fcoin/lib/bip70/pk.js
2016-09-06 15:15:36 -07:00

254 lines
5.7 KiB
JavaScript

/*!
* x509.js - x509 handling for bcoin
* Copyright (c) 2016, Christopher Jeffrey (MIT License).
* https://github.com/bcoin-org/bcoin
*/
'use strict';
var bn = require('bn.js');
var asn1 = require('./asn1');
var elliptic = require('elliptic');
var crypto = require('../crypto/crypto');
var nativeCrypto;
try {
nativeCrypto = require('crypto');
} catch (e) {
;
}
var pk = exports;
var rsa = {};
var ecdsa = {};
var native = {};
rsa.prefixes = {
md5: new Buffer('3020300c06082a864886f70d020505000410', 'hex'),
sha1: new Buffer('3021300906052b0e03021a05000414', 'hex'),
sha224: new Buffer('302d300d06096086480165030402040500041c', 'hex'),
sha256: new Buffer('3031300d060960864801650304020105000420', 'hex'),
sha384: new Buffer('3041300d060960864801650304020205000430', 'hex'),
sha512: new Buffer('3051300d060960864801650304020305000440', 'hex'),
md5sha1: new Buffer(0),
ripemd160: new Buffer('30203008060628cf060300310414', 'hex')
};
// Ported from:
// https://github.com/golang/go/blob/master/src/crypto/rsa/pkcs1v15.go
rsa.verify = function verify(hashAlg, msg, sig, key) {
var hash = crypto.hash(hashAlg, msg);
var prefix = rsa.prefixes[hashAlg];
var len = prefix.length + hash.length;
var pub = asn1.parseRSAPublic(key);
var N = new bn(pub.modulus);
var e = new bn(pub.publicExponent);
var k = Math.ceil(N.bitLength() / 8);
var m, em, ok, i;
if (k < len + 11)
throw new Error('Message too long.');
m = rsa.encrypt(N, e, sig);
em = leftpad(m, k);
ok = crypto.ceq(em[0], 0x00);
ok &= crypto.ceq(em[1], 0x01);
ok &= crypto.ccmp(em.slice(k - hash.length, k), hash);
ok &= crypto.ccmp(em.slice(k - len, k - hash.length), prefix);
ok &= crypto.ceq(em[k - len - 1], 0x00);
for (i = 2; i < k - len - 1; i++)
ok &= crypto.ceq(em[i], 0xff);
return ok === 1;
};
rsa.sign = function sign(hashAlg, msg, key) {
var hash = crypto.hash(hashAlg, msg);
var prefix = rsa.prefixes[hashAlg];
var len = prefix.length + hash.length;
var priv = asn1.parseRSAPrivate(key);
var N = new bn(priv.modulus);
var D = new bn(priv.privateExponent);
var k = Math.ceil(N.bitLength() / 8);
var i, em;
if (k < len + 11)
throw new Error('Message too long.');
em = new Buffer(k);
em.fill(0);
em[1] = 0x01;
for (i = 2; i < k - len - 1; i++)
em[i] = 0xff;
prefix.copy(em, k - len);
hash.copy(em, k - hash.length);
return rsa.decrypt(N, D, em);
};
rsa.decrypt = function decrypt(N, D, m) {
var c = new bn(m);
if (c.cmp(N) > 0)
throw new Error('Cannot decrypt.');
return c
.toRed(bn.red(N))
.redPow(D)
.fromRed()
.toArrayLike(Buffer, 'be');
};
rsa.encrypt = function encrypt(N, e, m) {
return new bn(m)
.toRed(bn.red(N))
.redPow(e)
.fromRed()
.toArrayLike(Buffer, 'be');
};
ecdsa.verify = function verify(curve, msg, hashAlg, key, sig) {
var hash = crypto.hash(hashAlg, msg);
var ec = elliptic.ec(curve);
return ec.verify(hash, sig, key);
};
ecdsa.sign = function sign(curve, msg, hashAlg, key) {
var hash = crypto.hash(hashAlg, msg);
var ec = elliptic.ec(curve);
return new Buffer(ec.sign(hash, key));
};
native.verify = function verify(alg, hash, msg, sig, key) {
var algo, verify;
if (!nativeCrypto)
return false;
algo = normalizeAlg(alg, hash);
verify = nativeCrypto.createVerify(algo);
verify.update(msg);
return verify.verify(key, sig);
};
native.sign = function _sign(alg, hash, msg, key) {
var algo, sig;
if (!nativeCrypto)
return false;
algo = normalizeAlg(alg, hash);
sig = nativeCrypto.createSign(algo);
sig.update(msg);
return sig.sign(key);
};
pk.pemTag = {
dsa: 'DSA',
rsa: 'RSA',
ecdsa: 'EC'
};
pk.toPEM = function toPEM(key, type) {
var tag = pk.pemTag[key.alg];
var pem = asn1.toPEM(key.data, tag, type);
// Key parameters, usually present
// if selecting an EC curve.
if (key.params)
pem += asn1.toPEM(key.params, tag, 'parameters');
return pem;
};
pk._verify = function verify(hash, msg, sig, key) {
var pem;
switch (key.alg) {
case 'dsa':
pem = pk.toPEM(key, 'public key');
return native.verify(key.alg, hash, msg, sig, pem);
case 'rsa':
if (nativeCrypto) {
pem = pk.toPEM(key, 'public key');
return native.verify(key.alg, hash, msg, sig, pem);
}
return rsa.verify(hash, msg, sig, key.data);
case 'ecdsa':
if (!key.curve)
throw new Error('No curve present.');
return ecdsa.verify(key.curve, hash, msg, sig, key.data);
default:
throw new Error('Unsupported algorithm.');
}
};
pk.verify = function verify(hash, msg, sig, key) {
try {
return pk._verify(hash, msg, sig, key);
} catch (e) {
return false;
}
};
pk.sign = function sign(hash, msg, key) {
var pem;
switch (key.alg) {
case 'dsa':
pem = pk.toPEM(key, 'private key');
return native.sign(key.alg, hash, msg, pem);
case 'rsa':
if (nativeCrypto) {
pem = pk.toPEM(key, 'private key');
return native.sign(key.alg, hash, msg, pem);
}
return rsa.sign(hash, msg, key.data);
case 'ecdsa':
if (!key.curve)
throw new Error('No curve present.');
return ecdsa.sign(key.curve, hash, msg, key.data);
default:
throw new Error('Unsupported algorithm.');
}
};
function leftpad(input, size) {
var n = input.length;
var out;
if (n > size)
n = size;
out = new Buffer(size);
out.fill(0);
input.copy(out, out.length - n);
return out;
}
function normalizeAlg(alg, hash) {
var name = alg.toUpperCase() + '-' + hash.toUpperCase();
switch (name) {
case 'ECDSA-SHA1':
name = 'ecdsa-with-SHA1';
break;
case 'ECDSA-SHA256':
name = 'ecdsa-with-SHA256';
break;
}
return name;
}
pk.rsa = rsa;
pk.ecdsa = ecdsa;
pk.native = native;