localbitcoinplusplus/system_status.html
2020-09-26 14:22:18 +05:30

12100 lines
444 KiB
HTML
Raw Blame History

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<link rel="shortcut icon" href="#">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>System Status</title>
</head>
<body>
<script type="text/javascript">
//crypto-sha256-hmac.js
/*
* Crypto-JS v2.5.4
* http://code.google.com/p/crypto-js/
* (c) 2009-2012 by Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
function ascii_to_hexa(str) {
var arr1 = [];
for (var n = 0, l = str.length; n < l; n++) {
var hex = Number(str.charCodeAt(n)).toString(16);
arr1.push(hex);
}
return arr1.join("");
}
//ripemd160.js
/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
/** @preserve
(c) 2012 by C<>dric Mesnil. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Constants table
var zl = [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
7,
4,
13,
1,
10,
6,
15,
3,
12,
0,
9,
5,
2,
14,
11,
8,
3,
10,
14,
4,
9,
15,
8,
1,
2,
7,
0,
6,
13,
11,
5,
12,
1,
9,
11,
10,
0,
8,
12,
4,
13,
3,
7,
15,
14,
5,
6,
2,
4,
0,
5,
9,
7,
12,
2,
10,
14,
1,
3,
8,
11,
6,
15,
13
];
var zr = [
5,
14,
7,
0,
9,
2,
11,
4,
13,
6,
15,
8,
1,
10,
3,
12,
6,
11,
3,
7,
0,
13,
5,
10,
14,
15,
8,
12,
4,
9,
1,
2,
15,
5,
1,
3,
7,
14,
6,
9,
11,
8,
12,
2,
10,
0,
4,
13,
8,
6,
4,
1,
3,
11,
15,
0,
5,
12,
2,
13,
9,
7,
10,
14,
12,
15,
10,
4,
1,
5,
8,
7,
6,
2,
13,
14,
0,
3,
9,
11
];
var sl = [
11,
14,
15,
12,
5,
8,
7,
9,
11,
13,
14,
15,
6,
7,
9,
8,
7,
6,
8,
13,
11,
9,
7,
15,
7,
12,
15,
9,
11,
7,
13,
12,
11,
13,
6,
7,
14,
9,
13,
15,
14,
8,
13,
6,
5,
12,
7,
5,
11,
12,
14,
15,
14,
15,
9,
8,
9,
14,
5,
6,
8,
6,
5,
12,
9,
15,
5,
11,
6,
8,
13,
12,
5,
12,
13,
14,
11,
8,
5,
6
];
var sr = [
8,
9,
9,
11,
13,
15,
15,
5,
7,
7,
8,
11,
14,
14,
12,
6,
9,
13,
15,
7,
12,
8,
9,
11,
7,
7,
12,
7,
6,
15,
13,
11,
9,
7,
15,
11,
8,
6,
6,
14,
12,
13,
5,
14,
13,
13,
7,
5,
15,
5,
8,
11,
14,
14,
6,
14,
6,
9,
12,
9,
12,
5,
15,
8,
8,
5,
12,
9,
12,
5,
14,
6,
8,
13,
6,
5,
15,
13,
11,
11
];
var hl = [0x00000000, 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e];
var hr = [0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9, 0x00000000];
var bytesToWords = function (bytes) {
var words = [];
for (var i = 0, b = 0; i < bytes.length; i++, b += 8) {
words[b >>> 5] |= bytes[i] << (24 - (b % 32));
}
return words;
};
var wordsToBytes = function (words) {
var bytes = [];
for (var b = 0; b < words.length * 32; b += 8) {
bytes.push((words[b >>> 5] >>> (24 - (b % 32))) & 0xff);
}
return bytes;
};
var processBlock = function (H, M, offset) {
// Swap endian
for (var i = 0; i < 16; i++) {
var offset_i = offset + i;
var M_offset_i = M[offset_i];
// Swap
M[offset_i] =
(((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) |
(((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00);
}
// Working variables
var al, bl, cl, dl, el;
var ar, br, cr, dr, er;
ar = al = H[0];
br = bl = H[1];
cr = cl = H[2];
dr = dl = H[3];
er = el = H[4];
// Computation
var t;
for (var i = 0; i < 80; i += 1) {
t = (al + M[offset + zl[i]]) | 0;
if (i < 16) {
t += f1(bl, cl, dl) + hl[0];
} else if (i < 32) {
t += f2(bl, cl, dl) + hl[1];
} else if (i < 48) {
t += f3(bl, cl, dl) + hl[2];
} else if (i < 64) {
t += f4(bl, cl, dl) + hl[3];
} else {
// if (i<80) {
t += f5(bl, cl, dl) + hl[4];
}
t = t | 0;
t = rotl(t, sl[i]);
t = (t + el) | 0;
al = el;
el = dl;
dl = rotl(cl, 10);
cl = bl;
bl = t;
t = (ar + M[offset + zr[i]]) | 0;
if (i < 16) {
t += f5(br, cr, dr) + hr[0];
} else if (i < 32) {
t += f4(br, cr, dr) + hr[1];
} else if (i < 48) {
t += f3(br, cr, dr) + hr[2];
} else if (i < 64) {
t += f2(br, cr, dr) + hr[3];
} else {
// if (i<80) {
t += f1(br, cr, dr) + hr[4];
}
t = t | 0;
t = rotl(t, sr[i]);
t = (t + er) | 0;
ar = er;
er = dr;
dr = rotl(cr, 10);
cr = br;
br = t;
}
// Intermediate hash value
t = (H[1] + cl + dr) | 0;
H[1] = (H[2] + dl + er) | 0;
H[2] = (H[3] + el + ar) | 0;
H[3] = (H[4] + al + br) | 0;
H[4] = (H[0] + bl + cr) | 0;
H[0] = t;
};
function f1(x, y, z) {
return x ^ y ^ z;
}
function f2(x, y, z) {
return (x & y) | (~x & z);
}
function f3(x, y, z) {
return (x | ~y) ^ z;
}
function f4(x, y, z) {
return (x & z) | (y & ~z);
}
function f5(x, y, z) {
return x ^ (y | ~z);
}
function rotl(x, n) {
return (x << n) | (x >>> (32 - n));
}
function ripemd160(message) {
var H = [0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0];
var m = bytesToWords(message);
var nBitsLeft = message.length * 8;
var nBitsTotal = message.length * 8;
// Add padding
m[nBitsLeft >>> 5] |= 0x80 << (24 - (nBitsLeft % 32));
m[(((nBitsLeft + 64) >>> 9) << 4) + 14] =
(((nBitsTotal << 8) | (nBitsTotal >>> 24)) & 0x00ff00ff) |
(((nBitsTotal << 24) | (nBitsTotal >>> 8)) & 0xff00ff00);
for (var i = 0; i < m.length; i += 16) {
processBlock(H, m, i);
}
// Swap endian
for (var i = 0; i < 5; i++) {
// Shortcut
var H_i = H[i];
// Swap
H[i] =
(((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) |
(((H_i << 24) | (H_i >>> 8)) & 0xff00ff00);
}
var digestbytes = wordsToBytes(H);
return digestbytes;
}
</script>
<script type="text/javascript">
/*!
