6587 lines
223 KiB
JavaScript
6587 lines
223 KiB
JavaScript
(typeof global !== "undefined" ? global : window).cryptocoin = floGlobals.blockchain;
|
|
/* Util Libraries required for Standard operations
|
|
All credits for these codes belong to their respective creators, moderators and owners.
|
|
For more info on licence for these codes, visit respective source.
|
|
*/
|
|
'use strict';
|
|
//Crypto.js
|
|
(function(GLOBAL) {
|
|
// Global Crypto object
|
|
var Crypto = GLOBAL.Crypto = {};
|
|
/*!
|
|
* Crypto-JS v2.5.4 Crypto.js
|
|
* http://code.google.com/p/crypto-js/
|
|
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
|
|
* http://code.google.com/p/crypto-js/wiki/License
|
|
*/
|
|
(function() {
|
|
|
|
var base64map = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
|
|
|
// Crypto utilities
|
|
var util = Crypto.util = {
|
|
|
|
// Bit-wise rotate left
|
|
rotl: function(n, b) {
|
|
return (n << b) | (n >>> (32 - b));
|
|
},
|
|
|
|
// Bit-wise rotate right
|
|
rotr: function(n, b) {
|
|
return (n << (32 - b)) | (n >>> b);
|
|
},
|
|
|
|
// Swap big-endian to little-endian and vice versa
|
|
endian: function(n) {
|
|
|
|
// If number given, swap endian
|
|
if (n.constructor == Number) {
|
|
return util.rotl(n, 8) & 0x00FF00FF |
|
|
util.rotl(n, 24) & 0xFF00FF00;
|
|
}
|
|
|
|
// Else, assume array and swap all items
|
|
for (var i = 0; i < n.length; i++)
|
|
n[i] = util.endian(n[i]);
|
|
return n;
|
|
|
|
},
|
|
|
|
// Generate an array of any length of random bytes
|
|
randomBytes: function(n) {
|
|
for (var bytes = []; n > 0; n--)
|
|
bytes.push(Math.floor(Math.random() * 256));
|
|
return bytes;
|
|
},
|
|
|
|
// Convert a byte array to big-endian 32-bit words
|
|
bytesToWords: function(bytes) {
|
|
for (var words = [], i = 0, b = 0; i < bytes.length; i++, b += 8)
|
|
words[b >>> 5] |= (bytes[i] & 0xFF) << (24 - b % 32);
|
|
return words;
|
|
},
|
|
|
|
// Convert big-endian 32-bit words to a byte array
|
|
wordsToBytes: function(words) {
|
|
for (var bytes = [], b = 0; b < words.length * 32; b += 8)
|
|
bytes.push((words[b >>> 5] >>> (24 - b % 32)) & 0xFF);
|
|
return bytes;
|
|
},
|
|
|
|
// Convert a byte array to a hex string
|
|
bytesToHex: function(bytes) {
|
|
for (var hex = [], i = 0; i < bytes.length; i++) {
|
|
hex.push((bytes[i] >>> 4).toString(16));
|
|
hex.push((bytes[i] & 0xF).toString(16));
|
|
}
|
|
return hex.join("");
|
|
},
|
|
|
|
// Convert a hex string to a byte array
|
|
hexToBytes: function(hex) {
|
|
for (var bytes = [], c = 0; c < hex.length; c += 2)
|
|
bytes.push(parseInt(hex.substr(c, 2), 16));
|
|
return bytes;
|
|
},
|
|
|
|
// Convert a byte array to a base-64 string
|
|
bytesToBase64: function(bytes) {
|
|
for (var base64 = [], i = 0; i < bytes.length; i += 3) {
|
|
var triplet = (bytes[i] << 16) | (bytes[i + 1] << 8) | bytes[i + 2];
|
|
for (var j = 0; j < 4; j++) {
|
|
if (i * 8 + j * 6 <= bytes.length * 8)
|
|
base64.push(base64map.charAt((triplet >>> 6 * (3 - j)) & 0x3F));
|
|
else base64.push("=");
|
|
}
|
|
}
|
|
|
|
return base64.join("");
|
|
},
|
|
|
|
// Convert a base-64 string to a byte array
|
|
base64ToBytes: function(base64) {
|
|
// Remove non-base-64 characters
|
|
base64 = base64.replace(/[^A-Z0-9+\/]/ig, "");
|
|
|
|
for (var bytes = [], i = 0, imod4 = 0; i < base64.length; imod4 = ++i % 4) {
|
|
if (imod4 == 0) continue;
|
|
bytes.push(((base64map.indexOf(base64.charAt(i - 1)) & (Math.pow(2, -2 * imod4 + 8) - 1)) << (imod4 * 2)) |
|
|
(base64map.indexOf(base64.charAt(i)) >>> (6 - imod4 * 2)));
|
|
}
|
|
|
|
return bytes;
|
|
}
|
|
|
|
};
|
|
|
|
// Crypto character encodings
|
|
var charenc = Crypto.charenc = {};
|
|
|
|
// UTF-8 encoding
|
|
var UTF8 = charenc.UTF8 = {
|
|
|
|
// Convert a string to a byte array
|
|
stringToBytes: function(str) {
|
|
return Binary.stringToBytes(unescape(encodeURIComponent(str)));
|
|
},
|
|
|
|
// Convert a byte array to a string
|
|
bytesToString: function(bytes) {
|
|
return decodeURIComponent(escape(Binary.bytesToString(bytes)));
|
|
}
|
|
|
|
};
|
|
|
|
// Binary encoding
|
|
var Binary = charenc.Binary = {
|
|
|
|
// Convert a string to a byte array
|
|
stringToBytes: function(str) {
|
|
for (var bytes = [], i = 0; i < str.length; i++)
|
|
bytes.push(str.charCodeAt(i) & 0xFF);
|
|
return bytes;
|
|
},
|
|
|
|
// Convert a byte array to a string
|
|
bytesToString: function(bytes) {
|
|
for (var str = [], i = 0; i < bytes.length; i++)
|
|
str.push(String.fromCharCode(bytes[i]));
|
|
return str.join("");
|
|
}
|
|
|
|
};
|
|
|
|
})();
|
|
//Adding SHA1 to fix basic PKBDF2
|
|
/*
|
|
* Crypto-JS v2.5.4
|
|
* http://code.google.com/p/crypto-js/
|
|
* (c) 2009-2012 by Jeff Mott. All rights reserved.
|
|
* http://code.google.com/p/crypto-js/wiki/License
|
|
*/
|
|
(function() {
|
|
|
|
// Shortcuts
|
|
var C = Crypto,
|
|
util = C.util,
|
|
charenc = C.charenc,
|
|
UTF8 = charenc.UTF8,
|
|
Binary = charenc.Binary;
|
|
|
|
// Public API
|
|
var SHA1 = C.SHA1 = function(message, options) {
|
|
var digestbytes = util.wordsToBytes(SHA1._sha1(message));
|
|
return options && options.asBytes ? digestbytes :
|
|
options && options.asString ? Binary.bytesToString(digestbytes) :
|
|
util.bytesToHex(digestbytes);
|
|
};
|
|
|
|
// The core
|
|
SHA1._sha1 = function(message) {
|
|
|
|
// Convert to byte array
|
|
if (message.constructor == String) message = UTF8.stringToBytes(message);
|
|
/* else, assume byte array already */
|
|
|
|
var m = util.bytesToWords(message),
|
|
l = message.length * 8,
|
|
w = [],
|
|
H0 = 1732584193,
|
|
H1 = -271733879,
|
|
H2 = -1732584194,
|
|
H3 = 271733878,
|
|
H4 = -1009589776;
|
|
|
|
// Padding
|
|
m[l >> 5] |= 0x80 << (24 - l % 32);
|
|
m[((l + 64 >>> 9) << 4) + 15] = l;
|
|
|
|
for (var i = 0; i < m.length; i += 16) {
|
|
|
|
var a = H0,
|
|
b = H1,
|
|
c = H2,
|
|
d = H3,
|
|
e = H4;
|
|
|
|
for (var j = 0; j < 80; j++) {
|
|
|
|
if (j < 16) w[j] = m[i + j];
|
|
else {
|
|
var n = w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16];
|
|
w[j] = (n << 1) | (n >>> 31);
|
|
}
|
|
|
|
var t = ((H0 << 5) | (H0 >>> 27)) + H4 + (w[j] >>> 0) + (
|
|
j < 20 ? (H1 & H2 | ~H1 & H3) + 1518500249 :
|
|
j < 40 ? (H1 ^ H2 ^ H3) + 1859775393 :
|
|
j < 60 ? (H1 & H2 | H1 & H3 | H2 & H3) - 1894007588 :
|
|
(H1 ^ H2 ^ H3) - 899497514);
|
|
|
|
H4 = H3;
|
|
H3 = H2;
|
|
H2 = (H1 << 30) | (H1 >>> 2);
|
|
H1 = H0;
|
|
H0 = t;
|
|
|
|
}
|
|
|
|
H0 += a;
|
|
H1 += b;
|
|
H2 += c;
|
|
H3 += d;
|
|
H4 += e;
|
|
|
|
}
|
|
|
|
return [H0, H1, H2, H3, H4];
|
|
|
|
};
|
|
|
|
// Package private blocksize
|
|
SHA1._blocksize = 16;
|
|
|
|
SHA1._digestsize = 20;
|
|
|
|
})();
|
|
|
|
//Added to make PKBDF2 work
|
|
/*
|
|
* Crypto-JS v2.5.4
|
|
* http://code.google.com/p/crypto-js/
|
|
* (c) 2009-2012 by Jeff Mott. All rights reserved.
|
|
* http://code.google.com/p/crypto-js/wiki/License
|
|
*/
|
|
(function() {
|
|
|
|
// Shortcuts
|
|
var C = Crypto,
|
|
util = C.util,
|
|
charenc = C.charenc,
|
|
UTF8 = charenc.UTF8,
|
|
Binary = charenc.Binary;
|
|
|
|
C.HMAC = function(hasher, message, key, options) {
|
|
|
|
// Convert to byte arrays
|
|
if (message.constructor == String) message = UTF8.stringToBytes(message);
|
|
if (key.constructor == String) key = UTF8.stringToBytes(key);
|
|
/* else, assume byte arrays already */
|
|
|
|
// Allow arbitrary length keys
|
|
if (key.length > hasher._blocksize * 4)
|
|
key = hasher(key, {
|
|
asBytes: true
|
|
});
|
|
|
|
// XOR keys with pad constants
|
|
var okey = key.slice(0),
|
|
ikey = key.slice(0);
|
|
for (var i = 0; i < hasher._blocksize * 4; i++) {
|
|
okey[i] ^= 0x5C;
|
|
ikey[i] ^= 0x36;
|
|
}
|
|
|
|
var hmacbytes = hasher(okey.concat(hasher(ikey.concat(message), {
|
|
asBytes: true
|
|
})), {
|
|
asBytes: true
|
|
});
|
|
|
|
return options && options.asBytes ? hmacbytes :
|
|
options && options.asString ? Binary.bytesToString(hmacbytes) :
|
|
util.bytesToHex(hmacbytes);
|
|
|
|
};
|
|
|
|
})();
|
|
|
|
|
|
//crypto-sha256-hmac.js
|
|
/*
|
|
* Crypto-JS v2.5.4
|
|
* http://code.google.com/p/crypto-js/
|
|
* (c) 2009-2012 by Jeff Mott. All rights reserved.
|
|
* http://code.google.com/p/crypto-js/wiki/License
|
|
*/
|
|
(function() {
|
|
var d = Crypto,
|
|
k = d.util,
|
|
g = d.charenc,
|
|
b = g.UTF8,
|
|
a = g.Binary,
|
|
c = [1116352408, 1899447441, 3049323471, 3921009573, 961987163, 1508970993, 2453635748, 2870763221,
|
|
3624381080, 310598401, 607225278, 1426881987, 1925078388, 2162078206, 2614888103, 3248222580,
|
|
3835390401, 4022224774, 264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986,
|
|
2554220882, 2821834349, 2952996808, 3210313671, 3336571891, 3584528711, 113926993, 338241895,
|
|
666307205, 773529912, 1294757372, 1396182291, 1695183700, 1986661051, 2177026350, 2456956037,
|
|
2730485921,
|
|
2820302411, 3259730800, 3345764771, 3516065817, 3600352804, 4094571909, 275423344, 430227734,
|
|
506948616, 659060556, 883997877, 958139571, 1322822218, 1537002063, 1747873779, 1955562222,
|
|
2024104815, 2227730452, 2361852424, 2428436474, 2756734187, 3204031479, 3329325298
|
|
],
|
|
e = d.SHA256 = function(b, c) {
|
|
var f = k.wordsToBytes(e._sha256(b));
|
|
return c && c.asBytes ? f : c && c.asString ? a.bytesToString(f) : k.bytesToHex(f)
|
|
};
|
|
e._sha256 = function(a) {
|
|
a.constructor == String && (a = b.stringToBytes(a));
|
|
var e = k.bytesToWords(a),
|
|
f = a.length * 8,
|
|
a = [1779033703, 3144134277,
|
|
1013904242, 2773480762, 1359893119, 2600822924, 528734635, 1541459225
|
|
],
|
|
d = [],
|
|
g, m, r, i, n, o, s, t, h, l, j;
|
|
e[f >> 5] |= 128 << 24 - f % 32;
|
|
e[(f + 64 >> 9 << 4) + 15] = f;
|
|
for (t = 0; t < e.length; t += 16) {
|
|
f = a[0];
|
|
g = a[1];
|
|
m = a[2];
|
|
r = a[3];
|
|
i = a[4];
|
|
n = a[5];
|
|
o = a[6];
|
|
s = a[7];
|
|
for (h = 0; h < 64; h++) {
|
|
h < 16 ? d[h] = e[h + t] : (l = d[h - 15], j = d[h - 2], d[h] = ((l << 25 | l >>> 7) ^
|
|
(l << 14 | l >>> 18) ^ l >>> 3) + (d[h - 7] >>> 0) + ((j << 15 | j >>> 17) ^
|
|
(j << 13 | j >>> 19) ^ j >>> 10) + (d[h - 16] >>> 0));
|
|
j = f & g ^ f & m ^ g & m;
|
|
var u = (f << 30 | f >>> 2) ^ (f << 19 | f >>> 13) ^ (f << 10 | f >>> 22);
|
|
l = (s >>> 0) + ((i << 26 | i >>> 6) ^ (i << 21 | i >>> 11) ^ (i << 7 | i >>> 25)) +
|
|
(i & n ^ ~i & o) + c[h] + (d[h] >>> 0);
|
|
j = u + j;
|
|
s = o;
|
|
o = n;
|
|
n = i;
|
|
i = r + l >>> 0;
|
|
r = m;
|
|
m = g;
|
|
g = f;
|
|
f = l + j >>> 0
|
|
}
|
|
a[0] += f;
|
|
a[1] += g;
|
|
a[2] += m;
|
|
a[3] += r;
|
|
a[4] += i;
|
|
a[5] += n;
|
|
a[6] += o;
|
|
a[7] += s
|
|
}
|
|
return a
|
|
};
|
|
e._blocksize = 16;
|
|
e._digestsize = 32
|
|
})();
|
|
(function() {
|
|
var d = Crypto,
|
|
k = d.util,
|
|
g = d.charenc,
|
|
b = g.UTF8,
|
|
a = g.Binary;
|
|
d.HMAC = function(c, e, d, g) {
|
|
e.constructor == String && (e = b.stringToBytes(e));
|
|
d.constructor == String && (d = b.stringToBytes(d));
|
|
d.length > c._blocksize * 4 && (d = c(d, {
|
|
asBytes: !0
|
|
}));
|
|
for (var f = d.slice(0), d = d.slice(0), q = 0; q < c._blocksize * 4; q++) f[q] ^= 92, d[q] ^=
|
|
54;
|
|
c = c(f.concat(c(d.concat(e), {
|
|
asBytes: !0
|
|
})), {
|
|
asBytes: !0
|
|
});
|
|
return g && g.asBytes ? c : g && g.asString ? a.bytesToString(c) : k.bytesToHex(c)
|
|
}
|
|
})();
|
|
})(typeof global !== "undefined" ? global : window);
|
|
|
|
//SecureRandom.js
|
|
(function(GLOBAL) {
|
|
|
|
const getRandomValues = function(buf) {
|
|
if (typeof require === 'function') {
|
|
var bytes = require('crypto').randomBytes(buf.length);
|
|
buf.set(bytes)
|
|
return buf;
|
|
} else if (GLOBAL.crypto && GLOBAL.crypto.getRandomValues)
|
|
return GLOBAL.crypto.getRandomValues(buf);
|
|
else
|
|
return null;
|
|
}
|
|
|
|
/*!
|
|
* Random number generator with ArcFour PRNG
|
|
*
|
|
* NOTE: For best results, put code like
|
|
* <body onclick='SecureRandom.seedTime();' onkeypress='SecureRandom.seedTime();'>
|
|
* in your main HTML document.
|
|
*
|
|
* Copyright Tom Wu, bitaddress.org BSD License.
|
|
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
|
|
*/
|
|
|
|
// Constructor function of Global SecureRandom object
|
|
var sr = GLOBAL.SecureRandom = function() {};
|
|
|
|
// Properties
|
|
sr.state;
|
|
sr.pool;
|
|
sr.pptr;
|
|
sr.poolCopyOnInit;
|
|
|
|
// Pool size must be a multiple of 4 and greater than 32.
|
|
// An array of bytes the size of the pool will be passed to init()
|
|
sr.poolSize = 256;
|
|
|
|
// --- object methods ---
|
|
|
|
// public method
|
|
// ba: byte array
|
|
sr.prototype.nextBytes = function(ba) {
|
|
var i;
|
|
if (getRandomValues && GLOBAL.Uint8Array) {
|
|
try {
|
|
var rvBytes = new Uint8Array(ba.length);
|
|
getRandomValues(rvBytes);
|
|
for (i = 0; i < ba.length; ++i)
|
|
ba[i] = sr.getByte() ^ rvBytes[i];
|
|
return;
|
|
} catch (e) {
|
|
alert(e);
|
|
}
|
|
}
|
|
for (i = 0; i < ba.length; ++i) ba[i] = sr.getByte();
|
|
};
|
|
|
|
|
|
// --- static methods ---
|
|
|
|
// Mix in the current time (w/milliseconds) into the pool
|
|
// NOTE: this method should be called from body click/keypress event handlers to increase entropy
|
|
sr.seedTime = function() {
|
|
sr.seedInt(new Date().getTime());
|
|
}
|
|
|
|
sr.getByte = function() {
|
|
if (sr.state == null) {
|
|
sr.seedTime();
|
|
sr.state = sr.ArcFour(); // Plug in your RNG constructor here
|
|
sr.state.init(sr.pool);
|
|
sr.poolCopyOnInit = [];
|
|
for (sr.pptr = 0; sr.pptr < sr.pool.length; ++sr.pptr)
|
|
sr.poolCopyOnInit[sr.pptr] = sr.pool[sr.pptr];
|
|
sr.pptr = 0;
|
|
}
|
|
// TODO: allow reseeding after first request
|
|
return sr.state.next();
|
|
}
|
|
|
|
// Mix in a 32-bit integer into the pool
|
|
sr.seedInt = function(x) {
|
|
sr.seedInt8(x);
|
|
sr.seedInt8((x >> 8));
|
|
sr.seedInt8((x >> 16));
|
|
sr.seedInt8((x >> 24));
|
|
}
|
|
|
|
// Mix in a 16-bit integer into the pool
|
|
sr.seedInt16 = function(x) {
|
|
sr.seedInt8(x);
|
|
sr.seedInt8((x >> 8));
|
|
}
|
|
|
|
// Mix in a 8-bit integer into the pool
|
|
sr.seedInt8 = function(x) {
|
|
sr.pool[sr.pptr++] ^= x & 255;
|
|
if (sr.pptr >= sr.poolSize) sr.pptr -= sr.poolSize;
|
|
}
|
|
|
|
// Arcfour is a PRNG
|
|
sr.ArcFour = function() {
|
|
function Arcfour() {
|
|
this.i = 0;
|
|
this.j = 0;
|
|
this.S = new Array();
|
|
}
|
|
|
|
// Initialize arcfour context from key, an array of ints, each from [0..255]
|
|
function ARC4init(key) {
|
|
var i, j, t;
|
|
for (i = 0; i < 256; ++i)
|
|
this.S[i] = i;
|
|
j = 0;
|
|
for (i = 0; i < 256; ++i) {
|
|
j = (j + this.S[i] + key[i % key.length]) & 255;
|
|
t = this.S[i];
|
|
this.S[i] = this.S[j];
|
|
this.S[j] = t;
|
|
}
|
|
this.i = 0;
|
|
this.j = 0;
|
|
}
|
|
|
|
function ARC4next() {
|
|
var t;
|
|
this.i = (this.i + 1) & 255;
|
|
this.j = (this.j + this.S[this.i]) & 255;
|
|
t = this.S[this.i];
|
|
this.S[this.i] = this.S[this.j];
|
|
this.S[this.j] = t;
|
|
return this.S[(t + this.S[this.i]) & 255];
|
|
}
|
|
|
|
Arcfour.prototype.init = ARC4init;
|
|
Arcfour.prototype.next = ARC4next;
|
|
|
|
return new Arcfour();
|
|
};
|
|
|
|
|
|
// Initialize the pool with junk if needed.
|
|
if (sr.pool == null) {
|
|
sr.pool = new Array();
|
|
sr.pptr = 0;
|
|
var t;
|
|
if (getRandomValues && GLOBAL.Uint8Array) {
|
|
try {
|
|
// Use webcrypto if available
|
|
var ua = new Uint8Array(sr.poolSize);
|
|
getRandomValues(ua);
|
|
for (t = 0; t < sr.poolSize; ++t)
|
|
sr.pool[sr.pptr++] = ua[t];
|
|
} catch (e) {
|
|
alert(e);
|
|
}
|
|
}
|
|
while (sr.pptr < sr.poolSize) { // extract some randomness from Math.random()
|
|
t = Math.floor(65536 * Math.random());
|
|
sr.pool[sr.pptr++] = t >>> 8;
|
|
sr.pool[sr.pptr++] = t & 255;
|
|
}
|
|
sr.pptr = Math.floor(sr.poolSize * Math.random());
|
|
sr.seedTime();
|
|
// entropy
|
|
var entropyStr = "";
|
|
// screen size and color depth: ~4.8 to ~5.4 bits
|
|
entropyStr += (GLOBAL.screen.height * GLOBAL.screen.width * GLOBAL.screen.colorDepth);
|
|
entropyStr += (GLOBAL.screen.availHeight * GLOBAL.screen.availWidth * GLOBAL.screen.pixelDepth);
|
|
// time zone offset: ~4 bits
|
|
var dateObj = new Date();
|
|
var timeZoneOffset = dateObj.getTimezoneOffset();
|
|
entropyStr += timeZoneOffset;
|
|
// user agent: ~8.3 to ~11.6 bits
|
|
entropyStr += navigator.userAgent;
|
|
// browser plugin details: ~16.2 to ~21.8 bits
|
|
var pluginsStr = "";
|
|
for (var i = 0; i < navigator.plugins.length; i++) {
|
|
pluginsStr += navigator.plugins[i].name + " " + navigator.plugins[i].filename + " " + navigator.plugins[i].description + " " + navigator.plugins[i].version + ", ";
|
|
}
|
|
var mimeTypesStr = "";
|
|
for (var i = 0; i < navigator.mimeTypes.length; i++) {
|
|
mimeTypesStr += navigator.mimeTypes[i].description + " " + navigator.mimeTypes[i].type + " " + navigator.mimeTypes[i].suffixes + ", ";
|
|
}
|
|
entropyStr += pluginsStr + mimeTypesStr;
|
|
// cookies and storage: 1 bit
|
|
entropyStr += navigator.cookieEnabled + typeof(sessionStorage) + typeof(localStorage);
|
|
// language: ~7 bit
|
|
entropyStr += navigator.language;
|
|
// history: ~2 bit
|
|
entropyStr += GLOBAL.history.length;
|
|
// location
|
|
entropyStr += GLOBAL.location;
|
|
|
|
var entropyBytes = Crypto.SHA256(entropyStr, {
|
|
asBytes: true
|
|
});
|
|
for (var i = 0; i < entropyBytes.length; i++) {
|
|
sr.seedInt8(entropyBytes[i]);
|
|
}
|
|
}
|
|
})(typeof global !== "undefined" ? global : window);
|
|
|
|
//ripemd160.js
|
|
(function(GLOBAL) {
|
|
|
|
/*
|
|
CryptoJS v3.1.2
|
|
code.google.com/p/crypto-js
|
|
(c) 2009-2013 by Jeff Mott. All rights reserved.
|
|
code.google.com/p/crypto-js/wiki/License
|
|
*/
|
|
/** @preserve
|
|
(c) 2012 by Cédric Mesnil. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
|
|
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
// Constants table
|
|
var zl = [
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
|
|
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
|
|
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
|
|
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13
|
|
];
|
|
var zr = [
|
|
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
|
|
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
|
|
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
|
|
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
|
|
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
|
|
];
|
|
var sl = [
|
|
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
|
|
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
|
|
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
|
|
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
|
|
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6
|
|
];
|
|
var sr = [
|
|
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
|
|
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
|
|
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
|
|
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
|
|
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
|
|
];
|
|
|
|
var hl = [0x00000000, 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xA953FD4E];
|
|
var hr = [0x50A28BE6, 0x5C4DD124, 0x6D703EF3, 0x7A6D76E9, 0x00000000];
|
|
|
|
var bytesToWords = function(bytes) {
|
|
var words = [];
|
|
for (var i = 0, b = 0; i < bytes.length; i++, b += 8) {
|
|
words[b >>> 5] |= bytes[i] << (24 - b % 32);
|
|
}
|
|
return words;
|
|
};
|
|
|
|
var wordsToBytes = function(words) {
|
|
var bytes = [];
|
|
for (var b = 0; b < words.length * 32; b += 8) {
|
|
bytes.push((words[b >>> 5] >>> (24 - b % 32)) & 0xFF);
|
|
}
|
|
return bytes;
|
|
};
|
|
|
|
var processBlock = function(H, M, offset) {
|
|
|
|
// Swap endian
|
|
for (var i = 0; i < 16; i++) {
|
|
var offset_i = offset + i;
|
|
var M_offset_i = M[offset_i];
|
|
|
|
// Swap
|
|
M[offset_i] = (
|
|
(((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) |
|
|
(((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00)
|
|
);
|
|
}
|
|
|
|
// Working variables
|
|
var al, bl, cl, dl, el;
|
|
var ar, br, cr, dr, er;
|
|
|
|
ar = al = H[0];
|
|
br = bl = H[1];
|
|
cr = cl = H[2];
|
|
dr = dl = H[3];
|
|
er = el = H[4];
|
|
// Computation
|
|
var t;
|
|
for (var i = 0; i < 80; i += 1) {
|
|
t = (al + M[offset + zl[i]]) | 0;
|
|
if (i < 16) {
|
|
t += f1(bl, cl, dl) + hl[0];
|
|
} else if (i < 32) {
|
|
t += f2(bl, cl, dl) + hl[1];
|
|
} else if (i < 48) {
|
|
t += f3(bl, cl, dl) + hl[2];
|
|
} else if (i < 64) {
|
|
t += f4(bl, cl, dl) + hl[3];
|
|
} else { // if (i<80) {
|
|
t += f5(bl, cl, dl) + hl[4];
|
|
}
|
|
t = t | 0;
|
|
t = rotl(t, sl[i]);
|
|
t = (t + el) | 0;
|
|
al = el;
|
|
el = dl;
|
|
dl = rotl(cl, 10);
|
|
cl = bl;
|
|
bl = t;
|
|
|
|
t = (ar + M[offset + zr[i]]) | 0;
|
|
if (i < 16) {
|
|
t += f5(br, cr, dr) + hr[0];
|
|
} else if (i < 32) {
|
|
t += f4(br, cr, dr) + hr[1];
|
|
} else if (i < 48) {
|
|
t += f3(br, cr, dr) + hr[2];
|
|
} else if (i < 64) {
|
|
t += f2(br, cr, dr) + hr[3];
|
|
} else { // if (i<80) {
|
|
t += f1(br, cr, dr) + hr[4];
|
|
}
|
|
t = t | 0;
|
|
t = rotl(t, sr[i]);
|
|
t = (t + er) | 0;
|
|
ar = er;
|
|
er = dr;
|
|
dr = rotl(cr, 10);
|
|
cr = br;
|
|
br = t;
|
|
}
|
|
// Intermediate hash value
|
|
t = (H[1] + cl + dr) | 0;
|
|
H[1] = (H[2] + dl + er) | 0;
|
|
H[2] = (H[3] + el + ar) | 0;
|
|
H[3] = (H[4] + al + br) | 0;
|
|
H[4] = (H[0] + bl + cr) | 0;
|
|
H[0] = t;
|
|
};
|
|
|
|
function f1(x, y, z) {
|
|
return ((x) ^ (y) ^ (z));
|
|
}
|
|
|
|
function f2(x, y, z) {
|
|
return (((x) & (y)) | ((~x) & (z)));
|
|
}
|
|
|
|
function f3(x, y, z) {
|
|
return (((x) | (~(y))) ^ (z));
|
|
}
|
|
|
|
function f4(x, y, z) {
|
|
return (((x) & (z)) | ((y) & (~(z))));
|
|
}
|
|
|
|
function f5(x, y, z) {
|
|
return ((x) ^ ((y) | (~(z))));
|
|
}
|
|
|
|
function rotl(x, n) {
|
|
return (x << n) | (x >>> (32 - n));
|
|
}
|
|
|
|
GLOBAL.ripemd160 = function ripemd160(message) {
|
|
var H = [0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0];
|
|
|
|
var m = bytesToWords(message);
|
|
|
|
var nBitsLeft = message.length * 8;
|
|
var nBitsTotal = message.length * 8;
|
|
|
|
// Add padding
|
|
m[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
|
|
m[(((nBitsLeft + 64) >>> 9) << 4) + 14] = (
|
|
(((nBitsTotal << 8) | (nBitsTotal >>> 24)) & 0x00ff00ff) |
|
|
(((nBitsTotal << 24) | (nBitsTotal >>> 8)) & 0xff00ff00)
|
|
);
|
|
|
|
for (var i = 0; i < m.length; i += 16) {
|
|
processBlock(H, m, i);
|
|
}
|
|
|
|
// Swap endian
|
|
for (var i = 0; i < 5; i++) {
|
|
// Shortcut
|
|
var H_i = H[i];
|
|
|
|
// Swap
|
|
H[i] = (((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) |
|
|
(((H_i << 24) | (H_i >>> 8)) & 0xff00ff00);
|
|
}
|
|
|
|
var digestbytes = wordsToBytes(H);
|
|
return digestbytes;
|
|
}
|
|
})(typeof global !== "undefined" ? global : window);
|
|
|
|
//BigInteger.js
|
|
(function(GLOBAL) {
|
|
// Upstream 'BigInteger' here:
|
|
// Original Author: http://www-cs-students.stanford.edu/~tjw/jsbn/
|
|
// Follows 'jsbn' on Github: https://github.com/jasondavies/jsbn
|
|
// Review and Testing: https://github.com/cryptocoinjs/bigi/
|
|
/*!
