex % 8
if ((id.length <= bytesDescribedByBitIndex) && (bitIndexWithinByte !== 0))
return node.left
const byteUnderConsideration = id[bytesDescribedByBitIndex]
if (byteUnderConsideration & (1 << (7 - bitIndexWithinByte)))
return node.right
return node.left
}
this.get = function(id) {
this.ensureInt8('id', id)
let bitIndex = 0
let node = this.root
while (node.contacts === null)
node = this._determineNode(node, id, bitIndex++)
const index = this._indexOf(node, id)
return index >= 0 ? node.contacts[index] : null
}
this._indexOf = function(node, id) {
for (let i = 0; i < node.contacts.length; ++i)
if (this.arrayEquals(node.contacts[i].id, id))
return i
return -1
}
this.remove = function(id) {
this.ensureInt8('the id as parameter 1', id)
let bitIndex = 0
let node = this.root
while (node.contacts === null)
node = this._determineNode(node, id, bitIndex++)
const index = this._indexOf(node, id)
if (index >= 0)
node.contacts.splice(index, 1)[0]
return this
}
this._split = function(node, bitIndex) {
node.left = this.createNode()
node.right = this.createNode()
for (const contact of node.contacts)
this._determineNode(node, contact.id, bitIndex).contacts.push(contact)
node.contacts = null
const detNode = this._determineNode(node, this.localNodeId, bitIndex)
const otherNode = node.left === detNode ? node.right : node.left
otherNode.dontSplit = true
}
this.toArray = function() {
let result = []
for (const nodes = [this.root]; nodes.length > 0;) {
const node = nodes.pop()
if (node.contacts === null)
nodes.push(node.right, node.left)
else
result = result.concat(node.contacts)
}
return result
}
this._update = function(node, index, contact) {
if (!this.arrayEquals(node.contacts[index].id, contact.id))
throw new Error('wrong index for _update')
const incumbent = node.contacts[index]
const selection = this.arbiter(incumbent, contact)
if (selection === incumbent && incumbent !== contact) return
node.contacts.splice(index, 1)
node.contacts.push(selection)
}
}
})();
})(typeof global !== "undefined" ? global : window);