* Crypto-JS v2.5.4 Crypto.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
if (typeof Crypto == "undefined" || !Crypto.util) {
(function () {
var base64map =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
// Global Crypto object
var Crypto = (window.Crypto = {});
// Crypto utilities
var util = (Crypto.util = {
// Bit-wise rotate left
rotl: function (n, b) {
return (n << b) | (n >>> (32 - b));
},
// Bit-wise rotate right
rotr: function (n, b) {
return (n << (32 - b)) | (n >>> b);
},
// Swap big-endian to little-endian and vice versa
endian: function (n) {
// If number given, swap endian
if (n.constructor == Number) {
return (
(util.rotl(n, 8) & 0x00ff00ff) |
(util.rotl(n, 24) & 0xff00ff00)
);
}
// Else, assume array and swap all items
for (var i = 0; i < n.length; i++) n[i] = util.endian(n[i]);
return n;
},
// Generate an array of any length of random bytes
randomBytes: function (n) {
for (var bytes = []; n > 0; n--)
bytes.push(Math.floor(Math.random() * 256));
return bytes;
},
// Convert a byte array to big-endian 32-bit words
bytesToWords: function (bytes) {
for (var words = [], i = 0, b = 0; i < bytes.length; i++, b += 8)
words[b >>> 5] |= (bytes[i] & 0xff) << (24 - (b % 32));
return words;
},
// Convert big-endian 32-bit words to a byte array
wordsToBytes: function (words) {
for (var bytes = [], b = 0; b < words.length * 32; b += 8)
bytes.push((words[b >>> 5] >>> (24 - (b % 32))) & 0xff);
return bytes;
},
// Convert a byte array to a hex string
bytesToHex: function (bytes) {
for (var hex = [], i = 0; i < bytes.length; i++) {
hex.push((bytes[i] >>> 4).toString(16));
hex.push((bytes[i] & 0xf).toString(16));
}
return hex.join("");
},
// Convert a hex string to a byte array
hexToBytes: function (hex) {
for (var bytes = [], c = 0; c < hex.length; c += 2)
bytes.push(parseInt(hex.substr(c, 2), 16));
return bytes;
},
// Convert a byte array to a base-64 string
bytesToBase64: function (bytes) {
for (var base64 = [], i = 0; i < bytes.length; i += 3) {
var triplet =
(bytes[i] << 16) | (bytes[i + 1] << 8) | bytes[i + 2];
for (var j = 0; j < 4; j++) {
if (i * 8 + j * 6 <= bytes.length * 8)
base64.push(
base64map.charAt((triplet >>> (6 * (3 - j))) & 0x3f)
);
else base64.push("=");
}
}
return base64.join("");
},
// Convert a base-64 string to a byte array
base64ToBytes: function (base64) {
// Remove non-base-64 characters
base64 = base64.replace(/[^A-Z0-9+\/]/gi, "");
for (
var bytes = [], i = 0, imod4 = 0;
i < base64.length;
imod4 = ++i % 4
) {
if (imod4 == 0) continue;
bytes.push(
((base64map.indexOf(base64.charAt(i - 1)) &
(Math.pow(2, -2 * imod4 + 8) - 1)) <<
(imod4 * 2)) |
(base64map.indexOf(base64.charAt(i)) >>> (6 - imod4 * 2))
);
}
return bytes;
}
});
// Crypto character encodings
var charenc = (Crypto.charenc = {});
// UTF-8 encoding
var UTF8 = (charenc.UTF8 = {
// Convert a string to a byte array
stringToBytes: function (str) {
return Binary.stringToBytes(unescape(encodeURIComponent(str)));
},
// Convert a byte array to a string
bytesToString: function (bytes) {
return decodeURIComponent(escape(Binary.bytesToString(bytes)));
}
});
// Binary encoding
var Binary = (charenc.Binary = {
// Convert a string to a byte array
stringToBytes: function (str) {
for (var bytes = [], i = 0; i < str.length; i++)
bytes.push(str.charCodeAt(i) & 0xff);
return bytes;
},
// Convert a byte array to a string
bytesToString: function (bytes) {
for (var str = [], i = 0; i < bytes.length; i++)
str.push(String.fromCharCode(bytes[i]));
return str.join("");
}
});
})();
}
</script>
<!-- SHA1 -->
<script type="text/javascript">
//Adding SHA1 to fix basic PKBDF2
/*
* Crypto-JS v2.5.4
* http://code.google.com/p/crypto-js/
* (c) 2009-2012 by Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