|
|
* Basic JavaScript BN library - subset useful for RSA encryption. v1.4
|
|
*
|
|
* Copyright (c) 2005 Tom Wu
|
|
* All Rights Reserved.
|
|
* BSD License
|
|
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
|
|
*
|
|
* Copyright Stephan Thomas
|
|
* Copyright pointbiz
|
|
*/
|
|
|
|
// (public) Constructor function of Global BigInteger object
|
|
var BigInteger = GLOBAL.BigInteger = function BigInteger(a, b, c) {
|
|
if (!(this instanceof BigInteger))
|
|
return new BigInteger(a, b, c);
|
|
|
|
if (a != null)
|
|
if ("number" == typeof a) this.fromNumber(a, b, c);
|
|
else if (b == null && "string" != typeof a) this.fromString(a, 256);
|
|
else this.fromString(a, b);
|
|
};
|
|
|
|
// Bits per digit
|
|
var dbits;
|
|
|
|
// JavaScript engine analysis
|
|
var canary = 0xdeadbeefcafe;
|
|
var j_lm = ((canary & 0xffffff) == 0xefcafe);
|
|
|
|
// return new, unset BigInteger
|
|
function nbi() {
|
|
return new BigInteger(null);
|
|
}
|
|
|
|
// am: Compute w_j += (x*this_i), propagate carries,
|
|
// c is initial carry, returns final carry.
|
|
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
|
|
// We need to select the fastest one that works in this environment.
|
|
|
|
// am1: use a single mult and divide to get the high bits,
|
|
// max digit bits should be 26 because
|
|
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
|
|
function am1(i, x, w, j, c, n) {
|
|
while (--n >= 0) {
|
|
var v = x * this[i++] + w[j] + c;
|
|
c = Math.floor(v / 0x4000000);
|
|
w[j++] = v & 0x3ffffff;
|
|
}
|
|
return c;
|
|
}
|
|
// am2 avoids a big mult-and-extract completely.
|
|
// Max digit bits should be <= 30 because we do bitwise ops
|
|
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
|
|
function am2(i, x, w, j, c, n) {
|
|
var xl = x & 0x7fff,
|
|
xh = x >> 15;
|
|
while (--n >= 0) {
|
|
var l = this[i] & 0x7fff;
|
|
var h = this[i++] >> 15;
|
|
var m = xh * l + h * xl;
|
|
l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
|
|
c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
|
|
w[j++] = l & 0x3fffffff;
|
|
}
|
|
return c;
|
|
}
|
|
// Alternately, set max digit bits to 28 since some
|
|
// browsers slow down when dealing with 32-bit numbers.
|
|
function am3(i, x, w, j, c, n) {
|
|
var xl = x & 0x3fff,
|
|
xh = x >> 14;
|
|
while (--n >= 0) {
|
|
var l = this[i] & 0x3fff;
|
|
var h = this[i++] >> 14;
|
|
var m = xh * l + h * xl;
|
|
l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
|
|
c = (l >> 28) + (m >> 14) + xh * h;
|
|
w[j++] = l & 0xfffffff;
|
|
}
|
|
return c;
|
|
}
|
|
if (j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
|
|
BigInteger.prototype.am = am2;
|
|
dbits = 30;
|
|
} else if (j_lm && (navigator.appName != "Netscape")) {
|
|
BigInteger.prototype.am = am1;
|
|
dbits = 26;
|
|
} else { // Mozilla/Netscape seems to prefer am3
|
|
BigInteger.prototype.am = am3;
|
|
dbits = 28;
|
|
}
|
|
|
|
BigInteger.prototype.DB = dbits;
|
|
BigInteger.prototype.DM = ((1 << dbits) - 1);
|
|
BigInteger.prototype.DV = (1 << dbits);
|
|
|
|
var BI_FP = 52;
|
|
BigInteger.prototype.FV = Math.pow(2, BI_FP);
|
|
BigInteger.prototype.F1 = BI_FP - dbits;
|
|
BigInteger.prototype.F2 = 2 * dbits - BI_FP;
|
|
|
|
// Digit conversions
|
|
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
|
|
var BI_RC = new Array();
|
|
var rr, vv;
|
|
rr = "0".charCodeAt(0);
|
|
for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
|
|
rr = "a".charCodeAt(0);
|
|
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
|
|
rr = "A".charCodeAt(0);
|
|
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
|
|
|
|
function int2char(n) {
|
|
return BI_RM.charAt(n);
|
|
}
|
|
|
|
function intAt(s, i) {
|
|
var c = BI_RC[s.charCodeAt(i)];
|
|
return (c == null) ? -1 : c;
|
|
}
|
|
|
|
|
|
|
|
// return bigint initialized to value
|
|
function nbv(i) {
|
|
var r = nbi();
|
|
r.fromInt(i);
|
|
return r;
|
|
}
|
|
|
|
|
|
// returns bit length of the integer x
|
|
function nbits(x) {
|
|
var r = 1,
|
|
t;
|
|
if ((t = x >>> 16) != 0) {
|
|
x = t;
|
|
r += 16;
|
|
}
|
|
if ((t = x >> 8) != 0) {
|
|
x = t;
|
|
r += 8;
|
|
}
|
|
if ((t = x >> 4) != 0) {
|
|
x = t;
|
|
r += 4;
|
|
}
|
|
if ((t = x >> 2) != 0) {
|
|
x = t;
|
|
r += 2;
|
|
}
|
|
if ((t = x >> 1) != 0) {
|
|
x = t;
|
|
r += 1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// (protected) copy this to r
|
|
BigInteger.prototype.copyTo = function(r) {
|
|
for (var i = this.t - 1; i >= 0; --i) r[i] = this[i];
|
|
r.t = this.t;
|
|
r.s = this.s;
|
|
};
|
|
|
|
|
|
// (protected) set from integer value x, -DV <= x < DV
|
|
BigInteger.prototype.fromInt = function(x) {
|
|
this.t = 1;
|
|
this.s = (x < 0) ? -1 : 0;
|
|
if (x > 0) this[0] = x;
|
|
else if (x < -1) this[0] = x + this.DV;
|
|
else this.t = 0;
|
|
};
|
|
|
|
// (protected) set from string and radix
|
|
BigInteger.prototype.fromString = function(s, b) {
|
|
var k;
|
|
if (b == 16) k = 4;
|
|
else if (b == 8) k = 3;
|
|
else if (b == 256) k = 8; // byte array
|
|
else if (b == 2) k = 1;
|
|
else if (b == 32) k = 5;
|
|
else if (b == 4) k = 2;
|
|
else {
|
|
this.fromRadix(s, b);
|
|
return;
|
|
}
|
|
this.t = 0;
|
|
this.s = 0;
|
|
var i = s.length,
|
|
mi = false,
|
|
sh = 0;
|
|
while (--i >= 0) {
|
|
var x = (k == 8) ? s[i] & 0xff : intAt(s, i);
|
|
if (x < 0) {
|
|
if (s.charAt(i) == "-") mi = true;
|
|
continue;
|
|
}
|
|
mi = false;
|
|
if (sh == 0)
|
|
this[this.t++] = x;
|
|
else if (sh + k > this.DB) {
|
|
this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh;
|
|
this[this.t++] = (x >> (this.DB - sh));
|
|
} else
|
|
this[this.t - 1] |= x << sh;
|
|
sh += k;
|
|
if (sh >= this.DB) sh -= this.DB;
|
|
}
|
|
if (k == 8 && (s[0] & 0x80) != 0) {
|
|
this.s = -1;
|
|
if (sh > 0) this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh;
|
|
}
|
|
this.clamp();
|
|
if (mi) BigInteger.ZERO.subTo(this, this);
|
|
};
|
|
|
|
|
|
// (protected) clamp off excess high words
|
|
BigInteger.prototype.clamp = function() {
|
|
var c = this.s & this.DM;
|
|
while (this.t > 0 && this[this.t - 1] == c) --this.t;
|
|
};
|
|
|
|
// (protected) r = this << n*DB
|
|
BigInteger.prototype.dlShiftTo = function(n, r) {
|
|
var i;
|
|
for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i];
|
|
for (i = n - 1; i >= 0; --i) r[i] = 0;
|
|
r.t = this.t + n;
|
|
r.s = this.s;
|
|
};
|
|
|
|
// (protected) r = this >> n*DB
|
|
BigInteger.prototype.drShiftTo = function(n, r) {
|
|
for (var i = n; i < this.t; ++i) r[i - n] = this[i];
|
|
r.t = Math.max(this.t - n, 0);
|
|
r.s = this.s;
|
|
};
|
|
|
|
|
|
// (protected) r = this << n
|
|
BigInteger.prototype.lShiftTo = function(n, r) {
|
|
var bs = n % this.DB;
|
|
var cbs = this.DB - bs;
|
|
var bm = (1 << cbs) - 1;
|
|
var ds = Math.floor(n / this.DB),
|
|
c = (this.s << bs) & this.DM,
|
|
i;
|
|
for (i = this.t - 1; i >= 0; --i) {
|
|
r[i + ds + 1] = (this[i] >> cbs) | c;
|
|
c = (this[i] & bm) << bs;
|
|
}
|
|
for (i = ds - 1; i >= 0; --i) r[i] = 0;
|
|
r[ds] = c;
|
|
r.t = this.t + ds + 1;
|
|
r.s = this.s;
|
|
r.clamp();
|
|
};
|
|
|
|
|
|
// (protected) r = this >> n
|
|
BigInteger.prototype.rShiftTo = function(n, r) {
|
|
r.s = this.s;
|
|
var ds = Math.floor(n / this.DB);
|
|
if (ds >= this.t) {
|
|
r.t = 0;
|
|
return;
|
|
}
|
|
var bs = n % this.DB;
|
|
var cbs = this.DB - bs;
|
|
var bm = (1 << bs) - 1;
|
|
r[0] = this[ds] >> bs;
|
|
for (var i = ds + 1; i < this.t; ++i) {
|
|
r[i - ds - 1] |= (this[i] & bm) << cbs;
|
|
r[i - ds] = this[i] >> bs;
|
|
}
|
|
if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs;
|
|
r.t = this.t - ds;
|
|
r.clamp();
|
|
};
|
|
|
|
|
|
// (protected) r = this - a
|
|
BigInteger.prototype.subTo = function(a, r) {
|
|
var i = 0,
|
|
c = 0,
|
|
m = Math.min(a.t, this.t);
|
|
while (i < m) {
|
|
c += this[i] - a[i];
|
|
r[i++] = c & this.DM;
|
|
c >>= this.DB;
|
|
}
|
|
if (a.t < this.t) {
|
|
c -= a.s;
|
|
while (i < this.t) {
|
|
c += this[i];
|
|
r[i++] = c & this.DM;
|
|
c >>= this.DB;
|
|
}
|
|
c += this.s;
|
|
} else {
|
|
c += this.s;
|
|
while (i < a.t) {
|
|
c -= a[i];
|
|
r[i++] = c & this.DM;
|
|
c >>= this.DB;
|
|
}
|
|
c -= a.s;
|
|
}
|
|
r.s = (c < 0) ? -1 : 0;
|
|
if (c < -1) r[i++] = this.DV + c;
|
|
else if (c > 0) r[i++] = c;
|
|
r.t = i;
|
|
r.clamp();
|
|
};
|
|
|
|
|
|
// (protected) r = this * a, r != this,a (HAC 14.12)
|
|
// "this" should be the larger one if appropriate.
|
|
BigInteger.prototype.multiplyTo = function(a, r) {
|
|
var x = this.abs(),
|
|
y = a.abs();
|
|
var i = x.t;
|
|
r.t = i + y.t;
|
|
while (--i >= 0) r[i] = 0;
|
|
for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
|
|
r.s = 0;
|
|
r.clamp();
|
|
if (this.s != a.s) BigInteger.ZERO.subTo(r, r);
|
|
};
|
|
|
|
|
|
// (protected) r = this^2, r != this (HAC 14.16)
|
|
BigInteger.prototype.squareTo = function(r) {
|
|
var x = this.abs();
|
|
var i = r.t = 2 * x.t;
|
|
while (--i >= 0) r[i] = 0;
|
|
for (i = 0; i < x.t - 1; ++i) {
|
|
var c = x.am(i, x[i], r, 2 * i, 0, 1);
|
|
if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) {
|
|
r[i + x.t] -= x.DV;
|
|
r[i + x.t + 1] = 1;
|
|
}
|
|
}
|
|
if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
|
|
r.s = 0;
|
|
r.clamp();
|
|
};
|
|
|
|
|
|
|
|
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
|
|
// r != q, this != m. q or r may be null.
|
|
BigInteger.prototype.divRemTo = function(m, q, r) {
|
|
var pm = m.abs();
|
|
if (pm.t <= 0) return;
|
|
var pt = this.abs();
|
|
if (pt.t < pm.t) {
|
|
if (q != null) q.fromInt(0);
|
|
if (r != null) this.copyTo(r);
|
|
return;
|
|
}
|
|
if (r == null) r = nbi();
|
|
var y = nbi(),
|
|
ts = this.s,
|
|
ms = m.s;
|
|
var nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus
|
|
if (nsh > 0) {
|
|
pm.lShiftTo(nsh, y);
|
|
pt.lShiftTo(nsh, r);
|
|
} else {
|
|
pm.copyTo(y);
|
|
pt.copyTo(r);
|
|
}
|
|
var ys = y.t;
|
|
var y0 = y[ys - 1];
|
|
if (y0 == 0) return;
|
|
var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0);
|
|
var d1 = this.FV / yt,
|
|
d2 = (1 << this.F1) / yt,
|
|
e = 1 << this.F2;
|
|
var i = r.t,
|
|
j = i - ys,
|
|
t = (q == null) ? nbi() : q;
|
|
y.dlShiftTo(j, t);
|
|
if (r.compareTo(t) >= 0) {
|
|
r[r.t++] = 1;
|
|
r.subTo(t, r);
|
|
}
|
|
BigInteger.ONE.dlShiftTo(ys, t);
|
|
t.subTo(y, y); // "negative" y so we can replace sub with am later
|
|
while (y.t < ys) y[y.t++] = 0;
|
|
while (--j >= 0) {
|
|
// Estimate quotient digit
|
|
var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
|
|
if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out
|
|
y.dlShiftTo(j, t);
|
|
r.subTo(t, r);
|
|
while (r[i] < --qd) r.subTo(t, r);
|
|
}
|
|
}
|
|
if (q != null) {
|
|
r.drShiftTo(ys, q);
|
|
if (ts != ms) BigInteger.ZERO.subTo(q, q);
|
|
}
|
|
r.t = ys;
|
|
r.clamp();
|
|
if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder
|
|
if (ts < 0) BigInteger.ZERO.subTo(r, r);
|
|
};
|
|
|
|
|
|
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
|
|
// justification:
|
|
// xy == 1 (mod m)
|
|
// xy = 1+km
|
|
// xy(2-xy) = (1+km)(1-km)
|
|
// x[y(2-xy)] = 1-k^2m^2
|
|
// x[y(2-xy)] == 1 (mod m^2)
|
|
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
|
|
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
|
|
// JS multiply "overflows" differently from C/C++, so care is needed here.
|
|
BigInteger.prototype.invDigit = function() {
|
|
if (this.t < 1) return 0;
|
|
var x = this[0];
|
|
if ((x & 1) == 0) return 0;
|
|
var y = x & 3; // y == 1/x mod 2^2
|
|
y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4
|
|
y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8
|
|
y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16
|
|
// last step - calculate inverse mod DV directly;
|
|
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
|
|
y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits
|
|
// we really want the negative inverse, and -DV < y < DV
|
|
return (y > 0) ? this.DV - y : -y;
|
|
};
|
|
|
|
|
|
// (protected) true iff this is even
|
|
BigInteger.prototype.isEven = function() {
|
|
return ((this.t > 0) ? (this[0] & 1) : this.s) == 0;
|
|
};
|
|
|
|
|
|
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
|
|
BigInteger.prototype.exp = function(e, z) {
|
|
if (e > 0xffffffff || e < 1) return BigInteger.ONE;
|
|
var r = nbi(),
|
|
r2 = nbi(),
|
|
g = z.convert(this),
|
|
i = nbits(e) - 1;
|
|
g.copyTo(r);
|
|
while (--i >= 0) {
|
|
z.sqrTo(r, r2);
|
|
if ((e & (1 << i)) > 0) z.mulTo(r2, g, r);
|
|
else {
|
|
var t = r;
|
|
r = r2;
|
|
r2 = t;
|
|
}
|
|
}
|
|
return z.revert(r);
|
|
};
|
|
|
|
|
|
// (public) return string representation in given radix
|
|
BigInteger.prototype.toString = function(b) {
|
|
if (this.s < 0) return "-" + this.negate().toString(b);
|
|
var k;
|
|
if (b == 16) k = 4;
|
|
else if (b == 8) k = 3;
|
|
else if (b == 2) k = 1;
|
|
else if (b == 32) k = 5;
|
|
else if (b == 4) k = 2;
|
|
else return this.toRadix(b);
|
|
var km = (1 << k) - 1,
|
|
d, m = false,
|
|
r = "",
|
|
i = this.t;
|
|
var p = this.DB - (i * this.DB) % k;
|
|
if (i-- > 0) {
|
|
if (p < this.DB && (d = this[i] >> p) > 0) {
|
|
m = true;
|
|
r = int2char(d);
|
|
}
|
|
while (i >= 0) {
|
|
if (p < k) {
|
|
d = (this[i] & ((1 << p) - 1)) << (k - p);
|
|
d |= this[--i] >> (p += this.DB - k);
|
|
} else {
|
|
d = (this[i] >> (p -= k)) & km;
|
|
if (p <= 0) {
|
|
p += this.DB;
|
|
--i;
|
|
}
|
|
}
|
|
if (d > 0) m = true;
|
|
if (m) r += int2char(d);
|
|
}
|
|
}
|
|
return m ? r : "0";
|
|
};
|
|
|
|
|
|
// (public) -this
|
|
BigInteger.prototype.negate = function() {
|
|
var r = nbi();
|
|
BigInteger.ZERO.subTo(this, r);
|
|
return r;
|
|
};
|
|
|
|
// (public) |this|
|
|
BigInteger.prototype.abs = function() {
|
|
return (this.s < 0) ? this.negate() : this;
|
|
};
|
|
|
|
// (public) return + if this > a, - if this < a, 0 if equal
|
|
BigInteger.prototype.compareTo = function(a) {
|
|
var r = this.s - a.s;
|
|
if (r != 0) return r;
|
|
var i = this.t;
|
|
r = i - a.t;
|
|
if (r != 0) return (this.s < 0) ? -r : r;
|
|
while (--i >= 0)
|
|
if ((r = this[i] - a[i]) != 0) return r;
|
|
return 0;
|
|
}
|
|
|
|
// (public) return the number of bits in "this"
|
|
BigInteger.prototype.bitLength = function() {
|
|
if (this.t <= 0) return 0;
|
|
return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM));
|
|
};
|
|
|
|
// (public) this mod a
|
|
BigInteger.prototype.mod = function(a) {
|
|
var r = nbi();
|
|
this.abs().divRemTo(a, null, r);
|
|
if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r);
|
|
return r;
|
|
}
|
|
|
|
// (public) this^e % m, 0 <= e < 2^32
|
|
BigInteger.prototype.modPowInt = function(e, m) {
|
|
var z;
|
|
if (e < 256 || m.isEven()) z = new Classic(m);
|
|
else z = new Montgomery(m);
|
|
return this.exp(e, z);
|
|
};
|
|
|
|
// "constants"
|
|
BigInteger.ZERO = nbv(0);
|
|
BigInteger.ONE = nbv(1);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Copyright (c) 2005-2009 Tom Wu
|
|
// All Rights Reserved.
|
|
// See "LICENSE" for details.
|
|
// Extended JavaScript BN functions, required for RSA private ops.
|
|
// Version 1.1: new BigInteger("0", 10) returns "proper" zero
|
|
// Version 1.2: square() API, isProbablePrime fix
|
|
|
|
|
|
// return index of lowest 1-bit in x, x < 2^31
|
|
function lbit(x) {
|
|
if (x == 0) return -1;
|
|
var r = 0;
|
|
if ((x & 0xffff) == 0) {
|
|
x >>= 16;
|
|
r += 16;
|
|
}
|
|
if ((x & 0xff) == 0) {
|
|
x >>= 8;
|
|
r += 8;
|
|
}
|
|
if ((x & 0xf) == 0) {
|
|
x >>= 4;
|
|
r += 4;
|
|
}
|
|
if ((x & 3) == 0) {
|
|
x >>= 2;
|
|
r += 2;
|
|
}
|
|
if ((x & 1) == 0) ++r;
|
|
return r;
|
|
}
|
|
|
|
// return number of 1 bits in x
|
|
function cbit(x) {
|
|
var r = 0;
|
|
while (x != 0) {
|
|
x &= x - 1;
|
|
++r;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
var lowprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
|
|
89,
|
|
97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191,
|
|
193,
|
|
197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307,
|
|
311,
|
|
313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431,
|
|
433,
|
|
439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563,
|
|
569,
|
|
571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677,
|
|
683,
|
|
691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823,
|
|
827,
|
|
829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967,
|
|
971,
|
|
977, 983, 991, 997
|
|
];
|
|
var lplim = (1 << 26) / lowprimes[lowprimes.length - 1];
|
|
|
|
|
|
|
|
// (protected) return x s.t. r^x < DV
|
|
BigInteger.prototype.chunkSize = function(r) {
|
|
return Math.floor(Math.LN2 * this.DB / Math.log(r));
|
|
};
|
|
|
|
// (protected) convert to radix string
|
|
BigInteger.prototype.toRadix = function(b) {
|
|
if (b == null) b = 10;
|
|
if (this.signum() == 0 || b < 2 || b > 36) return "0";
|
|
var cs = this.chunkSize(b);
|
|
var a = Math.pow(b, cs);
|
|
var d = nbv(a),
|
|
y = nbi(),
|
|
z = nbi(),
|
|
r = "";
|
|
this.divRemTo(d, y, z);
|
|
while (y.signum() > 0) {
|
|
r = (a + z.intValue()).toString(b).substr(1) + r;
|
|
y.divRemTo(d, y, z);
|
|
}
|
|
return z.intValue().toString(b) + r;
|
|
};
|
|
|
|
// (protected) convert from radix string
|
|
BigInteger.prototype.fromRadix = function(s, b) {
|
|
this.fromInt(0);
|
|
if (b == null) b = 10;
|
|
var cs = this.chunkSize(b);
|
|
var d = Math.pow(b, cs),
|
|
mi = false,
|
|
j = 0,
|
|
w = 0;
|
|
for (var i = 0; i < s.length; ++i) {
|
|
var x = intAt(s, i);
|
|
if (x < 0) {
|
|
if (s.charAt(i) == "-" && this.signum() == 0) mi = true;
|
|
continue;
|
|
}
|
|
w = b * w + x;
|
|
if (++j >= cs) {
|
|
this.dMultiply(d);
|
|
this.dAddOffset(w, 0);
|
|
j = 0;
|
|
w = 0;
|
|
}
|
|
}
|
|
if (j > 0) {
|
|
this.dMultiply(Math.pow(b, j));
|
|
this.dAddOffset(w, 0);
|
|
}
|
|
if (mi) BigInteger.ZERO.subTo(this, this);
|
|
};
|
|
|
|
// (protected) alternate constructor
|
|
BigInteger.prototype.fromNumber = function(a, b, c) {
|
|
if ("number" == typeof b) {
|
|
// new BigInteger(int,int,RNG)
|
|
if (a < 2) this.fromInt(1);
|
|
else {
|
|
this.fromNumber(a, c);
|
|
if (!this.testBit(a - 1)) // force MSB set
|
|
this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this);
|
|
if (this.isEven()) this.dAddOffset(1, 0); // force odd
|
|
while (!this.isProbablePrime(b)) {
|
|
this.dAddOffset(2, 0);
|
|
if (this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a - 1), this);
|
|
}
|
|
}
|
|
} else {
|
|
// new BigInteger(int,RNG)
|
|
var x = new Array(),
|
|
t = a & 7;
|
|
x.length = (a >> 3) + 1;
|
|
b.nextBytes(x);
|
|
if (t > 0) x[0] &= ((1 << t) - 1);
|
|
else x[0] = 0;
|
|
this.fromString(x, 256);
|
|
}
|
|
};
|
|
|
|
// (protected) r = this op a (bitwise)
|
|
BigInteger.prototype.bitwiseTo = function(a, op, r) {
|
|
var i, f, m = Math.min(a.t, this.t);
|
|
for (i = 0; i < m; ++i) r[i] = op(this[i], a[i]);
|
|
if (a.t < this.t) {
|
|
f = a.s & this.DM;
|
|
for (i = m; i < this.t; ++i) r[i] = op(this[i], f);
|
|
r.t = this.t;
|
|
} else {
|
|
f = this.s & this.DM;
|
|
for (i = m; i < a.t; ++i) r[i] = op(f, a[i]);
|
|
r.t = a.t;
|
|
}
|
|
r.s = op(this.s, a.s);
|
|
r.clamp();
|
|
};
|
|
|
|
// (protected) this op (1<<n)
|
|
BigInteger.prototype.changeBit = function(n, op) {
|
|
var r = BigInteger.ONE.shiftLeft(n);
|
|
this.bitwiseTo(r, op, r);
|
|
return r;
|
|
};
|
|
|
|
// (protected) r = this + a
|
|
BigInteger.prototype.addTo = function(a, r) {
|
|
var i = 0,
|
|
c = 0,
|
|
m = Math.min(a.t, this.t);
|
|
while (i < m) {
|
|
c += this[i] + a[i];
|
|
r[i++] = c & this.DM;
|
|
c >>= this.DB;
|
|
}
|
|
if (a.t < this.t) {
|
|
c += a.s;
|
|
while (i < this.t) {
|
|
c += this[i];
|
|
r[i++] = c & this.DM;
|
|
c >>= this.DB;
|
|
}
|
|
c += this.s;
|
|
} else {
|
|
c += this.s;
|
|
while (i < a.t) {
|
|
c += a[i];
|
|
r[i++] = c & this.DM;
|
|
c >>= this.DB;
|
|
}
|
|
c += a.s;
|
|
}
|
|
r.s = (c < 0) ? -1 : 0;
|
|
if (c > 0) r[i++] = c;
|
|
else if (c < -1) r[i++] = this.DV + c;
|
|
r.t = i;
|
|
r.clamp();
|
|
};
|
|
|
|
// (protected) this *= n, this >= 0, 1 < n < DV
|
|
BigInteger.prototype.dMultiply = function(n) {
|
|
this[this.t] = this.am(0, n - 1, this, 0, 0, this.t);
|
|
++this.t;
|
|
this.clamp();
|
|
};
|
|
|
|
// (protected) this += n << w words, this >= 0
|
|
BigInteger.prototype.dAddOffset = function(n, w) {
|
|
if (n == 0) return;
|
|
while (this.t <= w) this[this.t++] = 0;
|
|
this[w] += n;
|
|
while (this[w] >= this.DV) {
|
|
this[w] -= this.DV;
|
|
if (++w >= this.t) this[this.t++] = 0;
|
|
++this[w];
|
|
}
|
|
};
|
|
|
|
// (protected) r = lower n words of "this * a", a.t <= n
|
|
// "this" should be the larger one if appropriate.
|
|
BigInteger.prototype.multiplyLowerTo = function(a, n, r) {
|
|
var i = Math.min(this.t + a.t, n);
|
|
r.s = 0; // assumes a,this >= 0
|
|
r.t = i;
|
|
while (i > 0) r[--i] = 0;
|
|
var j;
|
|
for (j = r.t - this.t; i < j; ++i) r[i + this.t] = this.am(0, a[i], r, i, 0, this.t);
|
|
for (j = Math.min(a.t, n); i < j; ++i) this.am(0, a[i], r, i, 0, n - i);
|
|
r.clamp();
|
|
};
|
|
|
|
|
|
// (protected) r = "this * a" without lower n words, n > 0
|
|
// "this" should be the larger one if appropriate.