// Public API
var SHA1 = (C.SHA1 = function (message, options) {
var digestbytes = util.wordsToBytes(SHA1._sha1(message));
return options && options.asBytes
? digestbytes
: options && options.asString
? Binary.bytesToString(digestbytes)
: util.bytesToHex(digestbytes);
});
// The core
SHA1._sha1 = function (message) {
// Convert to byte array
if (message.constructor == String)
message = UTF8.stringToBytes(message);
/* else, assume byte array already */
var m = util.bytesToWords(message),
l = message.length * 8,
w = [],
H0 = 1732584193,
H1 = -271733879,
H2 = -1732584194,
H3 = 271733878,
H4 = -1009589776;
// Padding
m[l >> 5] |= 0x80 << (24 - (l % 32));
m[(((l + 64) >>> 9) << 4) + 15] = l;
for (var i = 0; i < m.length; i += 16) {
var a = H0,
b = H1,
c = H2,
d = H3,
e = H4;
for (var j = 0; j < 80; j++) {
if (j < 16) w[j] = m[i + j];
else {
var n = w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16];
w[j] = (n << 1) | (n >>> 31);
}
var t =
((H0 << 5) | (H0 >>> 27)) +
H4 +
(w[j] >>> 0) +
(j < 20
? ((H1 & H2) | (~H1 & H3)) + 1518500249
: j < 40
? (H1 ^ H2 ^ H3) + 1859775393
: j < 60
? ((H1 & H2) | (H1 & H3) | (H2 & H3)) - 1894007588
: (H1 ^ H2 ^ H3) - 899497514);
H4 = H3;
H3 = H2;
H2 = (H1 << 30) | (H1 >>> 2);
H1 = H0;
H0 = t;
}
H0 += a;
H1 += b;
H2 += c;
H3 += d;
H4 += e;
}
return [H0, H1, H2, H3, H4];
};
// Package private blocksize
SHA1._blocksize = 16;
SHA1._digestsize = 20;
})();
</script>
<!-- HMAC -->
<script type="text/javascript">
//Added to make PKBDF2 work
/*
* Crypto-JS v2.5.4
* http://code.google.com/p/crypto-js/
* (c) 2009-2012 by Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
C.HMAC = function (hasher, message, key, options) {
// Convert to byte arrays
if (message.constructor == String)
message = UTF8.stringToBytes(message);
if (key.constructor == String) key = UTF8.stringToBytes(key);
/* else, assume byte arrays already */
// Allow arbitrary length keys
if (key.length > hasher._blocksize * 4)
key = hasher(key, {
asBytes: true
});
// XOR keys with pad constants
var okey = key.slice(0),
ikey = key.slice(0);
for (var i = 0; i < hasher._blocksize * 4; i++) {
okey[i] ^= 0x5c;
ikey[i] ^= 0x36;
}
var hmacbytes = hasher(
okey.concat(
hasher(ikey.concat(message), {
asBytes: true
})
),
{
asBytes: true
}
);
return options && options.asBytes
? hmacbytes
: options && options.asString
? Binary.bytesToString(hmacbytes)
: util.bytesToHex(hmacbytes);
};
})();
</script>
<script type="text/javascript">
/*!
* Crypto-JS v2.5.4 SHA256.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
// Constants
var K = [
0x428a2f98,
0x71374491,
0xb5c0fbcf,
0xe9b5dba5,
0x3956c25b,
0x59f111f1,
0x923f82a4,
0xab1c5ed5,
0xd807aa98,
0x12835b01,
0x243185be,
0x550c7dc3,
0x72be5d74,
0x80deb1fe,
0x9bdc06a7,
0xc19bf174,
0xe49b69c1,
0xefbe4786,
0x0fc19dc6,
0x240ca1cc,
0x2de92c6f,
0x4a7484aa,
0x5cb0a9dc,
0x76f988da,
0x983e5152,
0xa831c66d,
0xb00327c8,
0xbf597fc7,
0xc6e00bf3,
0xd5a79147,
0x06ca6351,
0x14292967,
0x27b70a85,
0x2e1b2138,
0x4d2c6dfc,
0x53380d13,
0x650a7354,
0x766a0abb,
0x81c2c92e,
0x92722c85,
0xa2bfe8a1,
0xa81a664b,
0xc24b8b70,
0xc76c51a3,
0xd192e819,
0xd6990624,
0xf40e3585,
0x106aa070,
0x19a4c116,
0x1e376c08,
0x2748774c,
0x34b0bcb5,
0x391c0cb3,
0x4ed8aa4a,
0x5b9cca4f,
0x682e6ff3,
0x748f82ee,
0x78a5636f,
0x84c87814,
0x8cc70208,
0x90befffa,
0xa4506ceb,
0xbef9a3f7,
0xc67178f2
];
// Public API
var SHA256 = (C.SHA256 = function (message, options) {
var digestbytes = util.wordsToBytes(SHA256._sha256(message));
return options && options.asBytes
? digestbytes
: options && options.asString
? Binary.bytesToString(digestbytes)
: util.bytesToHex(digestbytes);
});
// The core
SHA256._sha256 = function (message) {