|
|
BigInteger.prototype.multiplyUpperTo = function(a, n, r) {
|
|
--n;
|
|
var i = r.t = this.t + a.t - n;
|
|
r.s = 0; // assumes a,this >= 0
|
|
while (--i >= 0) r[i] = 0;
|
|
for (i = Math.max(n - this.t, 0); i < a.t; ++i)
|
|
r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n);
|
|
r.clamp();
|
|
r.drShiftTo(1, r);
|
|
};
|
|
|
|
// (protected) this % n, n < 2^26
|
|
BigInteger.prototype.modInt = function(n) {
|
|
if (n <= 0) return 0;
|
|
var d = this.DV % n,
|
|
r = (this.s < 0) ? n - 1 : 0;
|
|
if (this.t > 0)
|
|
if (d == 0) r = this[0] % n;
|
|
else
|
|
for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n;
|
|
return r;
|
|
};
|
|
|
|
|
|
// (protected) true if probably prime (HAC 4.24, Miller-Rabin)
|
|
BigInteger.prototype.millerRabin = function(t) {
|
|
var n1 = this.subtract(BigInteger.ONE);
|
|
var k = n1.getLowestSetBit();
|
|
if (k <= 0) return false;
|
|
var r = n1.shiftRight(k);
|
|
t = (t + 1) >> 1;
|
|
if (t > lowprimes.length) t = lowprimes.length;
|
|
var a = nbi();
|
|
for (var i = 0; i < t; ++i) {
|
|
//Pick bases at random, instead of starting at 2
|
|
a.fromInt(lowprimes[Math.floor(Math.random() * lowprimes.length)]);
|
|
var y = a.modPow(r, this);
|
|
if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
|
|
var j = 1;
|
|
while (j++ < k && y.compareTo(n1) != 0) {
|
|
y = y.modPowInt(2, this);
|
|
if (y.compareTo(BigInteger.ONE) == 0) return false;
|
|
}
|
|
if (y.compareTo(n1) != 0) return false;
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
|
|
|
|
|
|
// (public)
|
|
BigInteger.prototype.clone = function() {
|
|
var r = nbi();
|
|
this.copyTo(r);
|
|
return r;
|
|
};
|
|
|
|
// (public) return value as integer
|
|
BigInteger.prototype.intValue = function() {
|
|
if (this.s < 0) {
|
|
if (this.t == 1) return this[0] - this.DV;
|
|
else if (this.t == 0) return -1;
|
|
} else if (this.t == 1) return this[0];
|
|
else if (this.t == 0) return 0;
|
|
// assumes 16 < DB < 32
|
|
return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0];
|
|
};
|
|
|
|
|
|
// (public) return value as byte
|
|
BigInteger.prototype.byteValue = function() {
|
|
return (this.t == 0) ? this.s : (this[0] << 24) >> 24;
|
|
};
|
|
|
|
// (public) return value as short (assumes DB>=16)
|
|
BigInteger.prototype.shortValue = function() {
|
|
return (this.t == 0) ? this.s : (this[0] << 16) >> 16;
|
|
};
|
|
|
|
// (public) 0 if this == 0, 1 if this > 0
|
|
BigInteger.prototype.signum = function() {
|
|
if (this.s < 0) return -1;
|
|
else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
|
|
else return 1;
|
|
};
|
|
|
|
|
|
// (public) convert to bigendian byte array
|
|
BigInteger.prototype.toByteArray = function() {
|
|
var i = this.t,
|
|
r = new Array();
|
|
r[0] = this.s;
|
|
var p = this.DB - (i * this.DB) % 8,
|
|
d, k = 0;
|
|
if (i-- > 0) {
|
|
if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p)
|
|
r[k++] = d | (this.s << (this.DB - p));
|
|
while (i >= 0) {
|
|
if (p < 8) {
|
|
d = (this[i] & ((1 << p) - 1)) << (8 - p);
|
|
d |= this[--i] >> (p += this.DB - 8);
|
|
} else {
|
|
d = (this[i] >> (p -= 8)) & 0xff;
|
|
if (p <= 0) {
|
|
p += this.DB;
|
|
--i;
|
|
}
|
|
}
|
|
if ((d & 0x80) != 0) d |= -256;
|
|
if (k == 0 && (this.s & 0x80) != (d & 0x80)) ++k;
|
|
if (k > 0 || d != this.s) r[k++] = d;
|
|
}
|
|
}
|
|
return r;
|
|
};
|
|
|
|
BigInteger.prototype.equals = function(a) {
|
|
return (this.compareTo(a) == 0);
|
|
};
|
|
BigInteger.prototype.min = function(a) {
|
|
return (this.compareTo(a) < 0) ? this : a;
|
|
};
|
|
BigInteger.prototype.max = function(a) {
|
|
return (this.compareTo(a) > 0) ? this : a;
|
|
};
|
|
|
|
// (public) this & a
|
|
function op_and(x, y) {
|
|
return x & y;
|
|
}
|
|
BigInteger.prototype.and = function(a) {
|
|
var r = nbi();
|
|
this.bitwiseTo(a, op_and, r);
|
|
return r;
|
|
};
|
|
|
|
// (public) this | a
|
|
function op_or(x, y) {
|
|
return x | y;
|
|
}
|
|
BigInteger.prototype.or = function(a) {
|
|
var r = nbi();
|
|
this.bitwiseTo(a, op_or, r);
|
|
return r;
|
|
};
|
|
|
|
// (public) this ^ a
|
|
function op_xor(x, y) {
|
|
return x ^ y;
|
|
}
|
|
BigInteger.prototype.xor = function(a) {
|
|
var r = nbi();
|
|
this.bitwiseTo(a, op_xor, r);
|
|
return r;
|
|
};
|
|
|
|
// (public) this & ~a
|
|
function op_andnot(x, y) {
|
|
return x & ~y;
|
|
}
|
|
BigInteger.prototype.andNot = function(a) {
|
|
var r = nbi();
|
|
this.bitwiseTo(a, op_andnot, r);
|
|
return r;
|
|
};
|
|
|
|
// (public) ~this
|
|
BigInteger.prototype.not = function() {
|
|
var r = nbi();
|
|
for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i];
|
|
r.t = this.t;
|
|
r.s = ~this.s;
|
|
return r;
|
|
};
|
|
|
|
// (public) this << n
|
|
BigInteger.prototype.shiftLeft = function(n) {
|
|
var r = nbi();
|
|
if (n < 0) this.rShiftTo(-n, r);
|
|
else this.lShiftTo(n, r);
|
|
return r;
|
|
};
|
|
|
|
// (public) this >> n
|
|
BigInteger.prototype.shiftRight = function(n) {
|
|
var r = nbi();
|
|
if (n < 0) this.lShiftTo(-n, r);
|
|
else this.rShiftTo(n, r);
|
|
return r;
|
|
};
|
|
|
|
// (public) returns index of lowest 1-bit (or -1 if none)
|
|
BigInteger.prototype.getLowestSetBit = function() {
|
|
for (var i = 0; i < this.t; ++i)
|
|
if (this[i] != 0) return i * this.DB + lbit(this[i]);
|
|
if (this.s < 0) return this.t * this.DB;
|
|
return -1;
|
|
};
|
|
|
|
// (public) return number of set bits
|
|
BigInteger.prototype.bitCount = function() {
|
|
var r = 0,
|
|
x = this.s & this.DM;
|
|
for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x);
|
|
return r;
|
|
};
|
|
|
|
// (public) true iff nth bit is set
|
|
BigInteger.prototype.testBit = function(n) {
|
|
var j = Math.floor(n / this.DB);
|
|
if (j >= this.t) return (this.s != 0);
|
|
return ((this[j] & (1 << (n % this.DB))) != 0);
|
|
};
|
|
|
|
// (public) this | (1<<n)
|
|
BigInteger.prototype.setBit = function(n) {
|
|
return this.changeBit(n, op_or);
|
|
};
|
|
// (public) this & ~(1<<n)
|
|
BigInteger.prototype.clearBit = function(n) {
|
|
return this.changeBit(n, op_andnot);
|
|
};
|
|
// (public) this ^ (1<<n)
|
|
BigInteger.prototype.flipBit = function(n) {
|
|
return this.changeBit(n, op_xor);
|
|
};
|
|
// (public) this + a
|
|
BigInteger.prototype.add = function(a) {
|
|
var r = nbi();
|
|
this.addTo(a, r);
|
|
return r;
|
|
};
|
|
// (public) this - a
|
|
BigInteger.prototype.subtract = function(a) {
|
|
var r = nbi();
|
|
this.subTo(a, r);
|
|
return r;
|
|
};
|
|
// (public) this * a
|
|
BigInteger.prototype.multiply = function(a) {
|
|
var r = nbi();
|
|
this.multiplyTo(a, r);
|
|
return r;
|
|
};
|
|
// (public) this / a
|
|
BigInteger.prototype.divide = function(a) {
|
|
var r = nbi();
|
|
this.divRemTo(a, r, null);
|
|
return r;
|
|
};
|
|
// (public) this % a
|
|
BigInteger.prototype.remainder = function(a) {
|
|
var r = nbi();
|
|
this.divRemTo(a, null, r);
|
|
return r;
|
|
};
|
|
// (public) [this/a,this%a]
|
|
BigInteger.prototype.divideAndRemainder = function(a) {
|
|
var q = nbi(),
|
|
r = nbi();
|
|
this.divRemTo(a, q, r);
|
|
return new Array(q, r);
|
|
};
|
|
|
|
// (public) this^e % m (HAC 14.85)
|
|
BigInteger.prototype.modPow = function(e, m) {
|
|
var i = e.bitLength(),
|
|
k, r = nbv(1),
|
|
z;
|
|
if (i <= 0) return r;
|
|
else if (i < 18) k = 1;
|
|
else if (i < 48) k = 3;
|
|
else if (i < 144) k = 4;
|
|
else if (i < 768) k = 5;
|
|
else k = 6;
|
|
if (i < 8)
|
|
z = new Classic(m);
|
|
else if (m.isEven())
|
|
z = new Barrett(m);
|
|
else
|
|
z = new Montgomery(m);
|
|
|
|
// precomputation
|
|
var g = new Array(),
|
|
n = 3,
|
|
k1 = k - 1,
|
|
km = (1 << k) - 1;
|
|
g[1] = z.convert(this);
|
|
if (k > 1) {
|
|
var g2 = nbi();
|
|
z.sqrTo(g[1], g2);
|
|
while (n <= km) {
|
|
g[n] = nbi();
|
|
z.mulTo(g2, g[n - 2], g[n]);
|
|
n += 2;
|
|
}
|
|
}
|
|
|
|
var j = e.t - 1,
|
|
w, is1 = true,
|
|
r2 = nbi(),
|
|
t;
|
|
i = nbits(e[j]) - 1;
|
|
while (j >= 0) {
|
|
if (i >= k1) w = (e[j] >> (i - k1)) & km;
|
|
else {
|
|
w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i);
|
|
if (j > 0) w |= e[j - 1] >> (this.DB + i - k1);
|
|
}
|
|
|
|
n = k;
|
|
while ((w & 1) == 0) {
|
|
w >>= 1;
|
|
--n;
|
|
}
|
|
if ((i -= n) < 0) {
|
|
i += this.DB;
|
|
--j;
|
|
}
|
|
if (is1) { // ret == 1, don't bother squaring or multiplying it
|
|
g[w].copyTo(r);
|
|
is1 = false;
|
|
} else {
|
|
while (n > 1) {
|
|
z.sqrTo(r, r2);
|
|
z.sqrTo(r2, r);
|
|
n -= 2;
|
|
}
|
|
if (n > 0) z.sqrTo(r, r2);
|
|
else {
|
|
t = r;
|
|
r = r2;
|
|
r2 = t;
|
|
}
|
|
z.mulTo(r2, g[w], r);
|
|
}
|
|
|
|
while (j >= 0 && (e[j] & (1 << i)) == 0) {
|
|
z.sqrTo(r, r2);
|
|
t = r;
|
|
r = r2;
|
|
r2 = t;
|
|
if (--i < 0) {
|
|
i = this.DB - 1;
|
|
--j;
|
|
}
|
|
}
|
|
}
|
|
return z.revert(r);
|
|
};
|
|
|
|
// (public) 1/this % m (HAC 14.61)
|
|
BigInteger.prototype.modInverse = function(m) {
|
|
var ac = m.isEven();
|
|
if (this.signum() === 0) throw new Error('division by zero');
|
|
if ((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
|
|
var u = m.clone(),
|
|
v = this.clone();
|
|
var a = nbv(1),
|
|
b = nbv(0),
|
|
c = nbv(0),
|
|
d = nbv(1);
|
|
while (u.signum() != 0) {
|
|
while (u.isEven()) {
|
|
u.rShiftTo(1, u);
|
|
if (ac) {
|
|
if (!a.isEven() || !b.isEven()) {
|
|
a.addTo(this, a);
|
|
b.subTo(m, b);
|
|
}
|
|
a.rShiftTo(1, a);
|
|
} else if (!b.isEven()) b.subTo(m, b);
|
|
b.rShiftTo(1, b);
|
|
}
|
|
while (v.isEven()) {
|
|
v.rShiftTo(1, v);
|
|
if (ac) {
|
|
if (!c.isEven() || !d.isEven()) {
|
|
c.addTo(this, c);
|
|
d.subTo(m, d);
|
|
}
|
|
c.rShiftTo(1, c);
|
|
} else if (!d.isEven()) d.subTo(m, d);
|
|
d.rShiftTo(1, d);
|
|
}
|
|
if (u.compareTo(v) >= 0) {
|
|
u.subTo(v, u);
|
|
if (ac) a.subTo(c, a);
|
|
b.subTo(d, b);
|
|
} else {
|
|
v.subTo(u, v);
|
|
if (ac) c.subTo(a, c);
|
|
d.subTo(b, d);
|
|
}
|
|
}
|
|
if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
|
|
while (d.compareTo(m) >= 0) d.subTo(m, d);
|
|
while (d.signum() < 0) d.addTo(m, d);
|
|
return d;
|
|
};
|
|
|
|
|
|
// (public) this^e
|
|
BigInteger.prototype.pow = function(e) {
|
|
return this.exp(e, new NullExp());
|
|
};
|
|
|
|
// (public) gcd(this,a) (HAC 14.54)
|
|
BigInteger.prototype.gcd = function(a) {
|
|
var x = (this.s < 0) ? this.negate() : this.clone();
|
|
var y = (a.s < 0) ? a.negate() : a.clone();
|
|
if (x.compareTo(y) < 0) {
|
|
var t = x;
|
|
x = y;
|
|
y = t;
|
|
}
|
|
var i = x.getLowestSetBit(),
|
|
g = y.getLowestSetBit();
|
|
if (g < 0) return x;
|
|
if (i < g) g = i;
|
|
if (g > 0) {
|
|
x.rShiftTo(g, x);
|
|
y.rShiftTo(g, y);
|
|
}
|
|
while (x.signum() > 0) {
|
|
if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x);
|
|
if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y);
|
|
if (x.compareTo(y) >= 0) {
|
|
x.subTo(y, x);
|
|
x.rShiftTo(1, x);
|
|
} else {
|
|
y.subTo(x, y);
|
|
y.rShiftTo(1, y);
|
|
}
|
|
}
|
|
if (g > 0) y.lShiftTo(g, y);
|
|
return y;
|
|
};
|
|
|
|
// (public) test primality with certainty >= 1-.5^t
|
|
BigInteger.prototype.isProbablePrime = function(t) {
|
|
var i, x = this.abs();
|
|
if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) {
|
|
for (i = 0; i < lowprimes.length; ++i)
|
|
if (x[0] == lowprimes[i]) return true;
|
|
return false;
|
|
}
|
|
if (x.isEven()) return false;
|
|
i = 1;
|
|
while (i < lowprimes.length) {
|
|
var m = lowprimes[i],
|
|
j = i + 1;
|
|
while (j < lowprimes.length && m < lplim) m *= lowprimes[j++];
|
|
m = x.modInt(m);
|
|
while (i < j)
|
|
if (m % lowprimes[i++] == 0) return false;
|
|
}
|
|
return x.millerRabin(t);
|
|
};
|
|
|
|
|
|
// JSBN-specific extension
|
|
|
|
// (public) this^2
|
|
BigInteger.prototype.square = function() {
|
|
var r = nbi();
|
|
this.squareTo(r);
|
|
return r;
|
|
};
|
|
|
|
|
|
// NOTE: BigInteger interfaces not implemented in jsbn:
|
|
// BigInteger(int signum, byte[] magnitude)
|
|
// double doubleValue()
|
|
// float floatValue()
|
|
// int hashCode()
|
|
// long longValue()
|
|
// static BigInteger valueOf(long val)
|
|
|
|
|
|
|
|
// Copyright Stephan Thomas (start) --- //
|
|
// https://raw.github.com/bitcoinjs/bitcoinjs-lib/07f9d55ccb6abd962efb6befdd37671f85ea4ff9/src/util.js
|
|
// BigInteger monkey patching
|
|
BigInteger.valueOf = nbv;
|
|
|
|
/**
|
|
* Returns a byte array representation of the big integer.
|
|
*
|
|
* This returns the absolute of the contained value in big endian
|
|
* form. A value of zero results in an empty array.
|
|
*/
|
|
BigInteger.prototype.toByteArrayUnsigned = function() {
|
|
var ba = this.abs().toByteArray();
|
|
if (ba.length) {
|
|
if (ba[0] == 0) {
|
|
ba = ba.slice(1);
|
|
}
|
|
return ba.map(function(v) {
|
|
return (v < 0) ? v + 256 : v;
|
|
});
|
|
} else {
|
|
// Empty array, nothing to do
|
|
return ba;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Turns a byte array into a big integer.
|
|
*
|
|
* This function will interpret a byte array as a big integer in big
|
|
* endian notation and ignore leading zeros.
|
|
*/
|
|
BigInteger.fromByteArrayUnsigned = function(ba) {
|
|
if (!ba.length) {
|
|
return ba.valueOf(0);
|
|
} else if (ba[0] & 0x80) {
|
|
// Prepend a zero so the BigInteger class doesn't mistake this
|
|
// for a negative integer.
|
|
return new BigInteger([0].concat(ba));
|
|
} else {
|
|
return new BigInteger(ba);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Converts big integer to signed byte representation.
|
|
*
|
|
* The format for this value uses a the most significant bit as a sign
|
|
* bit. If the most significant bit is already occupied by the
|
|
* absolute value, an extra byte is prepended and the sign bit is set
|
|
* there.
|
|
*
|
|
* Examples:
|
|
*
|
|
* 0 => 0x00
|
|
* 1 => 0x01
|
|
* -1 => 0x81
|
|
* 127 => 0x7f
|
|
* -127 => 0xff
|
|
* 128 => 0x0080
|
|
* -128 => 0x8080
|
|
* 255 => 0x00ff
|
|
* -255 => 0x80ff
|
|
* 16300 => 0x3fac
|
|
* -16300 => 0xbfac
|
|
* 62300 => 0x00f35c
|
|
* -62300 => 0x80f35c
|
|
*/
|
|
BigInteger.prototype.toByteArraySigned = function() {
|
|
var val = this.abs().toByteArrayUnsigned();
|
|
var neg = this.compareTo(BigInteger.ZERO) < 0;
|
|
|
|
if (neg) {
|
|
if (val[0] & 0x80) {
|
|
val.unshift(0x80);
|
|
} else {
|
|
val[0] |= 0x80;
|
|
}
|
|
} else {
|
|
if (val[0] & 0x80) {
|
|
val.unshift(0x00);
|
|
}
|
|
}
|
|
|
|
return val;
|
|
};
|
|
|
|
/**
|
|
* Parse a signed big integer byte representation.
|
|
*
|
|
* For details on the format please see BigInteger.toByteArraySigned.
|
|
*/
|
|
BigInteger.fromByteArraySigned = function(ba) {
|
|
// Check for negative value
|
|
if (ba[0] & 0x80) {
|
|
// Remove sign bit
|
|
ba[0] &= 0x7f;
|
|
|
|
return BigInteger.fromByteArrayUnsigned(ba).negate();
|
|
} else {
|
|
return BigInteger.fromByteArrayUnsigned(ba);
|
|
}
|
|
};
|
|
// Copyright Stephan Thomas (end) --- //
|
|
|
|
|
|
|
|
|
|
// ****** REDUCTION ******* //
|
|
|
|
// Modular reduction using "classic" algorithm
|
|
var Classic = GLOBAL.Classic = function Classic(m) {
|
|
this.m = m;
|
|
}
|
|
Classic.prototype.convert = function(x) {
|
|
if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
|
|
else return x;
|
|
};
|
|
Classic.prototype.revert = function(x) {
|
|
return x;
|
|
};
|
|
Classic.prototype.reduce = function(x) {
|
|
x.divRemTo(this.m, null, x);
|
|
};
|
|
Classic.prototype.mulTo = function(x, y, r) {
|
|
x.multiplyTo(y, r);
|
|
this.reduce(r);
|
|
};
|
|
Classic.prototype.sqrTo = function(x, r) {
|
|
x.squareTo(r);
|
|
this.reduce(r);
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Montgomery reduction
|
|
var Montgomery = GLOBAL.Montgomery = function Montgomery(m) {
|
|
this.m = m;
|
|
this.mp = m.invDigit();
|
|
this.mpl = this.mp & 0x7fff;
|
|
this.mph = this.mp >> 15;
|
|
this.um = (1 << (m.DB - 15)) - 1;
|
|
this.mt2 = 2 * m.t;
|
|
}
|
|
// xR mod m
|
|
Montgomery.prototype.convert = function(x) {
|
|
var r = nbi();
|
|
x.abs().dlShiftTo(this.m.t, r);
|
|
r.divRemTo(this.m, null, r);
|
|
if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r);
|
|
return r;
|
|
}
|
|
// x/R mod m
|
|
Montgomery.prototype.revert = function(x) {
|
|
var r = nbi();
|
|
x.copyTo(r);
|
|
this.reduce(r);
|
|
return r;
|
|
};
|
|
// x = x/R mod m (HAC 14.32)
|
|
Montgomery.prototype.reduce = function(x) {
|
|
while (x.t <= this.mt2) // pad x so am has enough room later
|
|
x[x.t++] = 0;
|
|
for (var i = 0; i < this.m.t; ++i) {
|
|
// faster way of calculating u0 = x[i]*mp mod DV
|
|
var j = x[i] & 0x7fff;
|
|
var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM;
|
|
// use am to combine the multiply-shift-add into one call
|
|
j = i + this.m.t;
|
|
x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
|
|
// propagate carry
|
|
while (x[j] >= x.DV) {
|
|
x[j] -= x.DV;
|
|
x[++j]++;
|
|
}
|
|
}
|
|
x.clamp();
|
|
x.drShiftTo(this.m.t, x);
|
|
if (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
|
|
};
|
|
// r = "xy/R mod m"; x,y != r
|
|
Montgomery.prototype.mulTo = function(x, y, r) {
|
|
x.multiplyTo(y, r);
|
|
this.reduce(r);
|
|
};
|
|
// r = "x^2/R mod m"; x != r
|
|
Montgomery.prototype.sqrTo = function(x, r) {
|
|
x.squareTo(r);
|
|
this.reduce(r);
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// A "null" reducer
|
|
var NullExp = GLOBAL.NullExp = function NullExp() {}
|
|
NullExp.prototype.convert = function(x) {
|
|
return x;
|
|
};
|
|
NullExp.prototype.revert = function(x) {
|
|
return x;
|
|
};
|
|
NullExp.prototype.mulTo = function(x, y, r) {
|
|
x.multiplyTo(y, r);
|
|
};
|
|
NullExp.prototype.sqrTo = function(x, r) {
|
|
x.squareTo(r);
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Barrett modular reduction
|
|
var Barrett = GLOBAL.Barrett = function Barrett(m) {
|
|
// setup Barrett
|
|
this.r2 = nbi();
|
|
this.q3 = nbi();
|
|
BigInteger.ONE.dlShiftTo(2 * m.t, this.r2);
|
|
this.mu = this.r2.divide(m);
|
|
this.m = m;
|
|
}
|
|
Barrett.prototype.convert = function(x) {
|
|
if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m);
|
|
else if (x.compareTo(this.m) < 0) return x;
|
|
else {
|
|
var r = nbi();
|
|
x.copyTo(r);
|
|
this.reduce(r);
|
|
return r;
|
|
}
|
|
};
|
|
Barrett.prototype.revert = function(x) {
|
|
return x;
|
|
};
|
|
// x = x mod m (HAC 14.42)
|
|
Barrett.prototype.reduce = function(x) {
|
|
x.drShiftTo(this.m.t - 1, this.r2);
|
|
if (x.t > this.m.t + 1) {
|
|
x.t = this.m.t + 1;
|
|
x.clamp();
|
|
}
|
|
this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3);
|
|
this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2);
|
|
while (x.compareTo(this.r2) < 0) x.dAddOffset(1, this.m.t + 1);
|
|
x.subTo(this.r2, x);
|
|
while (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
|
|
};
|
|
// r = x*y mod m; x,y != r
|
|
Barrett.prototype.mulTo = function(x, y, r) {
|
|
x.multiplyTo(y, r);
|
|
this.reduce(r);
|
|
};
|
|
// r = x^2 mod m; x != r
|
|
Barrett.prototype.sqrTo = function(x, r) {
|
|
x.squareTo(r);
|
|
this.reduce(r);
|
|
};
|
|
|
|
// BigInteger interfaces not implemented in jsbn:
|
|
|
|
// BigInteger(int signum, byte[] magnitude)
|
|
// double doubleValue()
|
|
// float floatValue()
|
|
// int hashCode()
|
|
// long longValue()
|
|
// static BigInteger valueOf(long val)
|
|
})(typeof global !== "undefined" ? global : window);
|
|
|
|
//ellipticcurve.js
|
|
(function(GLOBAL) {
|
|
/*!
|
|
* Basic Javascript Elliptic Curve implementation
|
|
* Ported loosely from BouncyCastle's Java EC code
|
|
* Only Fp curves implemented for now
|
|
*
|
|
* Copyright Tom Wu, bitaddress.org BSD License.
|
|
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
|
|
*/
|
|
// Constructor function of Global EllipticCurve object
|
|
var ec = GLOBAL.EllipticCurve = function() {};
|
|
|
|
// ----------------
|
|
// ECFieldElementFp constructor
|
|
// q instanceof BigInteger
|
|
// x instanceof BigInteger
|
|
ec.FieldElementFp = function(q, x) {
|
|
this.x = x;
|
|
// TODO if(x.compareTo(q) >= 0) error
|
|
this.q = q;
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.equals = function(other) {
|
|
if (other == this) return true;
|
|
return (this.q.equals(other.q) && this.x.equals(other.x));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.toBigInteger = function() {
|
|
return this.x;
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.negate = function() {
|
|
return new ec.FieldElementFp(this.q, this.x.negate().mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.add = function(b) {
|
|
return new ec.FieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.subtract = function(b) {
|
|
return new ec.FieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.multiply = function(b) {
|
|
return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.square = function() {
|
|
return new ec.FieldElementFp(this.q, this.x.square().mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.divide = function(b) {
|
|
return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(
|
|
this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.getByteLength = function() {
|
|
return Math.floor((this.toBigInteger().bitLength() + 7) / 8);
|
|
};
|
|
|
|
// D.1.4 91
|
|
/**
|
|
* return a sqrt root - the routine verifies that the calculation
|
|
* returns the right value - if none exists it returns null.
|
|
*
|
|
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
|
|
* Ported to JavaScript by bitaddress.org
|
|
*/
|
|
ec.FieldElementFp.prototype.sqrt = function() {
|
|
if (!this.q.testBit(0)) throw new Error("even value of q");
|
|
|
|
// p mod 4 == 3
|
|
if (this.q.testBit(1)) {
|
|
// z = g^(u+1) + p, p = 4u + 3
|
|
var z = new ec.FieldElementFp(this.q, this.x.modPow(this.q.shiftRight(2).add(BigInteger.ONE),
|
|
this.q));
|
|
return z.square().equals(this) ? z : null;
|
|
}
|
|
|
|
// p mod 4 == 1
|
|
var qMinusOne = this.q.subtract(BigInteger.ONE);
|
|
var legendreExponent = qMinusOne.shiftRight(1);
|
|
if (!(this.x.modPow(legendreExponent, this.q).equals(BigInteger.ONE))) return null;
|
|
var u = qMinusOne.shiftRight(2);
|
|
var k = u.shiftLeft(1).add(BigInteger.ONE);
|
|
var Q = this.x;
|
|
var fourQ = Q.shiftLeft(2).mod(this.q);
|
|
var U, V;
|
|
|
|
do {
|
|
var rand = new SecureRandom();
|
|
var P;
|
|
do {
|
|
P = new BigInteger(this.q.bitLength(), rand);
|
|
}
|
|
while (P.compareTo(this.q) >= 0 || !(P.multiply(P).subtract(fourQ).modPow(legendreExponent,
|
|
this.q).equals(qMinusOne)));
|
|
|
|
var result = ec.FieldElementFp.fastLucasSequence(this.q, P, Q, k);
|
|
|
|
U = result[0];
|
|
V = result[1];
|
|
if (V.multiply(V).mod(this.q).equals(fourQ)) {
|
|
// Integer division by 2, mod q
|
|
if (V.testBit(0)) {
|
|
V = V.add(this.q);
|
|
}
|
|
V = V.shiftRight(1);
|
|
return new ec.FieldElementFp(this.q, V);
|
|
}
|
|
}
|
|
while (U.equals(BigInteger.ONE) || U.equals(qMinusOne));
|
|
|
|
return null;
|
|
};
|
|
/*!
|
|
* Crypto-JS 2.5.4 BlockModes.js
|
|
* contribution from Simon Greatrix
|
|
*/
|
|
|
|
(function(C) {
|
|
|
|
// Create pad namespace
|
|
var C_pad = C.pad = {};
|
|
|
|
// Calculate the number of padding bytes required.
|
|
function _requiredPadding(cipher, message) {
|
|
var blockSizeInBytes = cipher._blocksize * 4;
|
|
var reqd = blockSizeInBytes - message.length % blockSizeInBytes;
|
|
return reqd;
|
|
}
|
|
|
|
// Remove padding when the final byte gives the number of padding bytes.