// Convert to byte array
if (message.constructor == String)
message = UTF8.stringToBytes(message);
/* else, assume byte array already */
var m = util.bytesToWords(message),
l = message.length * 8,
H = [
0x6a09e667,
0xbb67ae85,
0x3c6ef372,
0xa54ff53a,
0x510e527f,
0x9b05688c,
0x1f83d9ab,
0x5be0cd19
],
w = [],
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
t1,
t2;
// Padding
m[l >> 5] |= 0x80 << (24 - (l % 32));
m[(((l + 64) >> 9) << 4) + 15] = l;
for (var i = 0; i < m.length; i += 16) {
a = H[0];
b = H[1];
c = H[2];
d = H[3];
e = H[4];
f = H[5];
g = H[6];
h = H[7];
for (var j = 0; j < 64; j++) {
if (j < 16) w[j] = m[j + i];
else {
var gamma0x = w[j - 15],
gamma1x = w[j - 2],
gamma0 =
((gamma0x << 25) | (gamma0x >>> 7)) ^
((gamma0x << 14) | (gamma0x >>> 18)) ^
(gamma0x >>> 3),
gamma1 =
((gamma1x << 15) | (gamma1x >>> 17)) ^
((gamma1x << 13) | (gamma1x >>> 19)) ^
(gamma1x >>> 10);
w[j] = gamma0 + (w[j - 7] >>> 0) + gamma1 + (w[j - 16] >>> 0);
}
var ch = (e & f) ^ (~e & g),
maj = (a & b) ^ (a & c) ^ (b & c),
sigma0 =
((a << 30) | (a >>> 2)) ^
((a << 19) | (a >>> 13)) ^
((a << 10) | (a >>> 22)),
sigma1 =
((e << 26) | (e >>> 6)) ^
((e << 21) | (e >>> 11)) ^
((e << 7) | (e >>> 25));
t1 = (h >>> 0) + sigma1 + ch + K[j] + (w[j] >>> 0);
t2 = sigma0 + maj;
h = g;
g = f;
f = e;
e = (d + t1) >>> 0;
d = c;
c = b;
b = a;
a = (t1 + t2) >>> 0;
}
H[0] += a;
H[1] += b;
H[2] += c;
H[3] += d;
H[4] += e;
H[5] += f;
H[6] += g;
H[7] += h;
}
return H;
};
// Package private blocksize
SHA256._blocksize = 16;
SHA256._digestsize = 32;
})();
</script>
<script type="text/javascript">
/*!
* Crypto-JS v2.5.4 PBKDF2.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
C.PBKDF2 = function (password, salt, keylen, options) {
// Convert to byte arrays
if (password.constructor == String)
password = UTF8.stringToBytes(password);
if (salt.constructor == String) salt = UTF8.stringToBytes(salt);
/* else, assume byte arrays already */
// Defaults
var hasher = (options && options.hasher) || C.SHA1,
iterations = (options && options.iterations) || 1;
// Pseudo-random function
function PRF(password, salt) {
return C.HMAC(hasher, salt, password, {
asBytes: true
});
}
// Generate key
var derivedKeyBytes = [],
blockindex = 1;
while (derivedKeyBytes.length < keylen) {
var block = PRF(
password,
salt.concat(util.wordsToBytes([blockindex]))
);
for (var u = block, i = 1; i < iterations; i++) {
u = PRF(password, u);
for (var j = 0; j < block.length; j++) block[j] ^= u[j];
}
derivedKeyBytes = derivedKeyBytes.concat(block);
blockindex++;
}
// Truncate excess bytes
derivedKeyBytes.length = keylen;
return options && options.asBytes
? derivedKeyBytes
: options && options.asString
? Binary.bytesToString(derivedKeyBytes)
: util.bytesToHex(derivedKeyBytes);
};
})();
</script>
<script type="text/javascript">
/*!
* Crypto-JS v2.5.4 HMAC.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
C.HMAC = function (hasher, message, key, options) {
// Convert to byte arrays
if (message.constructor == String)
message = UTF8.stringToBytes(message);
if (key.constructor == String) key = UTF8.stringToBytes(key);
/* else, assume byte arrays already */
// Allow arbitrary length keys
if (key.length > hasher._blocksize * 4)
key = hasher(key, {
asBytes: true
});
// XOR keys with pad constants
var okey = key.slice(0),
ikey = key.slice(0);
for (var i = 0; i < hasher._blocksize * 4; i++) {
okey[i] ^= 0x5c;
ikey[i] ^= 0x36;
}
var hmacbytes = hasher(
okey.concat(
hasher(ikey.concat(message), {
asBytes: true
})
),
{
asBytes: true
}
);
return options && options.asBytes
? hmacbytes
: options && options.asString
? Binary.bytesToString(hmacbytes)
: util.bytesToHex(hmacbytes);
};
})();
</script>
<script type="text/javascript">
/*!