|
|
var _unpadLength = function(cipher, message, alg, padding) {
|
|
var pad = message.pop();
|
|
if (pad == 0) {
|
|
throw new Error("Invalid zero-length padding specified for " + alg +
|
|
". Wrong cipher specification or key used?");
|
|
}
|
|
var maxPad = cipher._blocksize * 4;
|
|
if (pad > maxPad) {
|
|
throw new Error("Invalid padding length of " + pad +
|
|
" specified for " + alg +
|
|
". Wrong cipher specification or key used?");
|
|
}
|
|
for (var i = 1; i < pad; i++) {
|
|
var b = message.pop();
|
|
if (padding != undefined && padding != b) {
|
|
throw new Error("Invalid padding byte of 0x" + b.toString(16) +
|
|
" specified for " + alg +
|
|
". Wrong cipher specification or key used?");
|
|
}
|
|
}
|
|
};
|
|
|
|
// No-operation padding, used for stream ciphers
|
|
C_pad.NoPadding = {
|
|
pad: function(cipher, message) {},
|
|
unpad: function(cipher, message) {}
|
|
};
|
|
|
|
// Zero Padding.
|
|
//
|
|
// If the message is not an exact number of blocks, the final block is
|
|
// completed with 0x00 bytes. There is no unpadding.
|
|
C_pad.ZeroPadding = {
|
|
pad: function(cipher, message) {
|
|
var blockSizeInBytes = cipher._blocksize * 4;
|
|
var reqd = message.length % blockSizeInBytes;
|
|
if (reqd != 0) {
|
|
for (reqd = blockSizeInBytes - reqd; reqd > 0; reqd--) {
|
|
message.push(0x00);
|
|
}
|
|
}
|
|
},
|
|
|
|
unpad: function(cipher, message) {
|
|
while (message[message.length - 1] == 0) {
|
|
message.pop();
|
|
}
|
|
}
|
|
};
|
|
|
|
// ISO/IEC 7816-4 padding.
|
|
//
|
|
// Pads the plain text with an 0x80 byte followed by as many 0x00
|
|
// bytes are required to complete the block.
|
|
C_pad.iso7816 = {
|
|
pad: function(cipher, message) {
|
|
var reqd = _requiredPadding(cipher, message);
|
|
message.push(0x80);
|
|
for (; reqd > 1; reqd--) {
|
|
message.push(0x00);
|
|
}
|
|
},
|
|
|
|
unpad: function(cipher, message) {
|
|
var padLength;
|
|
for (padLength = cipher._blocksize * 4; padLength > 0; padLength--) {
|
|
var b = message.pop();
|
|
if (b == 0x80) return;
|
|
if (b != 0x00) {
|
|
throw new Error("ISO-7816 padding byte must be 0, not 0x" + b.toString(16) +
|
|
". Wrong cipher specification or key used?");
|
|
}
|
|
}
|
|
throw new Error(
|
|
"ISO-7816 padded beyond cipher block size. Wrong cipher specification or key used?"
|
|
);
|
|
}
|
|
};
|
|
|
|
// ANSI X.923 padding
|
|
//
|
|
// The final block is padded with zeros except for the last byte of the
|
|
// last block which contains the number of padding bytes.
|
|
C_pad.ansix923 = {
|
|
pad: function(cipher, message) {
|
|
var reqd = _requiredPadding(cipher, message);
|
|
for (var i = 1; i < reqd; i++) {
|
|
message.push(0x00);
|
|
}
|
|
message.push(reqd);
|
|
},
|
|
|
|
unpad: function(cipher, message) {
|
|
_unpadLength(cipher, message, "ANSI X.923", 0);
|
|
}
|
|
};
|
|
|
|
// ISO 10126
|
|
//
|
|
// The final block is padded with random bytes except for the last
|
|
// byte of the last block which contains the number of padding bytes.
|
|
C_pad.iso10126 = {
|
|
pad: function(cipher, message) {
|
|
var reqd = _requiredPadding(cipher, message);
|
|
for (var i = 1; i < reqd; i++) {
|
|
message.push(Math.floor(Math.random() * 256));
|
|
}
|
|
message.push(reqd);
|
|
},
|
|
|
|
unpad: function(cipher, message) {
|
|
_unpadLength(cipher, message, "ISO 10126", undefined);
|
|
}
|
|
};
|
|
|
|
// PKCS7 padding
|
|
//
|
|
// PKCS7 is described in RFC 5652. Padding is in whole bytes. The
|
|
// value of each added byte is the number of bytes that are added,
|
|
// i.e. N bytes, each of value N are added.
|
|
C_pad.pkcs7 = {
|
|
pad: function(cipher, message) {
|
|
var reqd = _requiredPadding(cipher, message);
|
|
for (var i = 0; i < reqd; i++) {
|
|
message.push(reqd);
|
|
}
|
|
},
|
|
|
|
unpad: function(cipher, message) {
|
|
_unpadLength(cipher, message, "PKCS 7", message[message.length - 1]);
|
|
}
|
|
};
|
|
|
|
// Create mode namespace
|
|
var C_mode = C.mode = {};
|
|
|
|
/**
|
|
* Mode base "class".
|
|
*/
|
|
var Mode = C_mode.Mode = function(padding) {
|
|
if (padding) {
|
|
this._padding = padding;
|
|
}
|
|
};
|
|
|
|
Mode.prototype = {
|
|
encrypt: function(cipher, m, iv) {
|
|
this._padding.pad(cipher, m);
|
|
this._doEncrypt(cipher, m, iv);
|
|
},
|
|
|
|
decrypt: function(cipher, m, iv) {
|
|
this._doDecrypt(cipher, m, iv);
|
|
this._padding.unpad(cipher, m);
|
|
},
|
|
|
|
// Default padding
|
|
_padding: C_pad.iso7816
|
|
};
|
|
|
|
|
|
/**
|
|
* Electronic Code Book mode.
|
|
*
|
|
* ECB applies the cipher directly against each block of the input.
|
|
*
|
|
* ECB does not require an initialization vector.
|
|
*/
|
|
var ECB = C_mode.ECB = function() {
|
|
// Call parent constructor
|
|
Mode.apply(this, arguments);
|
|
};
|
|
|
|
// Inherit from Mode
|
|
var ECB_prototype = ECB.prototype = new Mode;
|
|
|
|
// Concrete steps for Mode template
|
|
ECB_prototype._doEncrypt = function(cipher, m, iv) {
|
|
var blockSizeInBytes = cipher._blocksize * 4;
|
|
// Encrypt each block
|
|
for (var offset = 0; offset < m.length; offset += blockSizeInBytes) {
|
|
cipher._encryptblock(m, offset);
|
|
}
|
|
};
|
|
ECB_prototype._doDecrypt = function(cipher, c, iv) {
|
|
var blockSizeInBytes = cipher._blocksize * 4;
|
|
// Decrypt each block
|
|
for (var offset = 0; offset < c.length; offset += blockSizeInBytes) {
|
|
cipher._decryptblock(c, offset);
|
|
}
|
|
};
|
|
|
|
// ECB never uses an IV
|
|
ECB_prototype.fixOptions = function(options) {
|
|
options.iv = [];
|
|
};
|
|
|
|
|
|
/**
|
|
* Cipher block chaining
|
|
*
|
|
* The first block is XORed with the IV. Subsequent blocks are XOR with the
|
|
* previous cipher output.
|
|
*/
|
|
var CBC = C_mode.CBC = function() {
|
|
// Call parent constructor
|
|
Mode.apply(this, arguments);
|
|
};
|
|
|
|
// Inherit from Mode
|
|
var CBC_prototype = CBC.prototype = new Mode;
|
|
|
|
// Concrete steps for Mode template
|
|
CBC_prototype._doEncrypt = function(cipher, m, iv) {
|
|
var blockSizeInBytes = cipher._blocksize * 4;
|
|
|
|
// Encrypt each block
|
|
for (var offset = 0; offset < m.length; offset += blockSizeInBytes) {
|
|
if (offset == 0) {
|
|
// XOR first block using IV
|
|
for (var i = 0; i < blockSizeInBytes; i++)
|
|
m[i] ^= iv[i];
|
|
} else {
|
|
// XOR this block using previous crypted block
|
|
for (var i = 0; i < blockSizeInBytes; i++)
|
|
m[offset + i] ^= m[offset + i - blockSizeInBytes];
|
|
}
|
|
// Encrypt block
|
|
cipher._encryptblock(m, offset);
|
|
}
|
|
};
|
|
CBC_prototype._doDecrypt = function(cipher, c, iv) {
|
|
var blockSizeInBytes = cipher._blocksize * 4;
|
|
|
|
// At the start, the previously crypted block is the IV
|
|
var prevCryptedBlock = iv;
|
|
|
|
// Decrypt each block
|
|
for (var offset = 0; offset < c.length; offset += blockSizeInBytes) {
|
|
// Save this crypted block
|
|
var thisCryptedBlock = c.slice(offset, offset + blockSizeInBytes);
|
|
// Decrypt block
|
|
cipher._decryptblock(c, offset);
|
|
// XOR decrypted block using previous crypted block
|
|
for (var i = 0; i < blockSizeInBytes; i++) {
|
|
c[offset + i] ^= prevCryptedBlock[i];
|
|
}
|
|
prevCryptedBlock = thisCryptedBlock;
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Cipher feed back
|
|
*
|
|
* The cipher output is XORed with the plain text to produce the cipher output,
|
|
* which is then fed back into the cipher to produce a bit pattern to XOR the
|
|
* next block with.
|
|
*
|
|
* This is a stream cipher mode and does not require padding.
|
|
*/
|
|
var CFB = C_mode.CFB = function() {
|
|
// Call parent constructor
|
|
Mode.apply(this, arguments);
|
|
};
|
|
|
|
// Inherit from Mode
|
|
var CFB_prototype = CFB.prototype = new Mode;
|
|
|
|
// Override padding
|
|
CFB_prototype._padding = C_pad.NoPadding;
|
|
|
|
// Concrete steps for Mode template
|
|
CFB_prototype._doEncrypt = function(cipher, m, iv) {
|
|
var blockSizeInBytes = cipher._blocksize * 4,
|
|
keystream = iv.slice(0);
|
|
|
|
// Encrypt each byte
|
|
for (var i = 0; i < m.length; i++) {
|
|
|
|
var j = i % blockSizeInBytes;
|
|
if (j == 0) cipher._encryptblock(keystream, 0);
|
|
|
|
m[i] ^= keystream[j];
|
|
keystream[j] = m[i];
|
|
}
|
|
};
|
|
CFB_prototype._doDecrypt = function(cipher, c, iv) {
|
|
var blockSizeInBytes = cipher._blocksize * 4,
|
|
keystream = iv.slice(0);
|
|
|
|
// Encrypt each byte
|
|
for (var i = 0; i < c.length; i++) {
|
|
|
|
var j = i % blockSizeInBytes;
|
|
if (j == 0) cipher._encryptblock(keystream, 0);
|
|
|
|
var b = c[i];
|
|
c[i] ^= keystream[j];
|
|
keystream[j] = b;
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Output feed back
|
|
*
|
|
* The cipher repeatedly encrypts its own output. The output is XORed with the
|
|
* plain text to produce the cipher text.
|
|
*
|
|
* This is a stream cipher mode and does not require padding.
|
|
*/
|
|
var OFB = C_mode.OFB = function() {
|
|
// Call parent constructor
|
|
Mode.apply(this, arguments);
|
|
};
|
|
|
|
// Inherit from Mode
|
|
var OFB_prototype = OFB.prototype = new Mode;
|
|
|
|
// Override padding
|
|
OFB_prototype._padding = C_pad.NoPadding;
|
|
|
|
// Concrete steps for Mode template
|
|
OFB_prototype._doEncrypt = function(cipher, m, iv) {
|
|
|
|
var blockSizeInBytes = cipher._blocksize * 4,
|
|
keystream = iv.slice(0);
|
|
|
|
// Encrypt each byte
|
|
for (var i = 0; i < m.length; i++) {
|
|
|
|
// Generate keystream
|
|
if (i % blockSizeInBytes == 0)
|
|
cipher._encryptblock(keystream, 0);
|
|
|
|
// Encrypt byte
|
|
m[i] ^= keystream[i % blockSizeInBytes];
|
|
|
|
}
|
|
};
|
|
OFB_prototype._doDecrypt = OFB_prototype._doEncrypt;
|
|
|
|
/**
|
|
* Counter
|
|
* @author Gergely Risko
|
|
*
|
|
* After every block the last 4 bytes of the IV is increased by one
|
|
* with carry and that IV is used for the next block.
|
|
*
|
|
* This is a stream cipher mode and does not require padding.
|
|
*/
|
|
var CTR = C_mode.CTR = function() {
|
|
// Call parent constructor
|
|
Mode.apply(this, arguments);
|
|
};
|
|
|
|
// Inherit from Mode
|
|
var CTR_prototype = CTR.prototype = new Mode;
|
|
|
|
// Override padding
|
|
CTR_prototype._padding = C_pad.NoPadding;
|
|
|
|
CTR_prototype._doEncrypt = function(cipher, m, iv) {
|
|
var blockSizeInBytes = cipher._blocksize * 4;
|
|
var counter = iv.slice(0);
|
|
|
|
for (var i = 0; i < m.length;) {
|
|
// do not lose iv
|
|
var keystream = counter.slice(0);
|
|
|
|
// Generate keystream for next block
|
|
cipher._encryptblock(keystream, 0);
|
|
|
|
// XOR keystream with block
|
|
for (var j = 0; i < m.length && j < blockSizeInBytes; j++, i++) {
|
|
m[i] ^= keystream[j];
|
|
}
|
|
|
|
// Increase counter
|
|
if (++(counter[blockSizeInBytes - 1]) == 256) {
|
|
counter[blockSizeInBytes - 1] = 0;
|
|
if (++(counter[blockSizeInBytes - 2]) == 256) {
|
|
counter[blockSizeInBytes - 2] = 0;
|
|
if (++(counter[blockSizeInBytes - 3]) == 256) {
|
|
counter[blockSizeInBytes - 3] = 0;
|
|
++(counter[blockSizeInBytes - 4]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
CTR_prototype._doDecrypt = CTR_prototype._doEncrypt;
|
|
|
|
})(Crypto);
|
|
|
|
/*!
|
|
* Crypto-JS v2.5.4 PBKDF2.js
|
|
* http://code.google.com/p/crypto-js/
|
|
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
|
|
* http://code.google.com/p/crypto-js/wiki/License
|
|
*/
|
|
(function() {
|
|
|
|
// Shortcuts
|
|
var C = Crypto,
|
|
util = C.util,
|
|
charenc = C.charenc,
|
|
UTF8 = charenc.UTF8,
|
|
Binary = charenc.Binary;
|
|
|
|
C.PBKDF2 = function(password, salt, keylen, options) {
|
|
|
|
// Convert to byte arrays
|
|
if (password.constructor == String) password = UTF8.stringToBytes(password);
|
|
if (salt.constructor == String) salt = UTF8.stringToBytes(salt);
|
|
/* else, assume byte arrays already */
|
|
|
|
// Defaults
|
|
var hasher = options && options.hasher || C.SHA1,
|
|
iterations = options && options.iterations || 1;
|
|
|
|
// Pseudo-random function
|
|
function PRF(password, salt) {
|
|
return C.HMAC(hasher, salt, password, {
|
|
asBytes: true
|
|
});
|
|
}
|
|
|
|
// Generate key
|
|
var derivedKeyBytes = [],
|
|
blockindex = 1;
|
|
while (derivedKeyBytes.length < keylen) {
|
|
var block = PRF(password, salt.concat(util.wordsToBytes([blockindex])));
|
|
for (var u = block, i = 1; i < iterations; i++) {
|
|
u = PRF(password, u);
|
|
for (var j = 0; j < block.length; j++) block[j] ^= u[j];
|
|
}
|
|
derivedKeyBytes = derivedKeyBytes.concat(block);
|
|
blockindex++;
|
|
}
|
|
|
|
// Truncate excess bytes
|
|
derivedKeyBytes.length = keylen;
|
|
|
|
return options && options.asBytes ? derivedKeyBytes :
|
|
options && options.asString ? Binary.bytesToString(derivedKeyBytes) :
|
|
util.bytesToHex(derivedKeyBytes);
|
|
|
|
};
|
|
|
|
})();
|
|
|
|
/*
|
|
* Copyright (c) 2010-2011 Intalio Pte, All Rights Reserved
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
// https://github.com/cheongwy/node-scrypt-js
|
|
(function() {
|
|
|
|
var MAX_VALUE = 2147483647;
|
|
var workerUrl = null;
|
|
|
|
//function scrypt(byte[] passwd, byte[] salt, int N, int r, int p, int dkLen)
|
|
/*
|
|
* N = Cpu cost
|
|
* r = Memory cost
|
|
* p = parallelization cost
|
|
*
|
|
*/
|
|
GLOBAL.Crypto_scrypt = function(passwd, salt, N, r, p, dkLen, callback) {
|
|
if (N == 0 || (N & (N - 1)) != 0) throw Error("N must be > 0 and a power of 2");
|
|
|
|
if (N > MAX_VALUE / 128 / r) throw Error("Parameter N is too large");
|
|
if (r > MAX_VALUE / 128 / p) throw Error("Parameter r is too large");
|
|
|
|
var PBKDF2_opts = {
|
|
iterations: 1,
|
|
hasher: Crypto.SHA256,
|
|
asBytes: true
|
|
};
|
|
|
|
var B = Crypto.PBKDF2(passwd, salt, p * 128 * r, PBKDF2_opts);
|
|
|
|
try {
|
|
var i = 0;
|
|
var worksDone = 0;
|
|
var makeWorker = function() {
|
|
if (!workerUrl) {
|
|
var code = '(' + scryptCore.toString() + ')()';
|
|
var blob;
|
|
try {
|
|
blob = new Blob([code], {
|
|
type: "text/javascript"
|
|
});
|
|
} catch (e) {
|
|
GLOBAL.BlobBuilder = GLOBAL.BlobBuilder || GLOBAL.WebKitBlobBuilder ||
|
|
GLOBAL.MozBlobBuilder ||
|
|
GLOBAL.MSBlobBuilder;
|
|
blob = new BlobBuilder();
|
|
blob.append(code);
|
|
blob = blob.getBlob("text/javascript");
|
|
}
|
|
workerUrl = URL.createObjectURL(blob);
|
|
}
|
|
var worker = new Worker(workerUrl);
|
|
worker.onmessage = function(event) {
|
|
var Bi = event.data[0],
|
|
Bslice = event.data[1];
|
|
worksDone++;
|
|
|
|
if (i < p) {
|
|
worker.postMessage([N, r, p, B, i++]);
|
|
}
|
|
|
|
var length = Bslice.length,
|
|
destPos = Bi * 128 * r,
|
|
srcPos = 0;
|
|
while (length--) {
|
|
B[destPos++] = Bslice[srcPos++];
|
|
}
|
|
|
|
if (worksDone == p) {
|
|
callback(Crypto.PBKDF2(passwd, B, dkLen, PBKDF2_opts));
|
|
}
|
|
};
|
|
return worker;
|
|
};
|
|
var workers = [makeWorker(), makeWorker()];
|
|
workers[0].postMessage([N, r, p, B, i++]);
|
|
if (p > 1) {
|
|
workers[1].postMessage([N, r, p, B, i++]);
|
|
}
|
|
} catch (e) {
|
|
GLOBAL.setTimeout(function() {
|
|
scryptCore();
|
|
callback(Crypto.PBKDF2(passwd, B, dkLen, PBKDF2_opts));
|
|
}, 0);
|
|
}
|
|
|
|
// using this function to enclose everything needed to create a worker (but also invokable directly for synchronous use)
|
|
function scryptCore() {
|
|
var XY = [],
|
|
V = [];
|
|
|
|
if (typeof B === 'undefined') {
|
|
onmessage = function(event) {
|
|
var data = event.data;
|
|
var N = data[0],
|
|
r = data[1],
|
|
p = data[2],
|
|
B = data[3],
|
|
i = data[4];
|
|
|
|
var Bslice = [];
|
|
arraycopy32(B, i * 128 * r, Bslice, 0, 128 * r);
|
|
smix(Bslice, 0, r, N, V, XY);
|
|
|
|
postMessage([i, Bslice]);
|
|
};
|
|
} else {
|
|
for (var i = 0; i < p; i++) {
|
|
smix(B, i * 128 * r, r, N, V, XY);
|
|
}
|
|
}
|
|
|
|
function smix(B, Bi, r, N, V, XY) {
|
|
var Xi = 0;
|
|
var Yi = 128 * r;
|
|
var i;
|
|
|
|
arraycopy32(B, Bi, XY, Xi, Yi);
|
|
|
|
for (i = 0; i < N; i++) {
|
|
arraycopy32(XY, Xi, V, i * Yi, Yi);
|
|
blockmix_salsa8(XY, Xi, Yi, r);
|
|
}
|
|
|
|
for (i = 0; i < N; i++) {
|
|
var j = integerify(XY, Xi, r) & (N - 1);
|
|
blockxor(V, j * Yi, XY, Xi, Yi);
|
|
blockmix_salsa8(XY, Xi, Yi, r);
|
|
}
|
|
|
|
arraycopy32(XY, Xi, B, Bi, Yi);
|
|
}
|
|
|
|
function blockmix_salsa8(BY, Bi, Yi, r) {
|
|
var X = [];
|
|
var i;
|
|
|
|
arraycopy32(BY, Bi + (2 * r - 1) * 64, X, 0, 64);
|
|
|
|
for (i = 0; i < 2 * r; i++) {
|
|
blockxor(BY, i * 64, X, 0, 64);
|
|
salsa20_8(X);
|
|
arraycopy32(X, 0, BY, Yi + (i * 64), 64);
|
|
}
|
|
|
|
for (i = 0; i < r; i++) {
|
|
arraycopy32(BY, Yi + (i * 2) * 64, BY, Bi + (i * 64), 64);
|
|
}
|
|
|
|
for (i = 0; i < r; i++) {
|
|
arraycopy32(BY, Yi + (i * 2 + 1) * 64, BY, Bi + (i + r) * 64, 64);
|
|
}
|
|
}
|
|
|
|
function R(a, b) {
|
|
return (a << b) | (a >>> (32 - b));
|
|
}
|
|
|
|
function salsa20_8(B) {
|
|
var B32 = new Array(32);
|
|
var x = new Array(32);
|
|
var i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
B32[i] = (B[i * 4 + 0] & 0xff) << 0;
|
|
B32[i] |= (B[i * 4 + 1] & 0xff) << 8;
|
|
B32[i] |= (B[i * 4 + 2] & 0xff) << 16;
|
|
B32[i] |= (B[i * 4 + 3] & 0xff) << 24;
|
|
}
|
|
|
|
arraycopy(B32, 0, x, 0, 16);
|
|
|
|
for (i = 8; i > 0; i -= 2) {
|
|
x[4] ^= R(x[0] + x[12], 7);
|
|
x[8] ^= R(x[4] + x[0], 9);
|
|
x[12] ^= R(x[8] + x[4], 13);
|
|
x[0] ^= R(x[12] + x[8], 18);
|
|
x[9] ^= R(x[5] + x[1], 7);
|
|
x[13] ^= R(x[9] + x[5], 9);
|
|
x[1] ^= R(x[13] + x[9], 13);
|
|
x[5] ^= R(x[1] + x[13], 18);
|
|
x[14] ^= R(x[10] + x[6], 7);
|
|
x[2] ^= R(x[14] + x[10], 9);
|
|
x[6] ^= R(x[2] + x[14], 13);
|
|
x[10] ^= R(x[6] + x[2], 18);
|
|
x[3] ^= R(x[15] + x[11], 7);
|
|
x[7] ^= R(x[3] + x[15], 9);
|
|
x[11] ^= R(x[7] + x[3], 13);
|
|
x[15] ^= R(x[11] + x[7], 18);
|
|
x[1] ^= R(x[0] + x[3], 7);
|
|
x[2] ^= R(x[1] + x[0], 9);
|
|
x[3] ^= R(x[2] + x[1], 13);
|
|
x[0] ^= R(x[3] + x[2], 18);
|
|
x[6] ^= R(x[5] + x[4], 7);
|
|
x[7] ^= R(x[6] + x[5], 9);
|
|
x[4] ^= R(x[7] + x[6], 13);
|
|
x[5] ^= R(x[4] + x[7], 18);
|
|
x[11] ^= R(x[10] + x[9], 7);
|
|
x[8] ^= R(x[11] + x[10], 9);
|
|
x[9] ^= R(x[8] + x[11], 13);
|
|
x[10] ^= R(x[9] + x[8], 18);
|
|
x[12] ^= R(x[15] + x[14], 7);
|
|
x[13] ^= R(x[12] + x[15], 9);
|
|
x[14] ^= R(x[13] + x[12], 13);
|
|
x[15] ^= R(x[14] + x[13], 18);
|
|
}
|
|
|
|
for (i = 0; i < 16; ++i) B32[i] = x[i] + B32[i];
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
var bi = i * 4;
|
|
B[bi + 0] = (B32[i] >> 0 & 0xff);
|
|
B[bi + 1] = (B32[i] >> 8 & 0xff);
|
|
B[bi + 2] = (B32[i] >> 16 & 0xff);
|
|
B[bi + 3] = (B32[i] >> 24 & 0xff);
|
|
}
|
|
}
|
|
|
|
function blockxor(S, Si, D, Di, len) {
|
|
var i = len >> 6;
|
|
while (i--) {
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
D[Di++] ^= S[Si++];
|
|
}
|
|
}
|
|
|
|
function integerify(B, bi, r) {
|
|
var n;
|
|
|
|
bi += (2 * r - 1) * 64;
|
|
|
|
n = (B[bi + 0] & 0xff) << 0;
|
|
n |= (B[bi + 1] & 0xff) << 8;
|
|
n |= (B[bi + 2] & 0xff) << 16;
|
|
n |= (B[bi + 3] & 0xff) << 24;
|
|
|
|
return n;
|
|
}
|
|
|
|
function arraycopy(src, srcPos, dest, destPos, length) {
|
|
while (length--) {
|
|
dest[destPos++] = src[srcPos++];
|
|
}
|
|
}
|
|
|
|
function arraycopy32(src, srcPos, dest, destPos, length) {
|
|
var i = length >> 5;
|
|
while (i--) {
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
dest[destPos++] = src[srcPos++];
|
|
}
|
|
}
|
|
} // scryptCore
|
|
}; // GLOBAL.Crypto_scrypt
|
|
})();
|
|
|
|
/*!
|
|
* Crypto-JS v2.5.4 AES.js
|
|
* http://code.google.com/p/crypto-js/
|
|
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
|
|
* http://code.google.com/p/crypto-js/wiki/License
|
|
*/
|
|
(function() {
|
|
|
|
// Shortcuts
|
|
var C = Crypto,
|
|
util = C.util,
|
|
charenc = C.charenc,
|
|
UTF8 = charenc.UTF8;
|
|
|
|
// Precomputed SBOX
|
|
var SBOX = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
|
|
0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
|
|
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
|
|
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
|
|
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
|
|
0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
|
|
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
|
|
0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
|
|
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
|
|
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
|
|
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
|
|
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
|
|
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
|
|
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
|
|
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
|
|
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
|
|
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
|
|
0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
|
|
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
|
|
0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
|
|
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
|
|
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
|
|
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
|
|
0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
|
|
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
|
|
0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
|
|
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
|
|
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
|
|
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
|
|
0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
|
|
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
|
|
0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
|
|
];
|
|
|
|
// Compute inverse SBOX lookup table
|
|
for (var INVSBOX = [], i = 0; i < 256; i++) INVSBOX[SBOX[i]] = i;
|
|
|
|
// Compute multiplication in GF(2^8) lookup tables
|
|
var MULT2 = [],
|
|
MULT3 = [],
|
|
MULT9 = [],
|
|
MULTB = [],
|
|
MULTD = [],
|
|
MULTE = [];
|
|
|
|
function xtime(a, b) {
|
|
for (var result = 0, i = 0; i < 8; i++) {
|
|
if (b & 1) result ^= a;
|
|
var hiBitSet = a & 0x80;
|
|
a = (a << 1) & 0xFF;
|
|
if (hiBitSet) a ^= 0x1b;
|
|
b >>>= 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
for (var i = 0; i < 256; i++) {
|
|
MULT2[i] = xtime(i, 2);
|
|
MULT3[i] = xtime(i, 3);
|
|
MULT9[i] = xtime(i, 9);
|
|
MULTB[i] = xtime(i, 0xB);
|
|
MULTD[i] = xtime(i, 0xD);
|
|
MULTE[i] = xtime(i, 0xE);
|
|
}
|
|
|
|
// Precomputed RCon lookup
|
|
var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
|
|
|
|
// Inner state
|
|
var state = [
|
|
[],
|
|
[],
|
|
[],
|
|
[]
|
|
],
|
|
keylength,
|
|
nrounds,
|
|
keyschedule;
|
|
|
|
var AES = C.AES = {
|
|
|
|
/**
|
|
* Public API
|
|
*/
|
|
|
|
encrypt: function(message, password, options) {
|
|
|
|
options = options || {};
|
|
|
|
// Determine mode
|
|
var mode = options.mode || new C.mode.OFB;
|
|
|
|
// Allow mode to override options
|
|
if (mode.fixOptions) mode.fixOptions(options);
|
|
|
|
var
|
|
|
|
// Convert to bytes if message is a string
|
|
m = (
|
|
message.constructor == String ?
|
|
UTF8.stringToBytes(message) :
|
|
message
|
|
),
|
|
|
|
// Generate random IV
|
|
iv = options.iv || util.randomBytes(AES._blocksize * 4),
|
|
|
|
// Generate key
|
|
k = (
|
|
password.constructor == String ?
|
|
// Derive key from pass-phrase
|
|
C.PBKDF2(password, iv, 32, {
|
|
asBytes: true
|
|
}) :
|
|
// else, assume byte array representing cryptographic key
|
|
password
|
|
);
|
|
|
|
// Encrypt
|
|
AES._init(k);
|
|
mode.encrypt(AES, m, iv);
|
|
|
|
// Return ciphertext
|
|
m = options.iv ? m : iv.concat(m);
|
|
return (options && options.asBytes) ? m : util.bytesToBase64(m);
|
|
|
|
},
|
|
|
|
decrypt: function(ciphertext, password, options) {
|
|
|
|
options = options || {};
|
|
|
|
// Determine mode
|
|
var mode = options.mode || new C.mode.OFB;
|
|
|
|
// Allow mode to override options
|
|
if (mode.fixOptions) mode.fixOptions(options);
|
|
|
|
var
|
|
|
|
// Convert to bytes if ciphertext is a string
|
|
c = (
|
|
ciphertext.constructor == String ?
|
|
util.base64ToBytes(ciphertext) :
|
|
ciphertext
|
|
),
|
|
|
|
// Separate IV and message
|
|
iv = options.iv || c.splice(0, AES._blocksize * 4),
|
|
|
|
// Generate key
|
|
k = (
|
|
password.constructor == String ?
|
|
// Derive key from pass-phrase
|
|
C.PBKDF2(password, iv, 32, {
|
|
asBytes: true
|
|
}) :
|
|
// else, assume byte array representing cryptographic key
|
|
password
|
|
);
|
|
|
|
// Decrypt
|
|
AES._init(k);
|
|
mode.decrypt(AES, c, iv);
|
|
|
|
// Return plaintext
|
|
return (options && options.asBytes) ? c : UTF8.bytesToString(c);
|
|
|
|
},
|
|
|
|
|
|
/**
|
|
* Package private methods and properties
|
|
*/
|
|
|
|
_blocksize: 4,
|
|
|
|
_encryptblock: function(m, offset) {
|
|
|
|
// Set input
|
|
for (var row = 0; row < AES._blocksize; row++) {
|
|
for (var col = 0; col < 4; col++)
|
|
state[row][col] = m[offset + col * 4 + row];
|
|
}
|
|
|
|
// Add round key
|
|
for (var row = 0; row < 4; row++) {
|
|
for (var col = 0; col < 4; col++)
|
|
state[row][col] ^= keyschedule[col][row];
|
|
}
|
|
|
|
for (var round = 1; round < nrounds; round++) {
|
|
|
|
// Sub bytes
|
|
for (var row = 0; row < 4; row++) {
|
|
for (var col = 0; col < 4; col++)
|
|
state[row][col] = SBOX[state[row][col]];
|
|
}
|
|
|
|
// Shift rows
|
|
state[1].push(state[1].shift());
|
|
state[2].push(state[2].shift());
|
|
state[2].push(state[2].shift());
|
|
state[3].unshift(state[3].pop());
|
|
|
|
// Mix columns
|
|
for (var col = 0; col < 4; col++) {
|
|
|
|
var s0 = state[0][col],
|
|
s1 = state[1][col],
|
|
s2 = state[2][col],
|
|
s3 = state[3][col];
|
|
|
|
state[0][col] = MULT2[s0] ^ MULT3[s1] ^ s2 ^ s3;
|
|
state[1][col] = s0 ^ MULT2[s1] ^ MULT3[s2] ^ s3;
|
|
state[2][col] = s0 ^ s1 ^ MULT2[s2] ^ MULT3[s3];
|
|
state[3][col] = MULT3[s0] ^ s1 ^ s2 ^ MULT2[s3];
|
|
|
|
}
|
|
|
|
// Add round key
|
|
for (var row = 0; row < 4; row++) {
|
|
for (var col = 0; col < 4; col++)
|
|
state[row][col] ^= keyschedule[round * 4 + col][row];
|
|
}
|
|
|
|
}
|
|
|
|
// Sub bytes
|
|
for (var row = 0; row < 4; row++) {
|
|
for (var col = 0; col < 4; col++)
|
|
state[row][col] = SBOX[state[row][col]];
|
|
}
|
|
|
|
// Shift rows
|
|
state[1].push(state[1].shift());
|
|
state[2].push(state[2].shift());
|
|
state[2].push(state[2].shift());
|
|
state[3].unshift(state[3].pop());
|
|
|
|
// Add round key
|
|
for (var row = 0; row < 4; row++) {
|
|
for (var col = 0; col < 4; col++)
|
|
state[row][col] ^= keyschedule[nrounds * 4 + col][row];
|
|
}
|
|
|
|
// Set output
|
|
for (var row = 0; row < AES._blocksize; row++) {
|
|
for (var col = 0; col < 4; col++)
|
|
m[offset + col * 4 + row] = state[row][col];
|
|
}
|
|
|
|
},
|
|
|
|
_decryptblock: function(c, offset) {
|
|
|
|
// Set input
|
|
for (var row = 0; row < AES._blocksize; row++) {
|
|
for (var col = 0; col < 4; col++)
|
|
state[row][col] = c[offset + col * 4 + row];
|
|
}
|
|
|
|
// Add round key
|
|
for (var row = 0; row < 4; row++) {
|
|
for (var col = 0; col < 4; col++)
|
|
state[row][col] ^= keyschedule[nrounds * 4 + col][row];
|
|
}
|
|
|
|
for (var round = 1; round < nrounds; round++) {
|
|
|
|
// Inv shift rows
|
|
state[1].unshift(state[1].pop());
|
|
state[2].push(state[2].shift());
|
|
state[2].push(state[2].shift());
|
|
state[3].push(state[3].shift());
|
|
|
|
// Inv sub bytes
|
|
for (var row = 0; row < 4; row++) {
|
|
for (var col = 0; col < 4; col++)
|
|
state[row][col] = INVSBOX[state[row][col]];
|
|
}
|
|
|
|
// Add round key
|
|
for (var row = 0; row < 4; row++) {
|
|
for (var col = 0; col < 4; col++)
|
|
state[row][col] ^= keyschedule[(nrounds - round) * 4 + col][row];
|
|
}
|
|
|
|
// Inv mix columns
|
|
for (var col = 0; col < 4; col++) {
|
|
|
|
var s0 = state[0][col],
|
|
s1 = state[1][col],
|
|
s2 = state[2][col],
|
|
s3 = state[3][col];
|
|
|
|
state[0][col] = MULTE[s0] ^ MULTB[s1] ^ MULTD[s2] ^ MULT9[s3];
|
|
state[1][col] = MULT9[s0] ^ MULTE[s1] ^ MULTB[s2] ^ MULTD[s3];
|
|
state[2][col] = MULTD[s0] ^ MULT9[s1] ^ MULTE[s2] ^ MULTB[s3];
|
|
state[3][col] = MULTB[s0] ^ MULTD[s1] ^ MULT9[s2] ^ MULTE[s3];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Inv shift rows
|
|
state[1].unshift(state[1].pop());
|
|
state[2].push(state[2].shift());
|
|
state[2].push(state[2].shift());
|
|
state[3].push(state[3].shift());
|
|
|
|
// Inv sub bytes
|
|
for (var row = 0; row < 4; row++) {
|
|
for (var col = 0; col < 4; col++)
|
|
state[row][col] = INVSBOX[state[row][col]];
|
|
}
|
|
|
|
// Add round key
|
|
for (var row = 0; row < 4; row++) {
|
|
for (var col = 0; col < 4; col++)
|
|
state[row][col] ^= keyschedule[col][row];
|
|
}
|
|
|
|
// Set output
|
|
for (var row = 0; row < AES._blocksize; row++) {
|
|
for (var col = 0; col < 4; col++)
|
|
c[offset + col * 4 + row] = state[row][col];
|
|
}
|
|
|
|
},
|
|
|
|
|
|
/**
|
|
* Private methods
|
|
*/
|
|
|
|
_init: function(k) {
|
|
keylength = k.length / 4;
|
|
nrounds = keylength + 6;
|
|
AES._keyexpansion(k);
|
|
},
|
|
|
|
// Generate a key schedule
|
|
_keyexpansion: function(k) {
|
|
|
|
keyschedule = [];
|
|
|
|
for (var row = 0; row < keylength; row++) {
|
|
keyschedule[row] = [
|
|
k[row * 4],
|
|
k[row * 4 + 1],
|
|
k[row * 4 + 2],
|
|
k[row * 4 + 3]
|
|
];
|
|
}
|
|
|
|
for (var row = keylength; row < AES._blocksize * (nrounds + 1); row++) {
|
|
|
|
var temp = [
|
|
keyschedule[row - 1][0],
|
|
keyschedule[row - 1][1],
|
|
keyschedule[row - 1][2],
|
|
keyschedule[row - 1][3]
|
|
];
|
|
|
|
if (row % keylength == 0) {
|
|
|
|
// Rot word
|
|
temp.push(temp.shift());
|
|
|
|
// Sub word
|
|
temp[0] = SBOX[temp[0]];
|
|
temp[1] = SBOX[temp[1]];
|
|
temp[2] = SBOX[temp[2]];
|
|
temp[3] = SBOX[temp[3]];
|
|
|
|
temp[0] ^= RCON[row / keylength];
|
|
|
|
} else if (keylength > 6 && row % keylength == 4) {
|
|
|
|
// Sub word
|
|
temp[0] = SBOX[temp[0]];
|
|
temp[1] = SBOX[temp[1]];
|
|
temp[2] = SBOX[temp[2]];
|
|
temp[3] = SBOX[temp[3]];
|
|
|
|
}
|
|
|
|
keyschedule[row] = [
|
|
keyschedule[row - keylength][0] ^ temp[0],
|
|
keyschedule[row - keylength][1] ^ temp[1],
|
|
keyschedule[row - keylength][2] ^ temp[2],
|
|
keyschedule[row - keylength][3] ^ temp[3]
|
|
];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
})();
|
|
|
|
/*
|
|
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
|
|
* Ported to JavaScript by bitaddress.org
|
|
*/
|
|
ec.FieldElementFp.fastLucasSequence = function(p, P, Q, k) {
|
|
// TODO Research and apply "common-multiplicand multiplication here"
|
|
|
|
var n = k.bitLength();
|
|
var s = k.getLowestSetBit();
|
|
var Uh = BigInteger.ONE;
|
|
var Vl = BigInteger.TWO;
|
|
var Vh = P;
|
|
var Ql = BigInteger.ONE;
|
|
var Qh = BigInteger.ONE;
|
|
|
|
for (var j = n - 1; j >= s + 1; --j) {
|
|
Ql = Ql.multiply(Qh).mod(p);
|
|
if (k.testBit(j)) {
|
|
Qh = Ql.multiply(Q).mod(p);
|
|
Uh = Uh.multiply(Vh).mod(p);
|
|
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
|
|
Vh = Vh.multiply(Vh).subtract(Qh.shiftLeft(1)).mod(p);
|
|
} else {
|
|
Qh = Ql;
|
|
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
|
|
Vh = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
|
|
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
|
|
}
|
|
}
|
|
|
|
Ql = Ql.multiply(Qh).mod(p);
|
|
Qh = Ql.multiply(Q).mod(p);
|
|
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
|
|
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
|
|
Ql = Ql.multiply(Qh).mod(p);
|
|
|
|
for (var j = 1; j <= s; ++j) {
|
|
Uh = Uh.multiply(Vl).mod(p);
|
|
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
|
|
Ql = Ql.multiply(Ql).mod(p);
|
|
}
|
|
|
|
return [Uh, Vl];
|
|
};
|
|
|
|
// ----------------
|
|
// ECPointFp constructor
|
|
ec.PointFp = function(curve, x, y, z, compressed) {
|
|
this.curve = curve;
|
|
this.x = x;
|
|
this.y = y;
|
|
// Projective coordinates: either zinv == null or z * zinv == 1
|
|
// z and zinv are just BigIntegers, not fieldElements
|
|
if (z == null) {
|
|
this.z = BigInteger.ONE;
|
|
} else {
|
|
this.z = z;
|
|
}
|
|
this.zinv = null;
|
|
// compression flag
|
|
this.compressed = !!compressed;
|
|
};
|
|
|
|
ec.PointFp.prototype.getX = function() {
|
|
if (this.zinv == null) {
|
|
this.zinv = this.z.modInverse(this.curve.q);
|
|
}
|
|
var r = this.x.toBigInteger().multiply(this.zinv);
|
|
this.curve.reduce(r);
|
|
return this.curve.fromBigInteger(r);
|
|
};
|
|
|
|
ec.PointFp.prototype.getY = function() {
|
|
if (this.zinv == null) {
|
|
this.zinv = this.z.modInverse(this.curve.q);
|
|
}
|
|
var r = this.y.toBigInteger().multiply(this.zinv);
|
|
this.curve.reduce(r);
|
|
return this.curve.fromBigInteger(r);
|
|
};
|
|
|
|
ec.PointFp.prototype.equals = function(other) {
|
|
if (other == this) return true;
|
|
if (this.isInfinity()) return other.isInfinity();
|
|
if (other.isInfinity()) return this.isInfinity();
|
|
var u, v;
|
|
// u = Y2 * Z1 - Y1 * Z2
|
|
u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(
|
|
this.curve.q);
|
|
if (!u.equals(BigInteger.ZERO)) return false;
|
|
// v = X2 * Z1 - X1 * Z2
|
|
v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(
|
|
this.curve.q);
|
|
return v.equals(BigInteger.ZERO);
|
|
};
|
|
|
|
ec.PointFp.prototype.isInfinity = function() {
|
|
if ((this.x == null) && (this.y == null)) return true;
|
|
return this.z.equals(BigInteger.ZERO) && !this.y.toBigInteger().equals(BigInteger.ZERO);
|
|
};
|
|
|
|
ec.PointFp.prototype.negate = function() {
|
|
return new ec.PointFp(this.curve, this.x, this.y.negate(), this.z);
|
|
};
|
|
|
|
ec.PointFp.prototype.add = function(b) {
|
|
if (this.isInfinity()) return b;
|
|
if (b.isInfinity()) return this;
|
|
|
|
// u = Y2 * Z1 - Y1 * Z2
|
|
var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(
|
|
this.curve.q);
|
|
// v = X2 * Z1 - X1 * Z2
|
|
var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(
|
|
this.curve.q);
|
|
|
|
|
|
if (BigInteger.ZERO.equals(v)) {
|
|
if (BigInteger.ZERO.equals(u)) {
|
|
return this.twice(); // this == b, so double
|
|
}
|
|
return this.curve.getInfinity(); // this = -b, so infinity
|
|
}
|
|
|
|
var THREE = new BigInteger("3");
|
|
var x1 = this.x.toBigInteger();
|
|
var y1 = this.y.toBigInteger();
|
|
var x2 = b.x.toBigInteger();
|
|
var y2 = b.y.toBigInteger();
|
|
|
|
var v2 = v.square();
|
|
var v3 = v2.multiply(v);
|
|
var x1v2 = x1.multiply(v2);
|
|
var zu2 = u.square().multiply(this.z);
|
|
|
|
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
|
|
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q);
|
|
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
|
|
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(
|
|
b.z).add(u.multiply(v3)).mod(this.curve.q);
|
|
// z3 = v^3 * z1 * z2
|
|
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q);
|
|
|
|
return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3),
|
|
z3);
|
|
};
|
|
|
|
ec.PointFp.prototype.twice = function() {
|
|
if (this.isInfinity()) return this;
|
|
if (this.y.toBigInteger().signum() == 0) return this.curve.getInfinity();
|
|
|
|
// TODO: optimized handling of constants
|
|
var THREE = new BigInteger("3");
|
|
var x1 = this.x.toBigInteger();
|
|
var y1 = this.y.toBigInteger();
|
|
|
|
var y1z1 = y1.multiply(this.z);
|
|
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q);
|
|
var a = this.curve.a.toBigInteger();
|
|
|
|
// w = 3 * x1^2 + a * z1^2
|
|
var w = x1.square().multiply(THREE);
|
|
if (!BigInteger.ZERO.equals(a)) {
|
|
w = w.add(this.z.square().multiply(a));
|
|
}
|
|
w = w.mod(this.curve.q);
|
|
//this.curve.reduce(w);
|
|
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
|
|
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(
|
|
this.curve.q);
|
|
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
|
|
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(
|
|
y1sqz1).subtract(w.square().multiply(w)).mod(this.curve.q);
|
|
// z3 = 8 * (y1 * z1)^3
|
|
var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q);
|
|
|
|
return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3),
|
|
z3);
|
|
};
|
|
|
|
// Simple NAF (Non-Adjacent Form) multiplication algorithm
|
|
// TODO: modularize the multiplication algorithm
|
|
ec.PointFp.prototype.multiply = function(k) {
|
|
if (this.isInfinity()) return this;
|
|
if (k.signum() == 0) return this.curve.getInfinity();
|
|
|
|
var e = k;
|
|
var h = e.multiply(new BigInteger("3"));
|
|
|
|
var neg = this.negate();
|
|
var R = this;
|
|
|
|
var i;
|
|
for (i = h.bitLength() - 2; i > 0; --i) {
|
|
R = R.twice();
|
|
|
|
var hBit = h.testBit(i);
|
|
var eBit = e.testBit(i);
|
|
|
|
if (hBit != eBit) {
|
|
R = R.add(hBit ? this : neg);
|
|
}
|
|
}
|
|
|
|
return R;
|
|
};
|
|
|
|
// Compute this*j + x*k (simultaneous multiplication)
|
|
ec.PointFp.prototype.multiplyTwo = function(j, x, k) {
|
|
var i;
|
|
if (j.bitLength() > k.bitLength())
|
|
i = j.bitLength() - 1;
|
|
else
|
|
i = k.bitLength() - 1;
|
|
|
|
var R = this.curve.getInfinity();
|
|
var both = this.add(x);
|
|
while (i >= 0) {
|
|
R = R.twice();
|
|
if (j.testBit(i)) {
|
|
if (k.testBit(i)) {
|
|
R = R.add(both);
|
|
} else {
|
|
R = R.add(this);
|
|
}
|
|
} else {
|
|
if (k.testBit(i)) {
|
|
R = R.add(x);
|
|
}
|
|
}
|
|
--i;
|
|
}
|
|
|
|
return R;
|
|
};
|
|
|
|
// patched by bitaddress.org and Casascius for use with Bitcoin.ECKey
|
|
// patched by coretechs to support compressed public keys
|
|
ec.PointFp.prototype.getEncoded = function(compressed) {
|
|
var x = this.getX().toBigInteger();
|
|
var y = this.getY().toBigInteger();
|
|
var len = 32; // integerToBytes will zero pad if integer is less than 32 bytes. 32 bytes length is required by the Bitcoin protocol.
|
|
var enc = ec.integerToBytes(x, len);
|
|
|
|
// when compressed prepend byte depending if y point is even or odd
|
|
if (compressed) {
|
|
if (y.isEven()) {
|
|
enc.unshift(0x02);
|
|
} else {
|
|
enc.unshift(0x03);
|
|
}
|
|
} else {
|
|
enc.unshift(0x04);
|
|
enc = enc.concat(ec.integerToBytes(y, len)); // uncompressed public key appends the bytes of the y point
|
|
}
|
|
return enc;
|
|
};
|
|
|
|
ec.PointFp.decodeFrom = function(curve, enc) {
|
|
var type = enc[0];
|
|
var dataLen = enc.length - 1;
|
|
|
|
// Extract x and y as byte arrays
|
|
var xBa = enc.slice(1, 1 + dataLen / 2);
|
|
var yBa = enc.slice(1 + dataLen / 2, 1 + dataLen);
|
|
|
|
// Prepend zero byte to prevent interpretation as negative integer
|
|
xBa.unshift(0);
|
|
yBa.unshift(0);
|
|
|
|
// Convert to BigIntegers
|
|
var x = new BigInteger(xBa);
|
|
var y = new BigInteger(yBa);
|
|
|
|
// Return point
|
|
return new ec.PointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y));
|
|
};
|
|
|
|
ec.PointFp.prototype.add2D = function(b) {
|
|
if (this.isInfinity()) return b;
|
|
if (b.isInfinity()) return this;
|
|
|
|
if (this.x.equals(b.x)) {
|
|
if (this.y.equals(b.y)) {
|
|
// this = b, i.e. this must be doubled
|
|
return this.twice();
|
|
}
|
|
// this = -b, i.e. the result is the point at infinity
|
|
return this.curve.getInfinity();
|
|
}
|
|
|
|
var x_x = b.x.subtract(this.x);
|
|
var y_y = b.y.subtract(this.y);
|
|
var gamma = y_y.divide(x_x);
|
|
|
|
var x3 = gamma.square().subtract(this.x).subtract(b.x);
|
|
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
|
|
|
|
return new ec.PointFp(this.curve, x3, y3);
|
|
};
|
|
|
|
ec.PointFp.prototype.twice2D = function() {
|
|
if (this.isInfinity()) return this;
|
|
if (this.y.toBigInteger().signum() == 0) {
|
|
// if y1 == 0, then (x1, y1) == (x1, -y1)
|
|
// and hence this = -this and thus 2(x1, y1) == infinity
|
|
return this.curve.getInfinity();
|
|
}
|
|
|
|
var TWO = this.curve.fromBigInteger(BigInteger.valueOf(2));
|
|
var THREE = this.curve.fromBigInteger(BigInteger.valueOf(3));
|
|
var gamma = this.x.square().multiply(THREE).add(this.curve.a).divide(this.y.multiply(TWO));
|
|
|
|
var x3 = gamma.square().subtract(this.x.multiply(TWO));
|
|
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
|
|
|
|
return new ec.PointFp(this.curve, x3, y3);
|
|
};
|
|
|
|
ec.PointFp.prototype.multiply2D = function(k) {
|
|
if (this.isInfinity()) return this;
|
|
if (k.signum() == 0) return this.curve.getInfinity();
|
|
|
|
var e = k;
|
|
var h = e.multiply(new BigInteger("3"));
|
|
|
|
var neg = this.negate();
|
|
var R = this;
|
|
|
|
var i;
|
|
for (i = h.bitLength() - 2; i > 0; --i) {
|
|
R = R.twice();
|
|
|
|
var hBit = h.testBit(i);
|
|
var eBit = e.testBit(i);
|
|
|
|
if (hBit != eBit) {
|
|
R = R.add2D(hBit ? this : neg);
|
|
}
|
|
}
|
|
|
|
return R;
|
|
};
|
|
|
|
ec.PointFp.prototype.isOnCurve = function() {
|
|
var x = this.getX().toBigInteger();
|
|
var y = this.getY().toBigInteger();
|
|
var a = this.curve.getA().toBigInteger();
|
|
var b = this.curve.getB().toBigInteger();
|
|
var n = this.curve.getQ();
|
|
var lhs = y.multiply(y).mod(n);
|
|
var rhs = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(n);
|
|
return lhs.equals(rhs);
|
|
};
|
|
|
|
ec.PointFp.prototype.toString = function() {
|
|
return '(' + this.getX().toBigInteger().toString() + ',' + this.getY().toBigInteger().toString() +
|
|
')';
|
|
};
|
|
|
|
/**
|
|
* Validate an elliptic curve point.
|
|
*
|
|
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
|
|
*/
|
|
ec.PointFp.prototype.validate = function() {
|
|
var n = this.curve.getQ();
|
|
|
|
// Check Q != O
|
|
if (this.isInfinity()) {
|
|
throw new Error("Point is at infinity.");
|
|
}
|
|
|
|
// Check coordinate bounds
|
|
var x = this.getX().toBigInteger();
|
|
var y = this.getY().toBigInteger();
|
|
if (x.compareTo(BigInteger.ONE) < 0 || x.compareTo(n.subtract(BigInteger.ONE)) > 0) {
|
|
throw new Error('x coordinate out of bounds');
|
|
}
|
|
if (y.compareTo(BigInteger.ONE) < 0 || y.compareTo(n.subtract(BigInteger.ONE)) > 0) {
|
|
throw new Error('y coordinate out of bounds');
|
|
}
|
|
|
|
// Check y^2 = x^3 + ax + b (mod n)
|
|
if (!this.isOnCurve()) {
|
|
throw new Error("Point is not on the curve.");
|
|
}
|
|
|
|
// Check nQ = 0 (Q is a scalar multiple of G)
|
|
if (this.multiply(n).isInfinity()) {
|
|
// TODO: This check doesn't work - fix.
|
|
throw new Error("Point is not a scalar multiple of G.");
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
|
|
|
|
|
|
// ----------------
|
|
// ECCurveFp constructor
|
|
ec.CurveFp = function(q, a, b) {
|
|
this.q = q;
|
|
this.a = this.fromBigInteger(a);
|
|
this.b = this.fromBigInteger(b);
|
|
this.infinity = new ec.PointFp(this, null, null);
|
|
this.reducer = new Barrett(this.q);
|
|
}
|
|
|
|
ec.CurveFp.prototype.getQ = function() {
|
|
return this.q;
|
|
};
|
|
|
|
ec.CurveFp.prototype.getA = function() {
|
|
return this.a;
|
|
};
|
|
|
|
ec.CurveFp.prototype.getB = function() {
|
|
return this.b;
|
|
};
|
|
|
|
ec.CurveFp.prototype.equals = function(other) {
|
|
if (other == this) return true;
|
|
return (this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b));
|
|
};
|
|
|
|
ec.CurveFp.prototype.getInfinity = function() {
|
|
return this.infinity;
|
|
};
|
|
|
|
ec.CurveFp.prototype.fromBigInteger = function(x) {
|
|
return new ec.FieldElementFp(this.q, x);
|
|
};
|
|
|
|
ec.CurveFp.prototype.reduce = function(x) {
|
|
this.reducer.reduce(x);
|
|
};
|
|
|
|
// for now, work with hex strings because they're easier in JS
|
|
// compressed support added by bitaddress.org
|
|
ec.CurveFp.prototype.decodePointHex = function(s) {
|
|
var firstByte = parseInt(s.substr(0, 2), 16);
|
|
switch (firstByte) { // first byte
|
|
case 0:
|
|
return this.infinity;
|
|
case 2: // compressed
|
|
case 3: // compressed
|
|
var yTilde = firstByte & 1;
|
|
var xHex = s.substr(2, s.length - 2);
|
|
var X1 = new BigInteger(xHex, 16);
|
|
return this.decompressPoint(yTilde, X1);
|
|
case 4: // uncompressed
|
|
case 6: // hybrid
|
|
case 7: // hybrid
|
|
var len = (s.length - 2) / 2;
|
|
var xHex = s.substr(2, len);
|
|
var yHex = s.substr(len + 2, len);
|
|
|
|
return new ec.PointFp(this,
|
|
this.fromBigInteger(new BigInteger(xHex, 16)),
|
|
this.fromBigInteger(new BigInteger(yHex, 16)));
|
|
|
|
default: // unsupported
|
|
return null;
|
|
}
|
|
};
|
|
|
|
ec.CurveFp.prototype.encodePointHex = function(p) {
|
|
if (p.isInfinity()) return "00";
|
|
var xHex = p.getX().toBigInteger().toString(16);
|
|
var yHex = p.getY().toBigInteger().toString(16);
|
|
var oLen = this.getQ().toString(16).length;
|
|
if ((oLen % 2) != 0) oLen++;
|
|
while (xHex.length < oLen) {
|
|
xHex = "0" + xHex;
|
|
}
|
|
while (yHex.length < oLen) {
|
|
yHex = "0" + yHex;
|
|
}
|
|
return "04" + xHex + yHex;
|
|
};
|
|
|
|
/*
|
|
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
|
|
* Ported to JavaScript by bitaddress.org
|
|
*
|
|
* Number yTilde
|
|
* BigInteger X1
|
|
*/
|
|
ec.CurveFp.prototype.decompressPoint = function(yTilde, X1) {
|
|
var x = this.fromBigInteger(X1);
|
|
var alpha = x.multiply(x.square().add(this.getA())).add(this.getB());
|
|
var beta = alpha.sqrt();
|
|
// if we can't find a sqrt we haven't got a point on the curve - run!