* Crypto-JS v2.5.4 AES.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8;
// Precomputed SBOX
var SBOX = [
0x63,
0x7c,
0x77,
0x7b,
0xf2,
0x6b,
0x6f,
0xc5,
0x30,
0x01,
0x67,
0x2b,
0xfe,
0xd7,
0xab,
0x76,
0xca,
0x82,
0xc9,
0x7d,
0xfa,
0x59,
0x47,
0xf0,
0xad,
0xd4,
0xa2,
0xaf,
0x9c,
0xa4,
0x72,
0xc0,
0xb7,
0xfd,
0x93,
0x26,
0x36,
0x3f,
0xf7,
0xcc,
0x34,
0xa5,
0xe5,
0xf1,
0x71,
0xd8,
0x31,
0x15,
0x04,
0xc7,
0x23,
0xc3,
0x18,
0x96,
0x05,
0x9a,
0x07,
0x12,
0x80,
0xe2,
0xeb,
0x27,
0xb2,
0x75,
0x09,
0x83,
0x2c,
0x1a,
0x1b,
0x6e,
0x5a,
0xa0,
0x52,
0x3b,
0xd6,
0xb3,
0x29,
0xe3,
0x2f,
0x84,
0x53,
0xd1,
0x00,
0xed,
0x20,
0xfc,
0xb1,
0x5b,
0x6a,
0xcb,
0xbe,
0x39,
0x4a,
0x4c,
0x58,
0xcf,
0xd0,
0xef,
0xaa,
0xfb,
0x43,
0x4d,
0x33,
0x85,
0x45,
0xf9,
0x02,
0x7f,
0x50,
0x3c,
0x9f,
0xa8,
0x51,
0xa3,
0x40,
0x8f,
0x92,
0x9d,
0x38,
0xf5,
0xbc,
0xb6,
0xda,
0x21,
0x10,
0xff,
0xf3,
0xd2,
0xcd,
0x0c,
0x13,
0xec,
0x5f,
0x97,
0x44,
0x17,
0xc4,
0xa7,
0x7e,
0x3d,
0x64,
0x5d,
0x19,
0x73,
0x60,
0x81,
0x4f,
0xdc,
0x22,
0x2a,
0x90,
0x88,
0x46,
0xee,
0xb8,
0x14,
0xde,
0x5e,
0x0b,
0xdb,
0xe0,
0x32,
0x3a,
0x0a,
0x49,
0x06,
0x24,
0x5c,
0xc2,
0xd3,
0xac,
0x62,
0x91,
0x95,
0xe4,
0x79,
0xe7,
0xc8,
0x37,
0x6d,
0x8d,
0xd5,
0x4e,
0xa9,
0x6c,
0x56,
0xf4,
0xea,
0x65,
0x7a,
0xae,
0x08,
0xba,
0x78,
0x25,
0x2e,
0x1c,
0xa6,
0xb4,
0xc6,
0xe8,
0xdd,
0x74,
0x1f,
0x4b,
0xbd,
0x8b,
0x8a,
0x70,
0x3e,
0xb5,
0x66,
0x48,
0x03,
0xf6,
0x0e,
0x61,
0x35,
0x57,
0xb9,
0x86,
0xc1,
0x1d,
0x9e,
0xe1,
0xf8,
0x98,
0x11,
0x69,
0xd9,
0x8e,
0x94,
0x9b,
0x1e,
0x87,
0xe9,
0xce,
0x55,
0x28,
0xdf,
0x8c,
0xa1,
0x89,
0x0d,
0xbf,
0xe6,
0x42,
0x68,
0x41,
0x99,
0x2d,
0x0f,
0xb0,
0x54,
0xbb,
0x16
];
// Compute inverse SBOX lookup table
for (var INVSBOX = [], i = 0; i < 256; i++) INVSBOX[SBOX[i]] = i;
// Compute multiplication in GF(2^8) lookup tables
var MULT2 = [],
MULT3 = [],
MULT9 = [],
MULTB = [],
MULTD = [],
MULTE = [];
function xtime(a, b) {
for (var result = 0, i = 0; i < 8; i++) {
if (b & 1) result ^= a;
var hiBitSet = a & 0x80;
a = (a << 1) & 0xff;
if (hiBitSet) a ^= 0x1b;
b >>>= 1;
}
return result;
}
for (var i = 0; i < 256; i++) {
MULT2[i] = xtime(i, 2);
MULT3[i] = xtime(i, 3);
MULT9[i] = xtime(i, 9);
MULTB[i] = xtime(i, 0xb);
MULTD[i] = xtime(i, 0xd);
MULTE[i] = xtime(i, 0xe);
}
// Precomputed RCon lookup
var RCON = [
0x00,
0x01,
0x02,
0x04,
0x08,
0x10,
0x20,
0x40,
0x80,
0x1b,
0x36
];
// Inner state
var state = [[], [], [], []],
keylength,
nrounds,
keyschedule;
var AES = (C.AES = {
/**
* Public API
*/
encrypt: function (message, password, options) {
options = options || {};
// Determine mode
var mode = options.mode || new C.mode.OFB();
// Allow mode to override options
if (mode.fixOptions) mode.fixOptions(options);
var // Convert to bytes if message is a string
m =
message.constructor == String
? UTF8.stringToBytes(message)
: message,
// Generate random IV
iv = options.iv || util.randomBytes(AES._blocksize * 4),
// Generate key
k =
password.constructor == String
? // Derive key from pass-phrase
C.PBKDF2(password, iv, 32, {
asBytes: true
})
: // else, assume byte array representing cryptographic key
password;
// Encrypt
AES._init(k);
mode.encrypt(AES, m, iv);
// Return ciphertext
m = options.iv ? m : iv.concat(m);
return options && options.asBytes ? m : util.bytesToBase64(m);
},
decrypt: function (ciphertext, password, options) {
options = options || {};
// Determine mode
var mode = options.mode || new C.mode.OFB();
// Allow mode to override options
if (mode.fixOptions) mode.fixOptions(options);
var // Convert to bytes if ciphertext is a string
c =
ciphertext.constructor == String
? util.base64ToBytes(ciphertext)
: ciphertext,
// Separate IV and message
iv = options.iv || c.splice(0, AES._blocksize * 4),
// Generate key
k =
password.constructor == String
? // Derive key from pass-phrase
C.PBKDF2(password, iv, 32, {
asBytes: true
})
: // else, assume byte array representing cryptographic key
password;
// Decrypt
AES._init(k);
mode.decrypt(AES, c, iv);
// Return plaintext
return options && options.asBytes ? c : UTF8.bytesToString(c);
},
/**
* Package private methods and properties
*/
_blocksize: 4,
_encryptblock: function (m, offset) {
// Set input
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = m[offset + col * 4 + row];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[col][row];
}
for (var round = 1; round < nrounds; round++) {
// Sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = SBOX[state[row][col]];
}
// Shift rows
state[1].push(state[1].shift());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].unshift(state[3].pop());
// Mix columns
for (var col = 0; col < 4; col++) {
var s0 = state[0][col],
s1 = state[1][col],
s2 = state[2][col],
s3 = state[3][col];
state[0][col] = MULT2[s0] ^ MULT3[s1] ^ s2 ^ s3;
state[1][col] = s0 ^ MULT2[s1] ^ MULT3[s2] ^ s3;
state[2][col] = s0 ^ s1 ^ MULT2[s2] ^ MULT3[s3];