|
|
if (beta == null) throw new Error("Invalid point compression");
|
|
var betaValue = beta.toBigInteger();
|
|
var bit0 = betaValue.testBit(0) ? 1 : 0;
|
|
if (bit0 != yTilde) {
|
|
// Use the other root
|
|
beta = this.fromBigInteger(this.getQ().subtract(betaValue));
|
|
}
|
|
return new ec.PointFp(this, x, beta, null, true);
|
|
};
|
|
|
|
|
|
ec.fromHex = function(s) {
|
|
return new BigInteger(s, 16);
|
|
};
|
|
|
|
ec.integerToBytes = function(i, len) {
|
|
var bytes = i.toByteArrayUnsigned();
|
|
if (len < bytes.length) {
|
|
bytes = bytes.slice(bytes.length - len);
|
|
} else
|
|
while (len > bytes.length) {
|
|
bytes.unshift(0);
|
|
}
|
|
return bytes;
|
|
};
|
|
|
|
|
|
// Named EC curves
|
|
// ----------------
|
|
// X9ECParameters constructor
|
|
ec.X9Parameters = function(curve, g, n, h) {
|
|
this.curve = curve;
|
|
this.g = g;
|
|
this.n = n;
|
|
this.h = h;
|
|
}
|
|
ec.X9Parameters.prototype.getCurve = function() {
|
|
return this.curve;
|
|
};
|
|
ec.X9Parameters.prototype.getG = function() {
|
|
return this.g;
|
|
};
|
|
ec.X9Parameters.prototype.getN = function() {
|
|
return this.n;
|
|
};
|
|
ec.X9Parameters.prototype.getH = function() {
|
|
return this.h;
|
|
};
|
|
|
|
// secp256k1 is the Curve used by Bitcoin
|
|
ec.secNamedCurves = {
|
|
// used by Bitcoin
|
|
"secp256k1": function() {
|
|
// p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1
|
|
var p = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F");
|
|
var a = BigInteger.ZERO;
|
|
var b = ec.fromHex("7");
|
|
var n = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141");
|
|
var h = BigInteger.ONE;
|
|
var curve = new ec.CurveFp(p, a, b);
|
|
var G = curve.decodePointHex("04" +
|
|
"79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798" +
|
|
"483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8");
|
|
return new ec.X9Parameters(curve, G, n, h);
|
|
}
|
|
};
|
|
|
|
// secp256k1 called by Bitcoin's ECKEY
|
|
ec.getSECCurveByName = function(name) {
|
|
if (ec.secNamedCurves[name] == undefined) return null;
|
|
return ec.secNamedCurves[name]();
|
|
}
|
|
})(typeof global !== "undefined" ? global : window);
|
|
|
|
//bitTrx.js
|
|
(function(GLOBAL) {
|
|
|
|
var bitjs = GLOBAL.bitjs = function() {};
|
|
|
|
function ascii_to_hexa(str) {
|
|
var arr1 = [];
|
|
for (var n = 0, l = str.length; n < l; n++) {
|
|
var hex = Number(str.charCodeAt(n)).toString(16);
|
|
arr1.push(hex);
|
|
}
|
|
return arr1.join('');
|
|
}
|
|
|
|
/* public vars */
|
|
bitjs.pub = 0x23; // flochange - changed the prefix to FLO Mainnet PublicKey Prefix 0x23
|
|
bitjs.priv = 0xa3; //flochange - changed the prefix to FLO Mainnet Private key prefix 0xa3
|
|
bitjs.compressed = false;
|
|
|
|
/* provide a privkey and return an WIF */
|
|
bitjs.privkey2wif = function(h) {
|
|
var r = Crypto.util.hexToBytes(h);
|
|
|
|
if (bitjs.compressed == true) {
|
|
r.push(0x01);
|
|
}
|
|
|
|
r.unshift(bitjs.priv);
|
|
var hash = Crypto.SHA256(Crypto.SHA256(r, {
|
|
asBytes: true
|
|
}), {
|
|
asBytes: true
|
|
});
|
|
var checksum = hash.slice(0, 4);
|
|
|
|
return B58.encode(r.concat(checksum));
|
|
}
|
|
|
|
/* convert a wif key back to a private key */
|
|
bitjs.wif2privkey = function(wif) {
|
|
var compressed = false;
|
|
var decode = B58.decode(wif);
|
|
var key = decode.slice(0, decode.length - 4);
|
|
key = key.slice(1, key.length);
|
|
if (key.length >= 33 && key[key.length - 1] == 0x01) {
|
|
key = key.slice(0, key.length - 1);
|
|
compressed = true;
|
|
}
|
|
return {
|
|
'privkey': Crypto.util.bytesToHex(key),
|
|
'compressed': compressed
|
|
};
|
|
}
|
|
|
|
/* convert a wif to a pubkey */
|
|
bitjs.wif2pubkey = function(wif) {
|
|
var compressed = bitjs.compressed;
|
|
var r = bitjs.wif2privkey(wif);
|
|
bitjs.compressed = r['compressed'];
|
|
var pubkey = bitjs.newPubkey(r['privkey']);
|
|
bitjs.compressed = compressed;
|
|
return {
|
|
'pubkey': pubkey,
|
|
'compressed': r['compressed']
|
|
};
|
|
}
|
|
|
|
/* convert a wif to a address */
|
|
bitjs.wif2address = function(wif) {
|
|
var r = bitjs.wif2pubkey(wif);
|
|
return {
|
|
'address': bitjs.pubkey2address(r['pubkey']),
|
|
'compressed': r['compressed']
|
|
};
|
|
}
|
|
|
|
/* generate a public key from a private key */
|
|
bitjs.newPubkey = function(hash) {
|
|
var privateKeyBigInt = BigInteger.fromByteArrayUnsigned(Crypto.util.hexToBytes(hash));
|
|
var curve = EllipticCurve.getSECCurveByName("secp256k1");
|
|
|
|
var curvePt = curve.getG().multiply(privateKeyBigInt);
|
|
var x = curvePt.getX().toBigInteger();
|
|
var y = curvePt.getY().toBigInteger();
|
|
|
|
var publicKeyBytes = EllipticCurve.integerToBytes(x, 32);
|
|
publicKeyBytes = publicKeyBytes.concat(EllipticCurve.integerToBytes(y, 32));
|
|
publicKeyBytes.unshift(0x04);
|
|
|
|
if (bitjs.compressed == true) {
|
|
var publicKeyBytesCompressed = EllipticCurve.integerToBytes(x, 32)
|
|
if (y.isEven()) {
|
|
publicKeyBytesCompressed.unshift(0x02)
|
|
} else {
|
|
publicKeyBytesCompressed.unshift(0x03)
|
|
}
|
|
return Crypto.util.bytesToHex(publicKeyBytesCompressed);
|
|
} else {
|
|
return Crypto.util.bytesToHex(publicKeyBytes);
|
|
}
|
|
}
|
|
|
|
/* provide a public key and return address */
|
|
bitjs.pubkey2address = function(h, byte) {
|
|
var r = ripemd160(Crypto.SHA256(Crypto.util.hexToBytes(h), {
|
|
asBytes: true
|
|
}));
|
|
r.unshift(byte || bitjs.pub);
|
|
var hash = Crypto.SHA256(Crypto.SHA256(r, {
|
|
asBytes: true
|
|
}), {
|
|
asBytes: true
|
|
});
|
|
var checksum = hash.slice(0, 4);
|
|
return B58.encode(r.concat(checksum));
|
|
}
|
|
|
|
bitjs.transaction = function() {
|
|
var btrx = {};
|
|
btrx.version = 2; //flochange look at this version
|
|
btrx.inputs = [];
|
|
btrx.outputs = [];
|
|
btrx.locktime = 0;
|
|
btrx.floData = ""; //flochange .. look at this
|
|
|
|
|
|
btrx.addinput = function(txid, index, scriptPubKey, sequence) {
|
|
var o = {};
|
|
o.outpoint = {
|
|
'hash': txid,
|
|
'index': index
|
|
};
|
|
//o.script = []; Signature and Public Key should be added after singning
|
|
o.script = Crypto.util.hexToBytes(scriptPubKey); //push previous output pubkey script
|
|
o.sequence = sequence || ((btrx.locktime == 0) ? 4294967295 : 0);
|
|
return this.inputs.push(o);
|
|
}
|
|
|
|
btrx.addoutput = function(address, value) {
|
|
var o = {};
|
|
var buf = [];
|
|
var addrDecoded = btrx.addressDecode(address);
|
|
o.value = new BigInteger('' + Math.round((value * 1) * 1e8), 10);
|
|
buf.push(118); //OP_DUP
|
|
buf.push(169); //OP_HASH160
|
|
buf.push(addrDecoded.length);
|
|
buf = buf.concat(addrDecoded); // address in bytes
|
|
buf.push(136); //OP_EQUALVERIFY
|
|
buf.push(172); // OP_CHECKSIG
|
|
o.script = buf;
|
|
return this.outputs.push(o);
|
|
}
|
|
|
|
|
|
btrx.addflodata = function(txcomments) { // flochange - this whole function needs to be done
|
|
this.floData = txcomments;
|
|
return this.floData; //flochange .. returning the txcomments -- check if the function return will assign
|
|
}
|
|
|
|
|
|
// Only standard addresses
|
|
btrx.addressDecode = function(address) {
|
|
var bytes = B58.decode(address);
|
|
var front = bytes.slice(0, bytes.length - 4);
|
|
var back = bytes.slice(bytes.length - 4);
|
|
var checksum = Crypto.SHA256(Crypto.SHA256(front, {
|
|
asBytes: true
|
|
}), {
|
|
asBytes: true
|
|
}).slice(0, 4);
|
|
if (checksum + "" == back + "") {
|
|
return front.slice(1);
|
|
}
|
|
}
|
|
|
|
/* generate the transaction hash to sign from a transaction input */
|
|
btrx.transactionHash = function(index, sigHashType) {
|
|
|
|
var clone = bitjs.clone(this);
|
|
var shType = sigHashType || 1;
|
|
|
|
/* black out all other ins, except this one */
|
|
for (var i = 0; i < clone.inputs.length; i++) {
|
|
if (index != i) {
|
|
clone.inputs[i].script = [];
|
|
}
|
|
}
|
|
|
|
|
|
if ((clone.inputs) && clone.inputs[index]) {
|
|
|
|
/* SIGHASH : For more info on sig hashs see https://en.bitcoin.it/wiki/OP_CHECKSIG
|
|
and https://bitcoin.org/en/developer-guide#signature-hash-type */
|
|
|
|
if (shType == 1) {
|
|
//SIGHASH_ALL 0x01
|
|
|
|
} else if (shType == 2) {
|
|
//SIGHASH_NONE 0x02
|
|
clone.outputs = [];
|
|
for (var i = 0; i < clone.inputs.length; i++) {
|
|
if (index != i) {
|
|
clone.inputs[i].sequence = 0;
|
|
}
|
|
}
|
|
|
|
} else if (shType == 3) {
|
|
|
|
//SIGHASH_SINGLE 0x03
|
|
clone.outputs.length = index + 1;
|
|
|
|
for (var i = 0; i < index; i++) {
|
|
clone.outputs[i].value = -1;
|
|
clone.outputs[i].script = [];
|
|
}
|
|
|
|
for (var i = 0; i < clone.inputs.length; i++) {
|
|
if (index != i) {
|
|
clone.inputs[i].sequence = 0;
|
|
}
|
|
}
|
|
|
|
} else if (shType >= 128) {
|
|
//SIGHASH_ANYONECANPAY 0x80
|
|
clone.inputs = [clone.inputs[index]];
|
|
|
|
if (shType == 129) {
|
|
// SIGHASH_ALL + SIGHASH_ANYONECANPAY
|
|
|
|
} else if (shType == 130) {
|
|
// SIGHASH_NONE + SIGHASH_ANYONECANPAY
|
|
clone.outputs = [];
|
|
|
|
} else if (shType == 131) {
|
|
// SIGHASH_SINGLE + SIGHASH_ANYONECANPAY
|
|
clone.outputs.length = index + 1;
|
|
for (var i = 0; i < index; i++) {
|
|
clone.outputs[i].value = -1;
|
|
clone.outputs[i].script = [];
|
|
}
|
|
}
|
|
}
|
|
|
|
var buffer = Crypto.util.hexToBytes(clone.serialize());
|
|
buffer = buffer.concat(bitjs.numToBytes(parseInt(shType), 4));
|
|
var hash = Crypto.SHA256(buffer, {
|
|
asBytes: true
|
|
});
|
|
var r = Crypto.util.bytesToHex(Crypto.SHA256(hash, {
|
|
asBytes: true
|
|
}));
|
|
return r;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* generate a signature from a transaction hash */
|
|
btrx.transactionSig = function(index, wif, sigHashType, txhash) {
|
|
|
|
function serializeSig(r, s) {
|
|
var rBa = r.toByteArraySigned();
|
|
var sBa = s.toByteArraySigned();
|
|
|
|
var sequence = [];
|
|
sequence.push(0x02); // INTEGER
|
|
sequence.push(rBa.length);
|
|
sequence = sequence.concat(rBa);
|
|
|
|
sequence.push(0x02); // INTEGER
|
|
sequence.push(sBa.length);
|
|
sequence = sequence.concat(sBa);
|
|
|
|
sequence.unshift(sequence.length);
|
|
sequence.unshift(0x30); // SEQUENCE
|
|
|
|
return sequence;
|
|
}
|
|
|
|
var shType = sigHashType || 1;
|
|
var hash = txhash || Crypto.util.hexToBytes(this.transactionHash(index, shType));
|
|
|
|
if (hash) {
|
|
var curve = EllipticCurve.getSECCurveByName("secp256k1");
|
|
var key = bitjs.wif2privkey(wif);
|
|
var priv = BigInteger.fromByteArrayUnsigned(Crypto.util.hexToBytes(key['privkey']));
|
|
var n = curve.getN();
|
|
var e = BigInteger.fromByteArrayUnsigned(hash);
|
|
var badrs = 0
|
|
do {
|
|
var k = this.deterministicK(wif, hash, badrs);
|
|
var G = curve.getG();
|
|
var Q = G.multiply(k);
|
|
var r = Q.getX().toBigInteger().mod(n);
|
|
var s = k.modInverse(n).multiply(e.add(priv.multiply(r))).mod(n);
|
|
badrs++
|
|
} while (r.compareTo(BigInteger.ZERO) <= 0 || s.compareTo(BigInteger.ZERO) <= 0);
|
|
|
|
// Force lower s values per BIP62
|
|
var halfn = n.shiftRight(1);
|
|
if (s.compareTo(halfn) > 0) {
|
|
s = n.subtract(s);
|
|
};
|
|
|
|
var sig = serializeSig(r, s);
|
|
sig.push(parseInt(shType, 10));
|
|
|
|
return Crypto.util.bytesToHex(sig);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// https://tools.ietf.org/html/rfc6979#section-3.2
|
|
btrx.deterministicK = function(wif, hash, badrs) {
|
|
// if r or s were invalid when this function was used in signing,
|
|
// we do not want to actually compute r, s here for efficiency, so,
|
|
// we can increment badrs. explained at end of RFC 6979 section 3.2
|
|
|
|
// wif is b58check encoded wif privkey.
|
|
// hash is byte array of transaction digest.
|
|
// badrs is used only if the k resulted in bad r or s.
|
|
|
|
// some necessary things out of the way for clarity.
|
|
badrs = badrs || 0;
|
|
var key = bitjs.wif2privkey(wif);
|
|
var x = Crypto.util.hexToBytes(key['privkey'])
|
|
var curve = EllipticCurve.getSECCurveByName("secp256k1");
|
|
var N = curve.getN();
|
|
|
|
// Step: a
|
|
// hash is a byteArray of the message digest. so h1 == hash in our case
|
|
|
|
// Step: b
|
|
var v = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1
|
|
];
|
|
|
|
// Step: c
|
|
var k = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0
|
|
];
|
|
|
|
// Step: d
|
|
k = Crypto.HMAC(Crypto.SHA256, v.concat([0]).concat(x).concat(hash), k, {
|
|
asBytes: true
|
|
});
|
|
|
|
// Step: e
|
|
v = Crypto.HMAC(Crypto.SHA256, v, k, {
|
|
asBytes: true
|
|
});
|
|
|
|
// Step: f
|
|
k = Crypto.HMAC(Crypto.SHA256, v.concat([1]).concat(x).concat(hash), k, {
|
|
asBytes: true
|
|
});
|
|
|
|
// Step: g
|
|
v = Crypto.HMAC(Crypto.SHA256, v, k, {
|
|
asBytes: true
|
|
});
|
|
|
|
// Step: h1
|
|
var T = [];
|
|
|
|
// Step: h2 (since we know tlen = qlen, just copy v to T.)
|
|
v = Crypto.HMAC(Crypto.SHA256, v, k, {
|
|
asBytes: true
|
|
});
|
|
T = v;
|
|
|
|
// Step: h3
|
|
var KBigInt = BigInteger.fromByteArrayUnsigned(T);
|
|
|
|
// loop if KBigInt is not in the range of [1, N-1] or if badrs needs incrementing.
|
|
var i = 0
|
|
while (KBigInt.compareTo(N) >= 0 || KBigInt.compareTo(BigInteger.ZERO) <= 0 || i <
|
|
badrs) {
|
|
k = Crypto.HMAC(Crypto.SHA256, v.concat([0]), k, {
|
|
asBytes: true
|
|
});
|
|
v = Crypto.HMAC(Crypto.SHA256, v, k, {
|
|
asBytes: true
|
|
});
|
|
v = Crypto.HMAC(Crypto.SHA256, v, k, {
|
|
asBytes: true
|
|
});
|
|
T = v;
|
|
KBigInt = BigInteger.fromByteArrayUnsigned(T);
|
|
i++
|
|
};
|
|
|
|
return KBigInt;
|
|
};
|
|
|
|
/* sign a "standard" input */
|
|
btrx.signinput = function(index, wif, sigHashType) {
|
|
var key = bitjs.wif2pubkey(wif);
|
|
var shType = sigHashType || 1;
|
|
var signature = this.transactionSig(index, wif, shType);
|
|
var buf = [];
|
|
var sigBytes = Crypto.util.hexToBytes(signature);
|
|
buf.push(sigBytes.length);
|
|
buf = buf.concat(sigBytes);
|
|
var pubKeyBytes = Crypto.util.hexToBytes(key['pubkey']);
|
|
buf.push(pubKeyBytes.length);
|
|
buf = buf.concat(pubKeyBytes);
|
|
this.inputs[index].script = buf;
|
|
return true;
|
|
}
|
|
|
|
/* sign inputs */
|
|
btrx.sign = function(wif, sigHashType) {
|
|
var shType = sigHashType || 1;
|
|
for (var i = 0; i < this.inputs.length; i++) {
|
|
this.signinput(i, wif, shType);
|
|
}
|
|
return this.serialize();
|
|
}
|
|
|
|
|
|
/* serialize a transaction */
|
|
btrx.serialize = function() {
|
|
var buffer = [];
|
|
buffer = buffer.concat(bitjs.numToBytes(parseInt(this.version), 4));
|
|
|
|
buffer = buffer.concat(bitjs.numToVarInt(this.inputs.length));
|
|
for (var i = 0; i < this.inputs.length; i++) {
|
|
var txin = this.inputs[i];
|
|
buffer = buffer.concat(Crypto.util.hexToBytes(txin.outpoint.hash).reverse());
|
|
buffer = buffer.concat(bitjs.numToBytes(parseInt(txin.outpoint.index), 4));
|
|
var scriptBytes = txin.script;
|
|
buffer = buffer.concat(bitjs.numToVarInt(scriptBytes.length));
|
|
buffer = buffer.concat(scriptBytes);
|
|
buffer = buffer.concat(bitjs.numToBytes(parseInt(txin.sequence), 4));
|
|
|
|
}
|
|
buffer = buffer.concat(bitjs.numToVarInt(this.outputs.length));
|
|
|
|
for (var i = 0; i < this.outputs.length; i++) {
|
|
var txout = this.outputs[i];
|
|
buffer = buffer.concat(bitjs.numToBytes(txout.value, 8));
|
|
var scriptBytes = txout.script;
|
|
buffer = buffer.concat(bitjs.numToVarInt(scriptBytes.length));
|
|
buffer = buffer.concat(scriptBytes);
|
|
}
|
|
|
|
buffer = buffer.concat(bitjs.numToBytes(parseInt(this.locktime), 4));
|
|
var flohex = ascii_to_hexa(this.floData);
|
|
var floDataCount = this.floData.length;
|
|
var floDataCountString;
|
|
//flochange -- creating unique data character count logic for floData. This string is prefixed before actual floData string in Raw Transaction
|
|
if (floDataCount < 16) {
|
|
floDataCountString = floDataCount.toString(16);
|
|
floDataCountString = "0" + floDataCountString;
|
|
} else if (floDataCount < 253) {
|
|
floDataCountString = floDataCount.toString(16);
|
|
} else if (floDataCount <= 1040) {
|
|
floDataCountAdjusted = (floDataCount - 253) + parseInt("0xfd00fd");
|
|
floDataCountStringAdjusted = floDataCountAdjusted.toString(16);
|
|
floDataCountString = floDataCountStringAdjusted.substr(0, 2) + floDataCountStringAdjusted.substr(4, 2) + floDataCountStringAdjusted.substr(2, 2);
|
|
} else {
|
|
floDataCountString = "Character Limit Exceeded";
|
|
}
|
|
|
|
|
|
return Crypto.util.bytesToHex(buffer) + floDataCountString + flohex; // flochange -- Addition of floDataCountString and floData in serialization
|
|
}
|
|
|
|
|
|
|
|
return btrx;
|
|
|
|
}
|
|
|
|
bitjs.numToBytes = function(num, bytes) {
|
|
if (typeof bytes === "undefined") bytes = 8;
|
|
if (bytes == 0) {
|
|
return [];
|
|
} else if (num == -1) {
|
|
return Crypto.util.hexToBytes("ffffffffffffffff");
|
|
} else {
|
|
return [num % 256].concat(bitjs.numToBytes(Math.floor(num / 256), bytes - 1));
|
|
}
|
|
}
|
|
|
|
bitjs.numToByteArray = function(num) {
|
|
if (num <= 256) {
|
|
return [num];
|
|
} else {
|
|
return [num % 256].concat(bitjs.numToByteArray(Math.floor(num / 256)));
|
|
}
|
|
}
|
|
|
|
bitjs.numToVarInt = function(num) {
|
|
if (num < 253) {
|
|
return [num];
|
|
} else if (num < 65536) {
|
|
return [253].concat(bitjs.numToBytes(num, 2));
|
|
} else if (num < 4294967296) {
|
|
return [254].concat(bitjs.numToBytes(num, 4));
|
|
} else {
|
|
return [255].concat(bitjs.numToBytes(num, 8));
|
|
}
|
|
}
|
|
|
|
bitjs.bytesToNum = function(bytes) {
|
|
if (bytes.length == 0) return 0;
|
|
else return bytes[0] + 256 * bitjs.bytesToNum(bytes.slice(1));
|
|
}
|
|
|
|
/* clone an object */
|
|
bitjs.clone = function(obj) {
|
|
if (obj == null || typeof(obj) != 'object') return obj;
|
|
var temp = new obj.constructor();
|
|
|
|
for (var key in obj) {
|
|
if (obj.hasOwnProperty(key)) {
|
|
temp[key] = bitjs.clone(obj[key]);
|
|
}
|
|
}
|
|
return temp;
|
|
}
|
|
|
|
var B58 = bitjs.Base58 = {
|
|
alphabet: "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz",
|
|
validRegex: /^[1-9A-HJ-NP-Za-km-z]+$/,
|
|
base: BigInteger.valueOf(58),
|
|
|
|
/**
|
|
* Convert a byte array to a base58-encoded string.
|
|
*
|
|
* Written by Mike Hearn for BitcoinJ.
|
|
* Copyright (c) 2011 Google Inc.
|
|
*
|
|
* Ported to JavaScript by Stefan Thomas.
|
|
*/
|
|
encode: function(input) {
|
|
var bi = BigInteger.fromByteArrayUnsigned(input);
|
|
var chars = [];
|
|
|
|
while (bi.compareTo(B58.base) >= 0) {
|
|
var mod = bi.mod(B58.base);
|
|
chars.unshift(B58.alphabet[mod.intValue()]);
|
|
bi = bi.subtract(mod).divide(B58.base);
|
|
}
|
|
chars.unshift(B58.alphabet[bi.intValue()]);
|
|
|
|
// Convert leading zeros too.
|
|
for (var i = 0; i < input.length; i++) {
|
|
if (input[i] == 0x00) {
|
|
chars.unshift(B58.alphabet[0]);
|
|
} else break;
|
|
}
|
|
|
|
return chars.join('');
|
|
},
|
|
|
|
/**
|
|
* Convert a base58-encoded string to a byte array.
|
|
*
|
|
* Written by Mike Hearn for BitcoinJ.
|
|
* Copyright (c) 2011 Google Inc.
|
|
*
|
|
* Ported to JavaScript by Stefan Thomas.
|
|
*/
|
|
decode: function(input) {
|
|
var bi = BigInteger.valueOf(0);
|
|
var leadingZerosNum = 0;
|
|
for (var i = input.length - 1; i >= 0; i--) {
|
|
var alphaIndex = B58.alphabet.indexOf(input[i]);
|
|
if (alphaIndex < 0) {
|
|
throw "Invalid character";
|
|
}
|
|
bi = bi.add(BigInteger.valueOf(alphaIndex)
|
|
.multiply(B58.base.pow(input.length - 1 - i)));
|
|
|
|
// This counts leading zero bytes
|
|
if (input[i] == "1") leadingZerosNum++;
|
|
else leadingZerosNum = 0;
|
|
}
|
|
var bytes = bi.toByteArrayUnsigned();
|
|
|
|
// Add leading zeros
|
|
while (leadingZerosNum-- > 0) bytes.unshift(0);
|
|
|
|
return bytes;
|
|
}
|
|
}
|
|
return bitjs;
|
|
|
|
})(typeof global !== "undefined" ? global : window);
|
|
|
|
//Bitcoin.js
|
|
(function(GLOBAL) {
|
|
/*
|
|
Copyright (c) 2011 Stefan Thomas
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
var Bitcoin = GLOBAL.Bitcoin = {};
|
|
|
|
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/c952aaeb3ee472e3776655b8ea07299ebed702c7/src/base58.js
|
|
var B58 = Bitcoin.Base58 = {
|
|
alphabet: "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz",
|
|
validRegex: /^[1-9A-HJ-NP-Za-km-z]+$/,
|
|
base: BigInteger.valueOf(58),
|
|
|
|
/**
|
|
* Convert a byte array to a base58-encoded string.
|
|
*
|
|
* Written by Mike Hearn for BitcoinJ.
|
|
* Copyright (c) 2011 Google Inc.
|
|
*
|
|
* Ported to JavaScript by Stefan Thomas.
|
|
*/
|
|
encode: function(input) {
|
|
var bi = BigInteger.fromByteArrayUnsigned(input);
|
|
var chars = [];
|
|
|
|
while (bi.compareTo(B58.base) >= 0) {
|
|
var mod = bi.mod(B58.base);
|
|
chars.unshift(B58.alphabet[mod.intValue()]);
|
|
bi = bi.subtract(mod).divide(B58.base);
|
|
}
|
|
chars.unshift(B58.alphabet[bi.intValue()]);
|
|
|
|
// Convert leading zeros too.
|
|
for (var i = 0; i < input.length; i++) {
|
|
if (input[i] == 0x00) {
|
|
chars.unshift(B58.alphabet[0]);
|
|
} else break;
|
|
}
|
|
|
|
return chars.join('');
|
|
},
|
|
|
|
/**
|
|
* Convert a base58-encoded string to a byte array.
|
|
*
|
|
* Written by Mike Hearn for BitcoinJ.
|
|
* Copyright (c) 2011 Google Inc.
|
|
*
|
|
* Ported to JavaScript by Stefan Thomas.
|
|
*/
|
|
decode: function(input) {
|
|
var bi = BigInteger.valueOf(0);
|
|
var leadingZerosNum = 0;
|
|
for (var i = input.length - 1; i >= 0; i--) {
|
|
var alphaIndex = B58.alphabet.indexOf(input[i]);
|
|
if (alphaIndex < 0) {
|
|
throw "Invalid character";
|
|
}
|
|
bi = bi.add(BigInteger.valueOf(alphaIndex)
|
|
.multiply(B58.base.pow(input.length - 1 - i)));
|
|
|
|
// This counts leading zero bytes
|
|
if (input[i] == "1") leadingZerosNum++;
|
|
else leadingZerosNum = 0;
|
|
}
|
|
var bytes = bi.toByteArrayUnsigned();
|
|
|
|
// Add leading zeros
|
|
while (leadingZerosNum-- > 0) bytes.unshift(0);
|
|
|
|
return bytes;
|
|
}
|
|
};
|
|
|
|
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/09e8c6e184d6501a0c2c59d73ca64db5c0d3eb95/src/address.js
|
|
Bitcoin.Address = function(bytes) {
|
|
if (GLOBAL.cryptocoin == "FLO")
|
|
this.version = 0x23; // FLO mainnet public address
|
|
else if (GLOBAL.cryptocoin == "FLO_TEST")
|
|
this.version = 0x73; // FLO testnet public address
|
|
if ("string" == typeof bytes) {
|
|
bytes = Bitcoin.Address.decodeString(bytes, this.version);
|
|
}
|
|
this.hash = bytes;
|
|
};
|
|
|
|
Bitcoin.Address.networkVersion = 0x23; // (FLO mainnet 0x23, 35D), (Bitcoin Mainnet, 0x00, 0D) // *this has no effect *
|
|
|
|
/**
|
|
* Serialize this object as a standard Bitcoin address.
|
|
*
|
|
* Returns the address as a base58-encoded string in the standardized format.
|
|
*/
|
|
Bitcoin.Address.prototype.toString = function() {
|
|
// Get a copy of the hash
|
|
var hash = this.hash.slice(0);
|
|
|
|
// Version
|
|
hash.unshift(this.version);
|
|
var checksum = Crypto.SHA256(Crypto.SHA256(hash, {
|
|
asBytes: true
|
|
}), {
|
|
asBytes: true
|
|
});
|
|
var bytes = hash.concat(checksum.slice(0, 4));
|
|
return Bitcoin.Base58.encode(bytes);
|
|
};
|
|
|
|
Bitcoin.Address.prototype.getHashBase64 = function() {
|
|
return Crypto.util.bytesToBase64(this.hash);
|
|
};
|
|
|
|
/**
|
|
* Parse a Bitcoin address contained in a string.