state[3][col] = MULT3[s0] ^ s1 ^ s2 ^ MULT2[s3];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[round * 4 + col][row];
}
}
// Sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = SBOX[state[row][col]];
}
// Shift rows
state[1].push(state[1].shift());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].unshift(state[3].pop());
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[nrounds * 4 + col][row];
}
// Set output
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
m[offset + col * 4 + row] = state[row][col];
}
},
_decryptblock: function (c, offset) {
// Set input
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = c[offset + col * 4 + row];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[nrounds * 4 + col][row];
}
for (var round = 1; round < nrounds; round++) {
// Inv shift rows
state[1].unshift(state[1].pop());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].push(state[3].shift());
// Inv sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = INVSBOX[state[row][col]];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^=
keyschedule[(nrounds - round) * 4 + col][row];
}
// Inv mix columns
for (var col = 0; col < 4; col++) {
var s0 = state[0][col],
s1 = state[1][col],
s2 = state[2][col],
s3 = state[3][col];
state[0][col] = MULTE[s0] ^ MULTB[s1] ^ MULTD[s2] ^ MULT9[s3];
state[1][col] = MULT9[s0] ^ MULTE[s1] ^ MULTB[s2] ^ MULTD[s3];
state[2][col] = MULTD[s0] ^ MULT9[s1] ^ MULTE[s2] ^ MULTB[s3];
state[3][col] = MULTB[s0] ^ MULTD[s1] ^ MULT9[s2] ^ MULTE[s3];
}
}
// Inv shift rows
state[1].unshift(state[1].pop());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].push(state[3].shift());
// Inv sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = INVSBOX[state[row][col]];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[col][row];
}
// Set output
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
c[offset + col * 4 + row] = state[row][col];
}
},
/**
* Private methods
*/
_init: function (k) {
keylength = k.length / 4;
nrounds = keylength + 6;
AES._keyexpansion(k);
},
// Generate a key schedule
_keyexpansion: function (k) {
keyschedule = [];
for (var row = 0; row < keylength; row++) {
keyschedule[row] = [
k[row * 4],
k[row * 4 + 1],
k[row * 4 + 2],
k[row * 4 + 3]
];
}
for (
var row = keylength;
row < AES._blocksize * (nrounds + 1);
row++
) {
var temp = [
keyschedule[row - 1][0],
keyschedule[row - 1][1],
keyschedule[row - 1][2],
keyschedule[row - 1][3]
];
if (row % keylength == 0) {
// Rot word
temp.push(temp.shift());
// Sub word
temp[0] = SBOX[temp[0]];
temp[1] = SBOX[temp[1]];
temp[2] = SBOX[temp[2]];
temp[3] = SBOX[temp[3]];
temp[0] ^= RCON[row / keylength];
} else if (keylength > 6 && row % keylength == 4) {
// Sub word
temp[0] = SBOX[temp[0]];
temp[1] = SBOX[temp[1]];
temp[2] = SBOX[temp[2]];
temp[3] = SBOX[temp[3]];
}
keyschedule[row] = [
keyschedule[row - keylength][0] ^ temp[0],
keyschedule[row - keylength][1] ^ temp[1],
keyschedule[row - keylength][2] ^ temp[2],
keyschedule[row - keylength][3] ^ temp[3]
];
}
}
});
})();
</script>
<script type="text/javascript">
/*!
* Crypto-JS 2.5.4 BlockModes.js
* contribution from Simon Greatrix
*/
(function (C) {
// Create pad namespace
var C_pad = (C.pad = {});
// Calculate the number of padding bytes required.
function _requiredPadding(cipher, message) {
var blockSizeInBytes = cipher._blocksize * 4;
var reqd = blockSizeInBytes - (message.length % blockSizeInBytes);
return reqd;
}
// Remove padding when the final byte gives the number of padding bytes.
var _unpadLength = function (cipher, message, alg, padding) {
var pad = message.pop();
if (pad == 0) {
throw new Error(
"Invalid zero-length padding specified for " +
alg +
". Wrong cipher specification or key used?"
);
}
var maxPad = cipher._blocksize * 4;
if (pad > maxPad) {
throw new Error(
"Invalid padding length of " +
pad +
" specified for " +
alg +
". Wrong cipher specification or key used?"
);
}
for (var i = 1; i < pad; i++) {
var b = message.pop();
if (padding != undefined && padding != b) {
throw new Error(
"Invalid padding byte of 0x" +
b.toString(16) +
" specified for " +
alg +
". Wrong cipher specification or key used?"
);
}
}
};
// No-operation padding, used for stream ciphers
C_pad.NoPadding = {
pad: function (cipher, message) { },
unpad: function (cipher, message) { }
};
// Zero Padding.
//
// If the message is not an exact number of blocks, the final block is
// completed with 0x00 bytes. There is no unpadding.
C_pad.ZeroPadding = {
pad: function (cipher, message) {
var blockSizeInBytes = cipher._blocksize * 4;
var reqd = message.length % blockSizeInBytes;
if (reqd != 0) {
for (reqd = blockSizeInBytes - reqd; reqd > 0; reqd--) {
message.push(0x00);
}
}
},
unpad: function (cipher, message) {
while (message[message.length - 1] == 0) {
message.pop();
}
}
};
// ISO/IEC 7816-4 padding.
//
// Pads the plain text with an 0x80 byte followed by as many 0x00
// bytes are required to complete the block.
C_pad.iso7816 = {
pad: function (cipher, message) {
var reqd = _requiredPadding(cipher, message);
message.push(0x80);
for (; reqd > 1; reqd--) {
message.push(0x00);
}
},
unpad: function (cipher, message) {
var padLength;
for (
padLength = cipher._blocksize * 4;
padLength > 0;
padLength--
) {
var b = message.pop();
if (b == 0x80) return;
if (b != 0x00) {
throw new Error(
"ISO-7816 padding byte must be 0, not 0x" +
b.toString(16) +
". Wrong cipher specification or key used?"
);
}
}
throw new Error(
"ISO-7816 padded beyond cipher block size. Wrong cipher specification or key used?"
);
}
};
// ANSI X.923 padding
//
// The final block is padded with zeros except for the last byte of the
// last block which contains the number of padding bytes.
C_pad.ansix923 = {
pad: function (cipher, message) {
var reqd = _requiredPadding(cipher, message);
for (var i = 1; i < reqd; i++) {
message.push(0x00);
}
message.push(reqd);
},
unpad: function (cipher, message) {
_unpadLength(cipher, message, "ANSI X.923", 0);
}
};
// ISO 10126
//
// The final block is padded with random bytes except for the last
// byte of the last block which contains the number of padding bytes.
C_pad.iso10126 = {
pad: function (cipher, message) {
var reqd = _requiredPadding(cipher, message);
for (var i = 1; i < reqd; i++) {
message.push(Math.floor(Math.random() * 256));
}
message.push(reqd);
},
unpad: function (cipher, message) {
_unpadLength(cipher, message, "ISO 10126", undefined);
}
};
// PKCS7 padding
//
// PKCS7 is described in RFC 5652. Padding is in whole bytes. The
// value of each added byte is the number of bytes that are added,
// i.e. N bytes, each of value N are added.
C_pad.pkcs7 = {
pad: function (cipher, message) {
var reqd = _requiredPadding(cipher, message);
for (var i = 0; i < reqd; i++) {
message.push(reqd);
}
},
unpad: function (cipher, message) {
_unpadLength(
cipher,
message,
"PKCS 7",
message[message.length - 1]
);
}
};
// Create mode namespace
var C_mode = (C.mode = {});
/**
* Mode base "class".
*/
var Mode = (C_mode.Mode = function (padding) {
if (padding) {
this._padding = padding;
}
});
Mode.prototype = {
encrypt: function (cipher, m, iv) {
this._padding.pad(cipher, m);
this._doEncrypt(cipher, m, iv);
},
decrypt: function (cipher, m, iv) {
this._doDecrypt(cipher, m, iv);
this._padding.unpad(cipher, m);
},
// Default padding
_padding: C_pad.iso7816
};
/**
* Electronic Code Book mode.
*
* ECB applies the cipher directly against each block of the input.
*
* ECB does not require an initialization vector.
*/
var ECB = (C_mode.ECB = function () {
// Call parent constructor
Mode.apply(this, arguments);
});
// Inherit from Mode
var ECB_prototype = (ECB.prototype = new Mode());
// Concrete steps for Mode template
ECB_prototype._doEncrypt = function (cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// Encrypt each block
for (var offset = 0; offset < m.length; offset += blockSizeInBytes) {
cipher._encryptblock(m, offset);
}
};
ECB_prototype._doDecrypt = function (cipher, c, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// Decrypt each block
for (var offset = 0; offset < c.length; offset += blockSizeInBytes) {
cipher._decryptblock(c, offset);
}
};
// ECB never uses an IV
ECB_prototype.fixOptions = function (options) {
options.iv = [];
};
/**
* Cipher block chaining
*
* The first block is XORed with the IV. Subsequent blocks are XOR with the
* previous cipher output.
*/
var CBC = (C_mode.CBC = function () {
// Call parent constructor
Mode.apply(this, arguments);
});
// Inherit from Mode
var CBC_prototype = (CBC.prototype = new Mode());
// Concrete steps for Mode template
CBC_prototype._doEncrypt = function (cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// Encrypt each block
for (var offset = 0; offset < m.length; offset += blockSizeInBytes) {
if (offset == 0) {
// XOR first block using IV
for (var i = 0; i < blockSizeInBytes; i++) m[i] ^= iv[i];
} else {
// XOR this block using previous crypted block
for (var i = 0; i < blockSizeInBytes; i++)
m[offset + i] ^= m[offset + i - blockSizeInBytes];
}
// Encrypt block
cipher._encryptblock(m, offset);
}
};
CBC_prototype._doDecrypt = function (cipher, c, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// At the start, the previously crypted block is the IV
var prevCryptedBlock = iv;
// Decrypt each block
for (var offset = 0; offset < c.length; offset += blockSizeInBytes) {
// Save this crypted block
var thisCryptedBlock = c.slice(offset, offset + blockSizeInBytes);
// Decrypt block
cipher._decryptblock(c, offset);
// XOR decrypted block using previous crypted block
for (var i = 0; i < blockSizeInBytes; i++) {
c[offset + i] ^= prevCryptedBlock[i];
}
prevCryptedBlock = thisCryptedBlock;
}
};
/**
* Cipher feed back
*
* The cipher output is XORed with the plain text to produce the cipher output,
* which is then fed back into the cipher to produce a bit pattern to XOR the
* next block with.
*
* This is a stream cipher mode and does not require padding.