|
|
*/
|
|
Bitcoin.Address.decodeString = function(string, version) {
|
|
var bytes = Bitcoin.Base58.decode(string);
|
|
var hash = bytes.slice(0, 21);
|
|
var checksum = Crypto.SHA256(Crypto.SHA256(hash, {
|
|
asBytes: true
|
|
}), {
|
|
asBytes: true
|
|
});
|
|
|
|
if (checksum[0] != bytes[21] ||
|
|
checksum[1] != bytes[22] ||
|
|
checksum[2] != bytes[23] ||
|
|
checksum[3] != bytes[24]) {
|
|
throw "Checksum validation failed!";
|
|
}
|
|
|
|
if (version != hash.shift()) {
|
|
throw "Version " + hash.shift() + " not supported!";
|
|
}
|
|
|
|
return hash;
|
|
};
|
|
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/e90780d3d3b8fc0d027d2bcb38b80479902f223e/src/ecdsa.js
|
|
Bitcoin.ECDSA = (function() {
|
|
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
|
|
var rng = new SecureRandom();
|
|
|
|
var P_OVER_FOUR = null;
|
|
|
|
function implShamirsTrick(P, k, Q, l) {
|
|
var m = Math.max(k.bitLength(), l.bitLength());
|
|
var Z = P.add2D(Q);
|
|
var R = P.curve.getInfinity();
|
|
|
|
for (var i = m - 1; i >= 0; --i) {
|
|
R = R.twice2D();
|
|
|
|
R.z = BigInteger.ONE;
|
|
|
|
if (k.testBit(i)) {
|
|
if (l.testBit(i)) {
|
|
R = R.add2D(Z);
|
|
} else {
|
|
R = R.add2D(P);
|
|
}
|
|
} else {
|
|
if (l.testBit(i)) {
|
|
R = R.add2D(Q);
|
|
}
|
|
}
|
|
}
|
|
|
|
return R;
|
|
};
|
|
|
|
var ECDSA = {
|
|
getBigRandom: function(limit) {
|
|
return new BigInteger(limit.bitLength(), rng)
|
|
.mod(limit.subtract(BigInteger.ONE))
|
|
.add(BigInteger.ONE);
|
|
},
|
|
sign: function(hash, priv) {
|
|
var d = priv;
|
|
var n = ecparams.getN();
|
|
var e = BigInteger.fromByteArrayUnsigned(hash);
|
|
|
|
do {
|
|
var k = ECDSA.getBigRandom(n);
|
|
var G = ecparams.getG();
|
|
var Q = G.multiply(k);
|
|
var r = Q.getX().toBigInteger().mod(n);
|
|
} while (r.compareTo(BigInteger.ZERO) <= 0);
|
|
|
|
var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n);
|
|
|
|
return ECDSA.serializeSig(r, s);
|
|
},
|
|
|
|
verify: function(hash, sig, pubkey) {
|
|
var r, s;
|
|
if (Bitcoin.Util.isArray(sig)) {
|
|
var obj = ECDSA.parseSig(sig);
|
|
r = obj.r;
|
|
s = obj.s;
|
|
} else if ("object" === typeof sig && sig.r && sig.s) {
|
|
r = sig.r;
|
|
s = sig.s;
|
|
} else {
|
|
throw "Invalid value for signature";
|
|
}
|
|
|
|
var Q;
|
|
if (pubkey instanceof ec.PointFp) {
|
|
Q = pubkey;
|
|
} else if (Bitcoin.Util.isArray(pubkey)) {
|
|
Q = EllipticCurve.PointFp.decodeFrom(ecparams.getCurve(), pubkey);
|
|
} else {
|
|
throw "Invalid format for pubkey value, must be byte array or ec.PointFp";
|
|
}
|
|
var e = BigInteger.fromByteArrayUnsigned(hash);
|
|
|
|
return ECDSA.verifyRaw(e, r, s, Q);
|
|
},
|
|
|
|
verifyRaw: function(e, r, s, Q) {
|
|
var n = ecparams.getN();
|
|
var G = ecparams.getG();
|
|
|
|
if (r.compareTo(BigInteger.ONE) < 0 ||
|
|
r.compareTo(n) >= 0)
|
|
return false;
|
|
|
|
if (s.compareTo(BigInteger.ONE) < 0 ||
|
|
s.compareTo(n) >= 0)
|
|
return false;
|
|
|
|
var c = s.modInverse(n);
|
|
|
|
var u1 = e.multiply(c).mod(n);
|
|
var u2 = r.multiply(c).mod(n);
|
|
|
|
// TODO(!!!): For some reason Shamir's trick isn't working with
|
|
// signed message verification!? Probably an implementation
|
|
// error!
|
|
//var point = implShamirsTrick(G, u1, Q, u2);
|
|
var point = G.multiply(u1).add(Q.multiply(u2));
|
|
|
|
var v = point.getX().toBigInteger().mod(n);
|
|
|
|
return v.equals(r);
|
|
},
|
|
|
|
/**
|
|
* Serialize a signature into DER format.
|
|
*
|
|
* Takes two BigIntegers representing r and s and returns a byte array.
|
|
*/
|
|
serializeSig: function(r, s) {
|
|
var rBa = r.toByteArraySigned();
|
|
var sBa = s.toByteArraySigned();
|
|
|
|
var sequence = [];
|
|
sequence.push(0x02); // INTEGER
|
|
sequence.push(rBa.length);
|
|
sequence = sequence.concat(rBa);
|
|
|
|
sequence.push(0x02); // INTEGER
|
|
sequence.push(sBa.length);
|
|
sequence = sequence.concat(sBa);
|
|
|
|
sequence.unshift(sequence.length);
|
|
sequence.unshift(0x30); // SEQUENCE
|
|
|
|
return sequence;
|
|
},
|
|
|
|
/**
|
|
* Parses a byte array containing a DER-encoded signature.
|
|
*
|
|
* This function will return an object of the form:
|
|
*
|
|
* {
|
|
* r: BigInteger,
|
|
* s: BigInteger
|
|
* }
|
|
*/
|
|
parseSig: function(sig) {
|
|
var cursor;
|
|
if (sig[0] != 0x30)
|
|
throw new Error("Signature not a valid DERSequence");
|
|
|
|
cursor = 2;
|
|
if (sig[cursor] != 0x02)
|
|
throw new Error("First element in signature must be a DERInteger");;
|
|
var rBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]);
|
|
|
|
cursor += 2 + sig[cursor + 1];
|
|
if (sig[cursor] != 0x02)
|
|
throw new Error("Second element in signature must be a DERInteger");
|
|
var sBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]);
|
|
|
|
cursor += 2 + sig[cursor + 1];
|
|
|
|
//if (cursor != sig.length)
|
|
// throw new Error("Extra bytes in signature");
|
|
|
|
var r = BigInteger.fromByteArrayUnsigned(rBa);
|
|
var s = BigInteger.fromByteArrayUnsigned(sBa);
|
|
|
|
return {
|
|
r: r,
|
|
s: s
|
|
};
|
|
},
|
|
|
|
parseSigCompact: function(sig) {
|
|
if (sig.length !== 65) {
|
|
throw "Signature has the wrong length";
|
|
}
|
|
|
|
// Signature is prefixed with a type byte storing three bits of
|
|
// information.
|
|
var i = sig[0] - 27;
|
|
if (i < 0 || i > 7) {
|
|
throw "Invalid signature type";
|
|
}
|
|
|
|
var n = ecparams.getN();
|
|
var r = BigInteger.fromByteArrayUnsigned(sig.slice(1, 33)).mod(n);
|
|
var s = BigInteger.fromByteArrayUnsigned(sig.slice(33, 65)).mod(n);
|
|
|
|
return {
|
|
r: r,
|
|
s: s,
|
|
i: i
|
|
};
|
|
},
|
|
|
|
/**
|
|
* Recover a public key from a signature.
|
|
*
|
|
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
|
|
* Key Recovery Operation".
|
|
*
|
|
* http://www.secg.org/download/aid-780/sec1-v2.pdf
|
|
*/
|
|
recoverPubKey: function(r, s, hash, i) {
|
|
// The recovery parameter i has two bits.
|
|
i = i & 3;
|
|
|
|
// The less significant bit specifies whether the y coordinate
|
|
// of the compressed point is even or not.
|
|
var isYEven = i & 1;
|
|
|
|
// The more significant bit specifies whether we should use the
|
|
// first or second candidate key.
|
|
var isSecondKey = i >> 1;
|
|
|
|
var n = ecparams.getN();
|
|
var G = ecparams.getG();
|
|
var curve = ecparams.getCurve();
|
|
var p = curve.getQ();
|
|
var a = curve.getA().toBigInteger();
|
|
var b = curve.getB().toBigInteger();
|
|
|
|
// We precalculate (p + 1) / 4 where p is if the field order
|
|
if (!P_OVER_FOUR) {
|
|
P_OVER_FOUR = p.add(BigInteger.ONE).divide(BigInteger.valueOf(4));
|
|
}
|
|
|
|
// 1.1 Compute x
|
|
var x = isSecondKey ? r.add(n) : r;
|
|
|
|
// 1.3 Convert x to point
|
|
var alpha = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(p);
|
|
var beta = alpha.modPow(P_OVER_FOUR, p);
|
|
|
|
var xorOdd = beta.isEven() ? (i % 2) : ((i + 1) % 2);
|
|
// If beta is even, but y isn't or vice versa, then convert it,
|
|
// otherwise we're done and y == beta.
|
|
var y = (beta.isEven() ? !isYEven : isYEven) ? beta : p.subtract(beta);
|
|
|
|
// 1.4 Check that nR is at infinity
|
|
var R = new EllipticCurve.PointFp(curve,
|
|
curve.fromBigInteger(x),
|
|
curve.fromBigInteger(y));
|
|
R.validate();
|
|
|
|
// 1.5 Compute e from M
|
|
var e = BigInteger.fromByteArrayUnsigned(hash);
|
|
var eNeg = BigInteger.ZERO.subtract(e).mod(n);
|
|
|
|
// 1.6 Compute Q = r^-1 (sR - eG)
|
|
var rInv = r.modInverse(n);
|
|
var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv);
|
|
|
|
Q.validate();
|
|
if (!ECDSA.verifyRaw(e, r, s, Q)) {
|
|
throw "Pubkey recovery unsuccessful";
|
|
}
|
|
|
|
var pubKey = new Bitcoin.ECKey();
|
|
pubKey.pub = Q;
|
|
return pubKey;
|
|
},
|
|
|
|
/**
|
|
* Calculate pubkey extraction parameter.
|
|
*
|
|
* When extracting a pubkey from a signature, we have to
|
|
* distinguish four different cases. Rather than putting this
|
|
* burden on the verifier, Bitcoin includes a 2-bit value with the
|
|
* signature.
|
|
*
|
|
* This function simply tries all four cases and returns the value
|
|
* that resulted in a successful pubkey recovery.
|
|
*/
|
|
calcPubkeyRecoveryParam: function(address, r, s, hash) {
|
|
for (var i = 0; i < 4; i++) {
|
|
try {
|
|
var pubkey = Bitcoin.ECDSA.recoverPubKey(r, s, hash, i);
|
|
if (pubkey.getBitcoinAddress().toString() == address) {
|
|
return i;
|
|
}
|
|
} catch (e) {}
|
|
}
|
|
throw "Unable to find valid recovery factor";
|
|
}
|
|
};
|
|
|
|
return ECDSA;
|
|
})();
|
|
Bitcoin.KeyPool = (function() {
|
|
var KeyPool = function() {
|
|
this.keyArray = [];
|
|
|
|
this.push = function(item) {
|
|
if (item == null || item.priv == null) return;
|
|
var doAdd = true;
|
|
// prevent duplicates from being added to the array
|
|
for (var index in this.keyArray) {
|
|
var currentItem = this.keyArray[index];
|
|
if (currentItem != null && currentItem.priv != null && item.getBitcoinAddress() == currentItem.getBitcoinAddress()) {
|
|
doAdd = false;
|
|
break;
|
|
}
|
|
}
|
|
if (doAdd) this.keyArray.push(item);
|
|
};
|
|
|
|
this.reset = function() {
|
|
this.keyArray = [];
|
|
};
|
|
|
|
this.getArray = function() {
|
|
// copy array
|
|
return this.keyArray.slice(0);
|
|
};
|
|
|
|
this.setArray = function(ka) {
|
|
this.keyArray = ka;
|
|
};
|
|
|
|
this.length = function() {
|
|
return this.keyArray.length;
|
|
};
|
|
|
|
this.toString = function() {
|
|
var keyPoolString = "# = " + this.length() + "\n";
|
|
var pool = this.getArray();
|
|
for (var index in pool) {
|
|
var item = pool[index];
|
|
if (Bitcoin.Util.hasMethods(item, 'getBitcoinAddress', 'toString')) {
|
|
if (item != null) {
|
|
keyPoolString += "\"" + item.getBitcoinAddress() + "\"" + ", \"" + item.toString("wif") + "\"\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
return keyPoolString;
|
|
};
|
|
|
|
return this;
|
|
};
|
|
|
|
return new KeyPool();
|
|
})();
|
|
|
|
Bitcoin.Bip38Key = (function() {
|
|
var Bip38 = function(address, encryptedKey) {
|
|
this.address = address;
|
|
this.priv = encryptedKey;
|
|
};
|
|
|
|
Bip38.prototype.getBitcoinAddress = function() {
|
|
return this.address;
|
|
};
|
|
|
|
Bip38.prototype.toString = function() {
|
|
return this.priv;
|
|
};
|
|
|
|
return Bip38;
|
|
})();
|
|
|
|
//https://raw.github.com/pointbiz/bitcoinjs-lib/9b2f94a028a7bc9bed94e0722563e9ff1d8e8db8/src/eckey.js
|
|
Bitcoin.ECKey = (function() {
|
|
var ECDSA = Bitcoin.ECDSA;
|
|
var KeyPool = Bitcoin.KeyPool;
|
|
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
|
|
|
|
var ECKey = function(input) {
|
|
if (!input) {
|
|
// Generate new key
|
|
var n = ecparams.getN();
|
|
this.priv = ECDSA.getBigRandom(n);
|
|
} else if (input instanceof BigInteger) {
|
|
// Input is a private key value
|
|
this.priv = input;
|
|
} else if (Bitcoin.Util.isArray(input)) {
|
|
// Prepend zero byte to prevent interpretation as negative integer
|
|
this.priv = BigInteger.fromByteArrayUnsigned(input);
|
|
} else if ("string" == typeof input) {
|
|
var bytes = null;
|
|
try {
|
|
|
|
// This part is edited for FLO. FLO WIF are always compressed WIF. FLO WIF (private key) starts with R for mainnet and c for testnet.
|
|
if (((GLOBAL.cryptocoin == "FLO") && /^R[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{51}$/.test(input)) ||
|
|
((GLOBAL.cryptocoin == "FLO_TEST") && /^c[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{51}$/.test(input))) {
|
|
bytes = ECKey.decodeCompressedWalletImportFormat(input);
|
|
this.compressed = true;
|
|
} else if (ECKey.isHexFormat(input)) {
|
|
bytes = Crypto.util.hexToBytes(input);
|
|
}
|
|
|
|
|
|
/*
|
|
if (ECKey.isWalletImportFormat(input)) {
|
|
bytes = ECKey.decodeWalletImportFormat(input);
|
|
} else if (ECKey.isCompressedWalletImportFormat(input)) {
|
|
bytes = ECKey.decodeCompressedWalletImportFormat(input);
|
|
this.compressed = true;
|
|
} else if (ECKey.isMiniFormat(input)) {
|
|
bytes = Crypto.SHA256(input, { asBytes: true });
|
|
} else if (ECKey.isHexFormat(input)) {
|
|
bytes = Crypto.util.hexToBytes(input);
|
|
} else if (ECKey.isBase64Format(input)) {
|
|
bytes = Crypto.util.base64ToBytes(input);
|
|
}
|
|
*/
|
|
} catch (exc1) {
|
|
this.setError(exc1);
|
|
}
|
|
|
|
if (ECKey.isBase6Format(input)) {
|
|
this.priv = new BigInteger(input, 6);
|
|
} else if (bytes == null || bytes.length != 32) {
|
|
this.priv = null;
|
|
} else {
|
|
// Prepend zero byte to prevent interpretation as negative integer
|
|
this.priv = BigInteger.fromByteArrayUnsigned(bytes);
|
|
}
|
|
}
|
|
|
|
this.compressed = (this.compressed == undefined) ? !!ECKey.compressByDefault : this.compressed;
|
|
try {
|
|
// check not zero
|
|
if (this.priv != null && BigInteger.ZERO.compareTo(this.priv) == 0) this.setError("Error: BigInteger equal to zero.");
|
|
// valid range [0x1, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364140])
|
|
var hexKeyRangeLimit = "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364140";
|
|
var rangeLimitBytes = Crypto.util.hexToBytes(hexKeyRangeLimit);
|
|
var limitBigInt = BigInteger.fromByteArrayUnsigned(rangeLimitBytes);
|
|
if (this.priv != null && limitBigInt.compareTo(this.priv) < 0) this.setError("Error: BigInteger outside of curve range.")
|
|
|
|
if (this.priv != null) {
|
|
KeyPool.push(this);
|
|
}
|
|
} catch (exc2) {
|
|
this.setError(exc2);
|
|
}
|
|
};
|
|
|
|
if (GLOBAL.cryptocoin == "FLO")
|
|
ECKey.privateKeyPrefix = 0xA3; //(Bitcoin mainnet 0x80 testnet 0xEF) (FLO mainnet 0xA3 163 D)
|
|
else if (GLOBAL.cryptocoin == "FLO_TEST")
|
|
ECKey.privateKeyPrefix = 0xEF; //FLO testnet
|
|
|
|
/**
|
|
* Whether public keys should be returned compressed by default.
|
|
*/
|
|
ECKey.compressByDefault = false;
|
|
|
|
/**
|
|
* Set whether the public key should be returned compressed or not.
|
|
*/
|
|
ECKey.prototype.setError = function(err) {
|
|
this.error = err;
|
|
this.priv = null;
|
|
return this;
|
|
};
|
|
|
|
/**
|
|
* Set whether the public key should be returned compressed or not.
|
|
*/
|
|
ECKey.prototype.setCompressed = function(v) {
|
|
this.compressed = !!v;
|
|
if (this.pubPoint) this.pubPoint.compressed = this.compressed;
|
|
return this;
|
|
};
|
|
|
|
/*
|
|
* Return public key as a byte array in DER encoding
|
|
*/
|
|
ECKey.prototype.getPub = function() {
|
|
if (this.compressed) {
|
|
if (this.pubComp) return this.pubComp;
|
|
return this.pubComp = this.getPubPoint().getEncoded(1);
|
|
} else {
|
|
if (this.pubUncomp) return this.pubUncomp;
|
|
return this.pubUncomp = this.getPubPoint().getEncoded(0);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Return public point as ECPoint object.
|
|
*/
|
|
ECKey.prototype.getPubPoint = function() {
|
|
if (!this.pubPoint) {
|
|
this.pubPoint = ecparams.getG().multiply(this.priv);
|
|
this.pubPoint.compressed = this.compressed;
|
|
}
|
|
return this.pubPoint;
|
|
};
|
|
|
|
ECKey.prototype.getPubKeyHex = function() {
|
|
if (this.compressed) {
|
|
if (this.pubKeyHexComp) return this.pubKeyHexComp;
|
|
return this.pubKeyHexComp = Crypto.util.bytesToHex(this.getPub()).toString().toUpperCase();
|
|
} else {
|
|
if (this.pubKeyHexUncomp) return this.pubKeyHexUncomp;
|
|
return this.pubKeyHexUncomp = Crypto.util.bytesToHex(this.getPub()).toString().toUpperCase();
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Get the pubKeyHash for this key.
|
|
*
|
|
* This is calculated as RIPE160(SHA256([encoded pubkey])) and returned as
|
|
* a byte array.
|
|
*/
|
|
ECKey.prototype.getPubKeyHash = function() {
|
|
if (this.compressed) {
|
|
if (this.pubKeyHashComp) return this.pubKeyHashComp;
|
|
return this.pubKeyHashComp = Bitcoin.Util.sha256ripe160(this.getPub());
|
|
} else {
|
|
if (this.pubKeyHashUncomp) return this.pubKeyHashUncomp;
|
|
return this.pubKeyHashUncomp = Bitcoin.Util.sha256ripe160(this.getPub());
|
|
}
|
|
};
|
|
|
|
ECKey.prototype.getBitcoinAddress = function() {
|
|
var hash = this.getPubKeyHash();
|
|
var addr = new Bitcoin.Address(hash);
|
|
return addr.toString();
|
|
};
|
|
|
|
/*
|
|
* Takes a public point as a hex string or byte array
|
|
*/
|
|
ECKey.prototype.setPub = function(pub) {
|
|
// byte array
|
|
if (Bitcoin.Util.isArray(pub)) {
|
|
pub = Crypto.util.bytesToHex(pub).toString().toUpperCase();
|
|
}
|
|
var ecPoint = ecparams.getCurve().decodePointHex(pub);
|
|
this.setCompressed(ecPoint.compressed);
|
|
this.pubPoint = ecPoint;
|
|
return this;
|
|
};
|
|
|
|
// Sipa Private Key Wallet Import Format
|
|
ECKey.prototype.getBitcoinWalletImportFormat = function() {
|
|
var bytes = this.getBitcoinPrivateKeyByteArray();
|
|
if (bytes == null) return "";
|
|
bytes.unshift(ECKey.privateKeyPrefix); // prepend 0x80 byte
|
|
if (this.compressed) bytes.push(0x01); // append 0x01 byte for compressed format
|
|
var checksum = Crypto.SHA256(Crypto.SHA256(bytes, {
|
|
asBytes: true
|
|
}), {
|
|
asBytes: true
|
|
});
|
|
bytes = bytes.concat(checksum.slice(0, 4));
|
|
var privWif = Bitcoin.Base58.encode(bytes);
|
|
return privWif;
|
|
};
|
|
|
|
// Private Key Hex Format
|
|
ECKey.prototype.getBitcoinHexFormat = function() {
|
|
return Crypto.util.bytesToHex(this.getBitcoinPrivateKeyByteArray()).toString().toUpperCase();
|
|
};
|
|
|
|
// Private Key Base64 Format
|
|
ECKey.prototype.getBitcoinBase64Format = function() {
|
|
return Crypto.util.bytesToBase64(this.getBitcoinPrivateKeyByteArray());
|
|
};
|
|
|
|
ECKey.prototype.getBitcoinPrivateKeyByteArray = function() {
|
|
if (this.priv == null) return null;
|
|
// Get a copy of private key as a byte array
|
|
var bytes = this.priv.toByteArrayUnsigned();
|
|
// zero pad if private key is less than 32 bytes
|
|
while (bytes.length < 32) bytes.unshift(0x00);
|
|
return bytes;
|
|
};
|
|
|
|
ECKey.prototype.toString = function(format) {
|
|
format = format || "";
|
|
if (format.toString().toLowerCase() == "base64" || format.toString().toLowerCase() == "b64") {
|
|
return this.getBitcoinBase64Format();
|
|
}
|
|
// Wallet Import Format
|
|
else if (format.toString().toLowerCase() == "wif") {
|
|
return this.getBitcoinWalletImportFormat();
|
|
} else {
|
|
return this.getBitcoinHexFormat();
|
|
}
|
|
};
|
|
|
|
ECKey.prototype.sign = function(hash) {
|
|
return ECDSA.sign(hash, this.priv);
|
|
};
|
|
|
|
ECKey.prototype.verify = function(hash, sig) {
|
|
return ECDSA.verify(hash, sig, this.getPub());
|
|
};
|
|
|
|
/**
|
|
* Parse a wallet import format private key contained in a string.
|
|
*/
|
|
ECKey.decodeWalletImportFormat = function(privStr) {
|
|
var bytes = Bitcoin.Base58.decode(privStr);
|
|
var hash = bytes.slice(0, 33);
|
|
var checksum = Crypto.SHA256(Crypto.SHA256(hash, {
|
|
asBytes: true
|
|
}), {
|
|
asBytes: true
|
|
});
|
|
if (checksum[0] != bytes[33] ||
|
|
checksum[1] != bytes[34] ||
|
|
checksum[2] != bytes[35] ||
|
|
checksum[3] != bytes[36]) {
|
|
throw "Checksum validation failed!";
|
|
|
|
}
|
|
var version = hash.shift();
|
|
if (version != ECKey.privateKeyPrefix) {
|
|
throw "Version " + version + " not supported!";
|
|
}
|
|
return hash;
|
|
};
|
|
|
|
/**
|
|
* Parse a compressed wallet import format private key contained in a string.
|
|
*/
|
|
ECKey.decodeCompressedWalletImportFormat = function(privStr) {
|
|
var bytes = Bitcoin.Base58.decode(privStr);
|
|
var hash = bytes.slice(0, 34);
|
|
var checksum = Crypto.SHA256(Crypto.SHA256(hash, {
|
|
asBytes: true
|
|
}), {
|
|
asBytes: true
|
|
});
|
|
if (checksum[0] != bytes[34] ||
|
|
checksum[1] != bytes[35] ||
|
|
checksum[2] != bytes[36] ||
|
|
checksum[3] != bytes[37]) {
|
|
throw "Checksum validation failed!";
|
|
}
|
|
var version = hash.shift();
|
|
if (version != ECKey.privateKeyPrefix) {
|
|
throw "Version " + version + " not supported!";
|
|
}
|
|
hash.pop();
|
|
return hash;
|
|
};
|
|
|
|
// 64 characters [0-9A-F]
|
|
ECKey.isHexFormat = function(key) {
|
|
key = key.toString();
|
|
return /^[A-Fa-f0-9]{64}$/.test(key);
|
|
};
|
|
|
|
// 51 characters base58, always starts with a '5'
|
|
ECKey.isWalletImportFormat = function(key) {
|
|
key = key.toString();
|
|
return (ECKey.privateKeyPrefix == 0x80) ?
|
|
(/^5[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{50}$/.test(key)) :
|
|
(/^R[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{50}$/.test(key));
|
|
};
|
|
|
|
// 52 characters base58
|
|
ECKey.isCompressedWalletImportFormat = function(key) {
|
|
key = key.toString();
|
|
return (ECKey.privateKeyPrefix == 0x80) ?
|
|
(/^[LK][123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{51}$/.test(key)) :
|
|
(/^R[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{51}$/.test(key));
|
|
};
|
|
|
|
// 44 characters
|
|
ECKey.isBase64Format = function(key) {
|
|
key = key.toString();
|
|
return (/^[ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789=+\/]{44}$/.test(key));
|
|
};
|
|
|
|
// 99 characters, 1=1, if using dice convert 6 to 0
|
|
ECKey.isBase6Format = function(key) {
|
|
key = key.toString();
|
|
return (/^[012345]{99}$/.test(key));
|
|
};
|
|
|
|
// 22, 26 or 30 characters, always starts with an 'S'
|
|
ECKey.isMiniFormat = function(key) {
|
|
key = key.toString();
|
|
var validChars22 = /^S[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{21}$/.test(key);
|
|
var validChars26 = /^S[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{25}$/.test(key);
|
|
var validChars30 = /^S[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{29}$/.test(key);
|
|
var testBytes = Crypto.SHA256(key + "?", {
|
|
asBytes: true
|
|
});
|
|
|
|
return ((testBytes[0] === 0x00 || testBytes[0] === 0x01) && (validChars22 || validChars26 || validChars30));
|
|
};
|
|
|
|
return ECKey;
|
|
})();
|
|
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/09e8c6e184d6501a0c2c59d73ca64db5c0d3eb95/src/util.js
|
|
// Bitcoin utility functions
|
|
Bitcoin.Util = {
|
|
/**
|
|
* Cross-browser compatibility version of Array.isArray.
|
|
*/
|
|
isArray: Array.isArray || function(o) {
|
|
return Object.prototype.toString.call(o) === '[object Array]';
|
|
},
|
|
/**
|
|
* Create an array of a certain length filled with a specific value.
|
|
*/
|
|
makeFilledArray: function(len, val) {
|
|
var array = [];
|
|
var i = 0;
|
|
while (i < len) {
|
|
array[i++] = val;
|
|
}
|
|
return array;
|
|
},
|
|
/**
|
|
* Turn an integer into a "var_int".
|
|
*
|
|
* "var_int" is a variable length integer used by Bitcoin's binary format.
|
|
*
|
|
* Returns a byte array.
|
|
*/
|
|
numToVarInt: function(i) {
|
|
if (i < 0xfd) {
|
|
// unsigned char
|
|
return [i];
|
|
} else if (i <= 1 << 16) {
|
|
// unsigned short (LE)
|
|
return [0xfd, i >>> 8, i & 255];
|
|
} else if (i <= 1 << 32) {
|
|
// unsigned int (LE)
|
|
return [0xfe].concat(Crypto.util.wordsToBytes([i]));
|
|
} else {
|
|
// unsigned long long (LE)
|
|
return [0xff].concat(Crypto.util.wordsToBytes([i >>> 32, i]));
|
|
}
|
|
},
|
|
/**
|
|
* Parse a Bitcoin value byte array, returning a BigInteger.
|
|
*/
|
|
valueToBigInt: function(valueBuffer) {
|
|
if (valueBuffer instanceof BigInteger) return valueBuffer;
|
|
|
|
// Prepend zero byte to prevent interpretation as negative integer
|
|
return BigInteger.fromByteArrayUnsigned(valueBuffer);
|
|
},
|
|
/**
|
|
* Format a Bitcoin value as a string.
|
|
*
|
|
* Takes a BigInteger or byte-array and returns that amount of Bitcoins in a
|
|
* nice standard formatting.
|
|
*
|
|
* Examples:
|
|
* 12.3555
|
|
* 0.1234
|
|
* 900.99998888
|
|
* 34.00
|
|
*/
|
|
formatValue: function(valueBuffer) {
|
|
var value = this.valueToBigInt(valueBuffer).toString();
|
|
var integerPart = value.length > 8 ? value.substr(0, value.length - 8) : '0';
|
|
var decimalPart = value.length > 8 ? value.substr(value.length - 8) : value;
|
|
while (decimalPart.length < 8) decimalPart = "0" + decimalPart;
|
|
decimalPart = decimalPart.replace(/0*$/, '');
|
|
while (decimalPart.length < 2) decimalPart += "0";
|
|
return integerPart + "." + decimalPart;
|
|
},
|
|
/**
|
|
* Parse a floating point string as a Bitcoin value.
|
|
*
|
|
* Keep in mind that parsing user input is messy. You should always display
|
|
* the parsed value back to the user to make sure we understood his input
|
|
* correctly.
|
|
*/
|
|
parseValue: function(valueString) {
|
|
// TODO: Detect other number formats (e.g. comma as decimal separator)
|
|
var valueComp = valueString.split('.');
|
|
var integralPart = valueComp[0];
|
|
var fractionalPart = valueComp[1] || "0";
|
|
while (fractionalPart.length < 8) fractionalPart += "0";
|
|
fractionalPart = fractionalPart.replace(/^0+/g, '');
|
|
var value = BigInteger.valueOf(parseInt(integralPart));
|
|
value = value.multiply(BigInteger.valueOf(100000000));
|
|
value = value.add(BigInteger.valueOf(parseInt(fractionalPart)));
|
|
return value;
|
|
},
|
|
/**
|
|
* Calculate RIPEMD160(SHA256(data)).
|
|
*
|
|
* Takes an arbitrary byte array as inputs and returns the hash as a byte
|
|
* array.
|
|
*/
|
|
sha256ripe160: function(data) {
|
|
return ripemd160(Crypto.SHA256(data, {
|
|
asBytes: true
|
|
}), {
|
|
asBytes: true
|
|
});
|
|
},
|
|
// double sha256
|
|
dsha256: function(data) {
|
|
return Crypto.SHA256(Crypto.SHA256(data, {
|
|
asBytes: true
|
|
}), {
|
|
asBytes: true
|
|
});
|
|
},
|
|
// duck typing method
|
|
hasMethods: function(obj /*, method list as strings */ ) {
|
|
var i = 1,
|
|
methodName;
|
|
while ((methodName = arguments[i++])) {
|
|
if (typeof obj[methodName] != 'function') {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
})(typeof global !== "undefined" ? global : window);
|
|
|
|
//ellipticCurveEncryption.js
|
|
(function(GLOBAL) {
|
|
(function(ellipticCurveType) {
|
|
|
|
//Defining Elliptic Encryption Object
|
|
var ellipticEncryption = GLOBAL.ellipticCurveEncryption = function() {};
|
|
|
|
ellipticEncryption.rng = new SecureRandom();
|
|
|
|
ellipticEncryption.getCurveParameters = function(curveName) {
|
|
|
|
//Default is secp256k1
|
|
curveName = typeof curveName !== 'undefined' ? curveName : "secp256k1";
|
|
|
|
var c = EllipticCurve.getSECCurveByName(curveName);
|
|
var curveDetails = {
|
|
Q: "",
|
|
A: "",
|
|
B: "",
|
|
GX: "",
|
|
GY: "",
|
|
N: ""
|
|
};
|
|
|
|
curveDetails.Q = c.getCurve().getQ().toString();
|
|
curveDetails.A = c.getCurve().getA().toBigInteger().toString();
|
|
curveDetails.B = c.getCurve().getB().toBigInteger().toString();
|
|
curveDetails.GX = c.getG().getX().toBigInteger().toString();
|
|
curveDetails.GY = c.getG().getY().toBigInteger().toString();
|
|
curveDetails.N = c.getN().toString();
|
|
|
|
return curveDetails;
|
|
|
|
}
|
|
|
|
ellipticEncryption.selectedCurve = ellipticEncryption.getCurveParameters(ellipticCurveType);
|
|
|
|
ellipticEncryption.get_curve = function() {
|
|
return new EllipticCurve.CurveFp(new BigInteger(this.selectedCurve.Q),
|
|
new BigInteger(this.selectedCurve.A),
|
|
new BigInteger(this.selectedCurve.B));
|
|
}
|
|
|
|
ellipticEncryption.get_G = function(curve) {
|
|
return new EllipticCurve.PointFp(curve,
|
|
curve.fromBigInteger(new BigInteger(this.selectedCurve.GX)),
|
|
curve.fromBigInteger(new BigInteger(this.selectedCurve.GY)));
|
|
}
|
|
|
|
ellipticEncryption.pick_rand = function() {
|
|
var n = new BigInteger(this.selectedCurve.N);
|
|
var n1 = n.subtract(BigInteger.ONE);
|
|
var r = new BigInteger(n.bitLength(), this.rng);
|
|
return r.mod(n1).add(BigInteger.ONE);
|
|
}
|
|
|
|
ellipticEncryption.senderRandom = function() {
|
|
var r = this.pick_rand();
|
|
return r.toString();
|
|
};
|
|
|
|
ellipticEncryption.receiverRandom = function() {
|
|
|
|
//This is receivers private key. For now we will use random. CHANGE IT LATER
|
|
var r = this.pick_rand();
|
|
return r.toString();
|
|
}
|
|
|
|
ellipticEncryption.senderPublicString = function(senderPrivateKey) {
|
|
|
|
var senderKeyECData = {};
|
|
|
|
var curve = this.get_curve();
|
|
var G = this.get_G(curve);
|
|
var a = new BigInteger(senderPrivateKey);
|
|
var P = G.multiply(a);
|
|
senderKeyECData.XValuePublicString = P.getX().toBigInteger().toString();
|
|
senderKeyECData.YValuePublicString = P.getY().toBigInteger().toString();
|
|
|
|
return senderKeyECData;
|
|
}
|
|
|
|
//In real life ellipticEncryption.receiverPublicString is the public key of the receiver.
|
|
//you don't have to run receiverRandom and the bottom function
|
|
ellipticEncryption.receiverPublicString = function(receiverPublicKey) {
|
|
|
|
var receiverKeyECData = {};
|
|
|
|
var curve = this.get_curve();
|
|
var G = this.get_G(curve);
|
|
var a = new BigInteger(receiverPublicKey);
|
|
var P = G.multiply(a);
|
|
receiverKeyECData.XValuePublicString = P.getX().toBigInteger().toString();
|
|
receiverKeyECData.YValuePublicString = P.getY().toBigInteger().toString();
|
|
|
|
return receiverKeyECData;
|
|
}
|
|
|
|
ellipticEncryption.senderSharedKeyDerivation = function(receiverPublicStringXValue,
|
|
receiverPublicStringYValue, senderPrivateKey) {
|
|
|
|
var senderDerivedKey = {};
|
|
var curve = this.get_curve();
|
|
var P = new EllipticCurve.PointFp(curve,
|
|
curve.fromBigInteger(new BigInteger(receiverPublicStringXValue)),
|
|
curve.fromBigInteger(new BigInteger(receiverPublicStringYValue)));
|
|
var a = new BigInteger(senderPrivateKey);
|
|
var S = P.multiply(a);
|
|
|
|
senderDerivedKey.XValue = S.getX().toBigInteger().toString();
|
|
senderDerivedKey.YValue = S.getY().toBigInteger().toString();
|
|
|
|
return senderDerivedKey;
|
|
}
|
|
|
|
ellipticEncryption.receiverSharedKeyDerivation = function(senderPublicStringXValue,
|
|
senderPublicStringYValue, receiverPrivateKey) {
|
|
|
|
var receiverDerivedKey = {};
|
|
var curve = this.get_curve();
|
|
var P = new EllipticCurve.PointFp(curve,
|
|
curve.fromBigInteger(new BigInteger(senderPublicStringXValue)),
|
|
curve.fromBigInteger(new BigInteger(senderPublicStringYValue)));
|
|
var a = new BigInteger(receiverPrivateKey);
|
|
var S = P.multiply(a);
|
|
|
|
receiverDerivedKey.XValue = S.getX().toBigInteger().toString();
|
|
receiverDerivedKey.YValue = S.getY().toBigInteger().toString();
|
|
|
|
return receiverDerivedKey;
|
|
}
|
|
|
|
})("secp256k1");
|
|
})(typeof global !== "undefined" ? global : window);
|
|
|
|
//secrets.js
|
|
(function(GLOBAL) {
|
|
//Shamir Secret Share by Alexander Stetsyuk - released under MIT License
|
|
|
|
var SecretShare = GLOBAL.shamirSecretShare = {};
|
|
var defaults = {
|
|
bits: 8, // default number of bits
|
|
radix: 16, // work with HEX by default
|
|
minBits: 3,
|
|
maxBits: 20, // this permits 1,048,575 shares, though going this high is NOT recommended in JS!
|
|
|
|
bytesPerChar: 2,
|
|
maxBytesPerChar: 6, // Math.pow(256,7) > Math.pow(2,53)
|
|
|
|
// Primitive polynomials (in decimal form) for Galois Fields GF(2^n), for 2 <= n <= 30
|
|
// The index of each term in the array corresponds to the n for that polynomial
|
|
// i.e. to get the polynomial for n=16, use primitivePolynomials[16]
|
|
primitivePolynomials: [null, null, 1, 3, 3, 5, 3, 3, 29, 17, 9, 5, 83, 27, 43, 3, 45, 9, 39, 39,
|
|
9, 5, 3, 33, 27, 9, 71, 39, 9, 5, 83
|
|
],
|
|
|
|
// warning for insecure PRNG
|
|
warning: 'WARNING:\nA secure random number generator was not found.\nUsing Math.random(), which is NOT cryptographically strong!'
|
|
};
|
|
|
|
// Protected settings object
|
|
var config = {};
|
|
|
|
/** @expose **/
|
|
SecretShare.getConfig = function() {
|
|
return {
|
|
'bits': config.bits,
|
|
'unsafePRNG': config.unsafePRNG
|
|
};
|
|
};
|
|
|
|
function init(bits) {
|
|
if (bits && (typeof bits !== 'number' || bits % 1 !== 0 || bits < defaults.minBits || bits >
|
|
defaults.maxBits)) {
|
|
throw new Error('Number of bits must be an integer between ' + defaults.minBits + ' and ' +
|
|
defaults.maxBits + ', inclusive.')
|
|
}
|
|
|
|
config.radix = defaults.radix;
|
|
config.bits = bits || defaults.bits;
|
|
config.size = Math.pow(2, config.bits);
|
|
config.max = config.size - 1;
|
|
|
|
// Construct the exp and log tables for multiplication.
|
|
var logs = [],
|
|
exps = [],
|
|
x = 1,
|
|
primitive = defaults.primitivePolynomials[config.bits];
|
|
for (var i = 0; i < config.size; i++) {
|
|
exps[i] = x;
|
|
logs[x] = i;
|
|
x <<= 1;
|
|
if (x >= config.size) {
|
|
x ^= primitive;
|
|
x &= config.max;
|
|
}
|
|
}
|
|
|
|
config.logs = logs;
|
|
config.exps = exps;
|
|
};
|
|
|
|
/** @expose **/
|
|
SecretShare.init = init;
|
|
|
|
function isInited() {
|
|
if (!config.bits || !config.size || !config.max || !config.logs || !config.exps || config.logs.length !==
|
|
config.size || config.exps.length !== config.size) {
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// Returns a pseudo-random number generator of the form function(bits){}
|
|
// which should output a random string of 1's and 0's of length `bits`
|
|
function getRNG() {
|
|
var randomBits, crypto;
|
|
|
|
function construct(bits, arr, radix, size) {
|
|
var str = '',
|
|
i = 0,
|
|
len = arr.length - 1;
|
|
while (i < len || (str.length < bits)) {
|
|
str += padLeft(parseInt(arr[i], radix).toString(2), size);
|
|
i++;
|
|
}
|
|
str = str.substr(-bits);
|
|
if ((str.match(/0/g) || []).length === str.length) { // all zeros?
|
|
return null;
|
|
} else {
|
|
return str;
|
|
}
|
|
}
|
|
|
|
// node.js crypto.randomBytes()
|
|
if (typeof require === 'function') {
|
|
return function(bits) {
|
|
var bytes = Math.ceil(bits / 8),
|
|
str = null;
|
|
|
|
while (str === null) {
|
|
str = construct(bits, require('crypto').randomBytes(bytes).toString('hex'), 16, 4);
|
|
}
|
|
return str;
|
|
}
|
|
}
|
|
|
|
// browsers with window.crypto.getRandomValues()
|
|
if (GLOBAL['crypto'] && typeof GLOBAL['crypto']['getRandomValues'] === 'function' && typeof GLOBAL[
|
|
'Uint32Array'] === 'function') {
|
|
crypto = GLOBAL['crypto'];
|
|
return function(bits) {
|
|
var elems = Math.ceil(bits / 32),
|
|
str = null,
|
|
arr = new GLOBAL['Uint32Array'](elems);
|
|
|
|
while (str === null) {
|
|
crypto['getRandomValues'](arr);
|
|
str = construct(bits, arr, 10, 32);
|
|
}
|
|
|
|
return str;
|
|
}
|
|
}
|
|
|
|
// A totally insecure RNG!!! (except in Safari)
|
|
// Will produce a warning every time it is called.
|
|
config.unsafePRNG = true;
|
|
warn();
|
|
|
|
var bitsPerNum = 32;
|
|
var max = Math.pow(2, bitsPerNum) - 1;
|
|
return function(bits) {
|
|
var elems = Math.ceil(bits / bitsPerNum);
|
|
var arr = [],
|
|
str = null;
|
|
while (str === null) {
|
|
for (var i = 0; i < elems; i++) {
|
|
arr[i] = Math.floor(Math.random() * max + 1);
|
|
}
|
|
str = construct(bits, arr, 10, bitsPerNum);
|
|
}
|
|
return str;
|
|
};
|
|
};
|
|
|
|
// Warn about using insecure rng.
|
|
// Called when Math.random() is being used.
|
|
function warn() {
|
|
GLOBAL['console']['warn'](defaults.warning);
|
|
if (typeof GLOBAL['alert'] === 'function' && config.alert) {
|
|
GLOBAL['alert'](defaults.warning);
|
|
}
|
|
}
|
|
|
|
// Set the PRNG to use. If no RNG function is supplied, pick a default using getRNG()
|
|
/** @expose **/
|
|
SecretShare.setRNG = function(rng, alert) {
|
|
if (!isInited()) {
|
|
this.init();
|
|
}
|
|
config.unsafePRNG = false;
|
|
rng = rng || getRNG();
|
|
|
|
// test the RNG (5 times)
|
|
if (typeof rng !== 'function' || typeof rng(config.bits) !== 'string' || !parseInt(rng(config.bits),
|
|
2) || rng(config.bits).length > config.bits || rng(config.bits).length < config.bits) {
|
|
throw new Error(
|
|
"Random number generator is invalid. Supply an RNG of the form function(bits){} that returns a string containing 'bits' number of random 1's and 0's."
|
|
)
|
|
} else {
|
|
config.rng = rng;
|
|
}
|
|
config.alert = !!alert;
|
|
|
|
return !!config.unsafePRNG;
|
|
};
|
|
|
|
function isSetRNG() {
|
|
return typeof config.rng === 'function';
|
|
};
|
|
|
|
// Generates a random bits-length number string using the PRNG
|
|
/** @expose **/
|
|
SecretShare.random = function(bits) {
|
|
if (!isSetRNG()) {
|
|
this.setRNG();
|
|
}
|
|
|
|
if (typeof bits !== 'number' || bits % 1 !== 0 || bits < 2) {
|
|
throw new Error('Number of bits must be an integer greater than 1.')
|
|
}
|
|
|
|
if (config.unsafePRNG) {
|
|
warn();
|
|
}
|
|
return bin2hex(config.rng(bits));
|
|
}
|
|
|
|
// Divides a `secret` number String str expressed in radix `inputRadix` (optional, default 16)
|
|
// into `numShares` shares, each expressed in radix `outputRadix` (optional, default to `inputRadix`),
|
|
// requiring `threshold` number of shares to reconstruct the secret.
|
|
// Optionally, zero-pads the secret to a length that is a multiple of padLength before sharing.
|
|
/** @expose **/
|
|
SecretShare.share = function(secret, numShares, threshold, padLength, withoutPrefix) {
|
|
if (!isInited()) {
|
|
this.init();
|
|
}
|
|
if (!isSetRNG()) {
|
|
this.setRNG();
|
|
}
|
|
|
|
padLength = padLength || 0;
|
|
|
|
if (typeof secret !== 'string') {
|
|
throw new Error('Secret must be a string.');
|
|
}
|
|
if (typeof numShares !== 'number' || numShares % 1 !== 0 || numShares < 2) {
|
|
throw new Error('Number of shares must be an integer between 2 and 2^bits-1 (' + config.max +
|
|
'), inclusive.')
|
|
}
|
|
if (numShares > config.max) {
|
|
var neededBits = Math.ceil(Math.log(numShares + 1) / Math.LN2);
|
|
throw new Error('Number of shares must be an integer between 2 and 2^bits-1 (' + config.max +
|
|
'), inclusive. To create ' + numShares + ' shares, use at least ' + neededBits +
|
|
' bits.')
|
|
}
|
|
if (typeof threshold !== 'number' || threshold % 1 !== 0 || threshold < 2) {
|
|
throw new Error('Threshold number of shares must be an integer between 2 and 2^bits-1 (' +
|
|
config.max + '), inclusive.');
|
|
}
|
|
if (threshold > config.max) {
|
|
var neededBits = Math.ceil(Math.log(threshold + 1) / Math.LN2);
|
|
throw new Error('Threshold number of shares must be an integer between 2 and 2^bits-1 (' +
|
|
config.max + '), inclusive. To use a threshold of ' + threshold +
|
|
', use at least ' + neededBits + ' bits.');
|
|
}
|
|
if (typeof padLength !== 'number' || padLength % 1 !== 0) {
|
|
throw new Error('Zero-pad length must be an integer greater than 1.');
|
|
}
|
|
|
|
if (config.unsafePRNG) {
|
|
warn();
|
|
}
|
|
|
|
secret = '1' + hex2bin(secret); // append a 1 so that we can preserve the correct number of leading zeros in our secret
|
|
secret = split(secret, padLength);
|
|
var x = new Array(numShares),
|
|
y = new Array(numShares);
|
|
for (var i = 0, len = secret.length; i < len; i++) {
|
|
var subShares = this._getShares(secret[i], numShares, threshold);
|
|
for (var j = 0; j < numShares; j++) {
|
|
x[j] = x[j] || subShares[j].x.toString(config.radix);
|
|
y[j] = padLeft(subShares[j].y.toString(2)) + (y[j] ? y[j] : '');
|
|
}
|
|
}
|
|
var padding = config.max.toString(config.radix).length;
|
|
if (withoutPrefix) {
|
|
for (var i = 0; i < numShares; i++) {
|
|
x[i] = bin2hex(y[i]);
|
|
}
|
|
} else {
|
|
for (var i = 0; i < numShares; i++) {
|
|
x[i] = config.bits.toString(36).toUpperCase() + padLeft(x[i], padding) + bin2hex(y[i]);
|
|
}
|
|
}
|
|
|
|
return x;
|
|
};
|
|
|
|
// This is the basic polynomial generation and evaluation function
|
|
// for a `config.bits`-length secret (NOT an arbitrary length)
|
|
// Note: no error-checking at this stage! If `secrets` is NOT
|
|
// a NUMBER less than 2^bits-1, the output will be incorrect!
|
|
/** @expose **/
|
|
SecretShare._getShares = function(secret, numShares, threshold) {
|
|
var shares = [];
|
|
var coeffs = [secret];
|
|
|
|
for (var i = 1; i < threshold; i++) {
|
|
coeffs[i] = parseInt(config.rng(config.bits), 2);
|
|
}
|
|
for (var i = 1, len = numShares + 1; i < len; i++) {
|
|
shares[i - 1] = {
|
|
x: i,
|
|
y: horner(i, coeffs)
|
|
}
|
|
}
|
|
return shares;
|
|
};
|
|
|
|
// Polynomial evaluation at `x` using Horner's Method
|
|
// TODO: this can possibly be sped up using other methods
|
|
// NOTE: fx=fx * x + coeff[i] -> exp(log(fx) + log(x)) + coeff[i],
|
|
// so if fx===0, just set fx to coeff[i] because
|
|
// using the exp/log form will result in incorrect value
|
|
function horner(x, coeffs) {
|
|
var logx = config.logs[x];
|
|
var fx = 0;
|
|
for (var i = coeffs.length - 1; i >= 0; i--) {
|
|
if (fx === 0) {
|
|
fx = coeffs[i];
|
|
continue;
|
|
}
|
|
fx = config.exps[(logx + config.logs[fx]) % config.max] ^ coeffs[i];
|
|
}
|
|
return fx;
|
|
};
|
|
|
|
function inArray(arr, val) {
|
|
for (var i = 0, len = arr.length; i < len; i++) {
|
|
if (arr[i] === val) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
|
|
function processShare(share) {
|
|
|
|
var bits = parseInt(share[0], 36);
|
|
if (bits && (typeof bits !== 'number' || bits % 1 !== 0 || bits < defaults.minBits || bits >
|
|
defaults.maxBits)) {
|
|
throw new Error('Number of bits must be an integer between ' + defaults.minBits + ' and ' +
|
|
defaults.maxBits + ', inclusive.')
|
|
}
|
|
|
|
var max = Math.pow(2, bits) - 1;
|
|
var idLength = max.toString(config.radix).length;
|
|
|
|
var id = parseInt(share.substr(1, idLength), config.radix);
|
|
if (typeof id !== 'number' || id % 1 !== 0 || id < 1 || id > max) {
|
|
throw new Error('Share id must be an integer between 1 and ' + config.max + ', inclusive.');
|
|
}
|
|
share = share.substr(idLength + 1);
|
|
if (!share.length) {
|
|
throw new Error('Invalid share: zero-length share.')
|
|
}
|
|
return {
|
|
'bits': bits,
|
|
'id': id,
|
|
'value': share
|
|
};
|
|
};
|
|
|
|
/** @expose **/
|
|
SecretShare._processShare = processShare;
|
|
|
|
// Protected method that evaluates the Lagrange interpolation
|
|
// polynomial at x=`at` for individual config.bits-length
|
|
// segments of each share in the `shares` Array.
|
|
// Each share is expressed in base `inputRadix`. The output
|
|
// is expressed in base `outputRadix'
|
|
function combine(at, shares) {
|
|
var setBits, share, x = [],
|
|
y = [],
|
|
result = '',
|
|
idx;
|
|
|
|
for (var i = 0, len = shares.length; i < len; i++) {
|
|
share = processShare(shares[i]);
|
|
if (typeof setBits === 'undefined') {
|
|
setBits = share['bits'];
|
|
} else if (share['bits'] !== setBits) {
|
|
throw new Error('Mismatched shares: Different bit settings.')
|
|
}
|
|
|
|
if (config.bits !== setBits) {
|
|
init(setBits);
|
|
}
|
|
|
|
if (inArray(x, share['id'])) { // repeated x value?
|
|
continue;
|
|
}
|
|
|
|
idx = x.push(share['id']) - 1;
|
|
share = split(hex2bin(share['value']));
|
|
for (var j = 0, len2 = share.length; j < len2; j++) {
|
|
y[j] = y[j] || [];
|
|
y[j][idx] = share[j];
|
|
}
|
|
}
|
|
|
|
for (var i = 0, len = y.length; i < len; i++) {
|
|
result = padLeft(lagrange(at, x, y[i]).toString(2)) + result;
|
|
}
|
|
|
|
if (at === 0) { // reconstructing the secret
|
|
var idx = result.indexOf('1'); //find the first 1
|
|
return bin2hex(result.slice(idx + 1));
|
|
} else { // generating a new share
|
|
return bin2hex(result);
|
|
}
|
|
};
|
|
|
|
// Combine `shares` Array into the original secret
|
|
/** @expose **/
|
|
SecretShare.combine = function(shares) {
|
|
return combine(0, shares);
|
|
};
|
|
|
|
// Generate a new share with id `id` (a number between 1 and 2^bits-1)
|
|
// `id` can be a Number or a String in the default radix (16)
|
|
/** @expose **/
|
|
SecretShare.newShare = function(id, shares) {
|
|
if (typeof id === 'string') {
|
|
id = parseInt(id, config.radix);
|
|
}
|
|
|
|
var share = processShare(shares[0]);
|
|
var max = Math.pow(2, share['bits']) - 1;
|
|
|
|
if (typeof id !== 'number' || id % 1 !== 0 || id < 1 || id > max) {
|
|
throw new Error('Share id must be an integer between 1 and ' + config.max + ', inclusive.');
|
|
}
|
|
|
|
var padding = max.toString(config.radix).length;
|
|
return config.bits.toString(36).toUpperCase() + padLeft(id.toString(config.radix), padding) +
|
|
combine(id, shares);
|
|
};
|
|
|
|
// Evaluate the Lagrange interpolation polynomial at x = `at`
|
|
// using x and y Arrays that are of the same length, with
|
|
// corresponding elements constituting points on the polynomial.
|
|
function lagrange(at, x, y) {
|
|
var sum = 0,
|
|
product,
|
|
i, j;
|
|
|
|
for (var i = 0, len = x.length; i < len; i++) {
|
|
if (!y[i]) {
|
|
continue;
|
|
}
|
|
|
|
product = config.logs[y[i]];
|
|
for (var j = 0; j < len; j++) {
|
|
if (i === j) {
|
|
continue;
|
|
}
|
|
if (at === x[j]) { // happens when computing a share that is in the list of shares used to compute it
|
|
product = -1; // fix for a zero product term, after which the sum should be sum^0 = sum, not sum^1
|
|
break;
|
|
}
|
|
product = (product + config.logs[at ^ x[j]] - config.logs[x[i] ^ x[j]] + config.max /* to make sure it's not negative */ ) %
|
|
config.max;
|
|
}
|
|
|
|
sum = product === -1 ? sum : sum ^ config.exps[product]; // though exps[-1]= undefined and undefined ^ anything = anything in chrome, this behavior may not hold everywhere, so do the check
|
|
}
|
|
return sum;
|
|
};
|
|
|
|
/** @expose **/
|
|
SecretShare._lagrange = lagrange;
|
|
|
|
// Splits a number string `bits`-length segments, after first
|
|
// optionally zero-padding it to a length that is a multiple of `padLength.
|
|
// Returns array of integers (each less than 2^bits-1), with each element
|
|
// representing a `bits`-length segment of the input string from right to left,
|
|
// i.e. parts[0] represents the right-most `bits`-length segment of the input string.
|
|
function split(str, padLength) {
|
|
if (padLength) {
|
|
str = padLeft(str, padLength)
|
|
}
|
|
var parts = [];
|
|
for (var i = str.length; i > config.bits; i -= config.bits) {
|
|
parts.push(parseInt(str.slice(i - config.bits, i), 2));
|
|
}
|
|
parts.push(parseInt(str.slice(0, i), 2));
|
|
return parts;
|
|
};
|
|
|
|
// Pads a string `str` with zeros on the left so that its length is a multiple of `bits`
|
|
function padLeft(str, bits) {
|
|
bits = bits || config.bits
|
|
var missing = str.length % bits;
|
|
return (missing ? new Array(bits - missing + 1).join('0') : '') + str;
|
|
};
|
|
|
|
function hex2bin(str) {
|
|
var bin = '',
|
|
num;
|
|
for (var i = str.length - 1; i >= 0; i--) {
|
|
num = parseInt(str[i], 16)
|
|
if (isNaN(num)) {
|
|
throw new Error('Invalid hex character.')
|
|
}
|
|
bin = padLeft(num.toString(2), 4) + bin;
|
|
}
|
|
return bin;
|
|
}
|
|
|
|
function bin2hex(str) {
|
|
var hex = '',
|
|
num;
|
|
str = padLeft(str, 4);
|
|
for (var i = str.length; i >= 4; i -= 4) {
|
|
num = parseInt(str.slice(i - 4, i), 2);
|
|
if (isNaN(num)) {
|
|
throw new Error('Invalid binary character.')
|
|
}
|
|
hex = num.toString(16) + hex;
|
|
}
|
|
return hex;
|
|
}
|
|
|
|
// Converts a given UTF16 character string to the HEX representation.
|
|
// Each character of the input string is represented by
|
|
// `bytesPerChar` bytes in the output string.
|
|
/** @expose **/
|
|
SecretShare.str2hex = function(str, bytesPerChar) {
|
|
if (typeof str !== 'string') {
|
|
throw new Error('Input must be a character string.');
|
|
}
|
|
bytesPerChar = bytesPerChar || defaults.bytesPerChar;
|
|
|
|
if (typeof bytesPerChar !== 'number' || bytesPerChar % 1 !== 0 || bytesPerChar < 1 ||
|
|
bytesPerChar > defaults.maxBytesPerChar) {
|
|
throw new Error('Bytes per character must be an integer between 1 and ' + defaults.maxBytesPerChar +
|
|
', inclusive.')
|
|
}
|
|
|
|
var hexChars = 2 * bytesPerChar;
|
|
var max = Math.pow(16, hexChars) - 1;
|
|
var out = '',
|
|
num;
|
|
for (var i = 0, len = str.length; i < len; i++) {
|
|
num = str[i].charCodeAt();
|
|
if (isNaN(num)) {
|
|
throw new Error('Invalid character: ' + str[i]);
|
|
} else if (num > max) {
|
|
var neededBytes = Math.ceil(Math.log(num + 1) / Math.log(256));
|
|
throw new Error('Invalid character code (' + num +
|
|
'). Maximum allowable is 256^bytes-1 (' + max +
|
|
'). To convert this character, use at least ' + neededBytes + ' bytes.')
|
|
} else {
|
|
out = padLeft(num.toString(16), hexChars) + out;
|
|
}
|
|
}
|
|
return out;
|
|
};
|
|
|
|
// Converts a given HEX number string to a UTF16 character string.
|
|
/** @expose **/
|
|
SecretShare.hex2str = function(str, bytesPerChar) {
|
|
if (typeof str !== 'string') {
|
|
throw new Error('Input must be a hexadecimal string.');
|
|
}
|
|
bytesPerChar = bytesPerChar || defaults.bytesPerChar;
|
|
|
|
if (typeof bytesPerChar !== 'number' || bytesPerChar % 1 !== 0 || bytesPerChar < 1 ||
|
|
bytesPerChar > defaults.maxBytesPerChar) {
|
|
throw new Error('Bytes per character must be an integer between 1 and ' + defaults.maxBytesPerChar +
|
|
', inclusive.')
|
|
}
|
|
|
|
var hexChars = 2 * bytesPerChar;
|
|
var out = '';
|
|
str = padLeft(str, hexChars);
|
|
for (var i = 0, len = str.length; i < len; i += hexChars) {
|
|
out = String.fromCharCode(parseInt(str.slice(i, i + hexChars), 16)) + out;
|
|
}
|
|
return out;
|
|
};
|
|
|
|
// by default, initialize without an RNG
|
|
SecretShare.init();
|
|
})(typeof global !== 'undefined' ? global : window); |