*/
var CFB = (C_mode.CFB = function () {
// Call parent constructor
Mode.apply(this, arguments);
});
// Inherit from Mode
var CFB_prototype = (CFB.prototype = new Mode());
// Override padding
CFB_prototype._padding = C_pad.NoPadding;
// Concrete steps for Mode template
CFB_prototype._doEncrypt = function (cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4,
keystream = iv.slice(0);
// Encrypt each byte
for (var i = 0; i < m.length; i++) {
var j = i % blockSizeInBytes;
if (j == 0) cipher._encryptblock(keystream, 0);
m[i] ^= keystream[j];
keystream[j] = m[i];
}
};
CFB_prototype._doDecrypt = function (cipher, c, iv) {
var blockSizeInBytes = cipher._blocksize * 4,
keystream = iv.slice(0);
// Encrypt each byte
for (var i = 0; i < c.length; i++) {
var j = i % blockSizeInBytes;
if (j == 0) cipher._encryptblock(keystream, 0);
var b = c[i];
c[i] ^= keystream[j];
keystream[j] = b;
}
};
/**
* Output feed back
*
* The cipher repeatedly encrypts its own output. The output is XORed with the
* plain text to produce the cipher text.
*
* This is a stream cipher mode and does not require padding.
*/
var OFB = (C_mode.OFB = function () {
// Call parent constructor
Mode.apply(this, arguments);
});
// Inherit from Mode
var OFB_prototype = (OFB.prototype = new Mode());
// Override padding
OFB_prototype._padding = C_pad.NoPadding;
// Concrete steps for Mode template
OFB_prototype._doEncrypt = function (cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4,
keystream = iv.slice(0);
// Encrypt each byte
for (var i = 0; i < m.length; i++) {
// Generate keystream
if (i % blockSizeInBytes == 0) cipher._encryptblock(keystream, 0);
// Encrypt byte
m[i] ^= keystream[i % blockSizeInBytes];
}
};
OFB_prototype._doDecrypt = OFB_prototype._doEncrypt;
/**
* Counter
* @author Gergely Risko
*
* After every block the last 4 bytes of the IV is increased by one
* with carry and that IV is used for the next block.
*
* This is a stream cipher mode and does not require padding.
*/
var CTR = (C_mode.CTR = function () {
// Call parent constructor
Mode.apply(this, arguments);
});
// Inherit from Mode
var CTR_prototype = (CTR.prototype = new Mode());
// Override padding
CTR_prototype._padding = C_pad.NoPadding;
CTR_prototype._doEncrypt = function (cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
var counter = iv.slice(0);
for (var i = 0; i < m.length;) {
// do not lose iv
var keystream = counter.slice(0);
// Generate keystream for next block
cipher._encryptblock(keystream, 0);
// XOR keystream with block
for (var j = 0; i < m.length && j < blockSizeInBytes; j++, i++) {
m[i] ^= keystream[j];
}
// Increase counter
if (++counter[blockSizeInBytes - 1] == 256) {
counter[blockSizeInBytes - 1] = 0;
if (++counter[blockSizeInBytes - 2] == 256) {
counter[blockSizeInBytes - 2] = 0;
if (++counter[blockSizeInBytes - 3] == 256) {
counter[blockSizeInBytes - 3] = 0;
++counter[blockSizeInBytes - 4];
}
}
}
}
};
CTR_prototype._doDecrypt = CTR_prototype._doEncrypt;
})(Crypto);
</script>
<script type="text/javascript">
/*!
* Crypto-JS v2.0.0 RIPEMD-160
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*
* A JavaScript implementation of the RIPEMD-160 Algorithm
* Version 2.2 Copyright Jeremy Lin, Paul Johnston 2000 - 2009.
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
* Distributed under the BSD License
* See http://pajhome.org.uk/crypt/md5 for details.
* Also http://www.ocf.berkeley.edu/~jjlin/jsotp/
* Ported to Crypto-JS by Stefan Thomas.
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
// Convert a byte array to little-endian 32-bit words
util.bytesToLWords = function (bytes) {
var output = Array(bytes.length >> 2);
for (var i = 0; i < output.length; i++) output[i] = 0;
for (var i = 0; i < bytes.length * 8; i += 8)
output[i >> 5] |= (bytes[i / 8] & 0xff) << i % 32;
return output;
};
// Convert little-endian 32-bit words to a byte array
util.lWordsToBytes = function (words) {
var output = [];
for (var i = 0; i < words.length * 32; i += 8)
output.push((words[i >> 5] >>> i % 32) & 0xff);
return output;
};
// Public API
var RIPEMD160 = (C.RIPEMD160 = function (message, options) {
var digestbytes = util.lWordsToBytes(RIPEMD160._rmd160(message));
return options && options.asBytes
? digestbytes
: options && options.asString
? Binary.bytesToString(digestbytes)
: util.bytesToHex(digestbytes);
});
// The core
RIPEMD160._rmd160 = function (message) {
// Convert to byte array
if (message.constructor == String)
message = UTF8.stringToBytes(message);
var x = util.bytesToLWords(message),
len = message.length * 8;
/* append padding */
x[len >> 5] |= 0x80 << len % 32;
x[(((len + 64) >>> 9) << 4) + 14] = len;
var h0 = 0x67452301;
var h1 = 0xefcdab89;
var h2 = 0x98badcfe;
var h3 = 0x10325476;
var h4 = 0xc3d2e1f0;
for (var i = 0; i < x.length; i += 16) {
var T;
var A1 = h0,
B1 = h1,
C1 = h2,
D1 = h3,
E1 = h4;
var A2 = h0,
B2 = h1,
C2 = h2,
D2 = h3,
E2 = h4;
for (var j = 0; j <= 79; ++j) {
T = safe_add(A1, rmd160_f(j, B1, C1, D1));
T = safe_add(T, x[i + rmd160_r1[j]]);
T = safe_add(T, rmd160_K1(j));
T = safe_add(bit_rol(T, rmd160_s1[j]), E1);
A1 = E1;
E1 = D1;
D1 = bit_rol(C1, 10);
C1 = B1;
B1 = T;
T = safe_add(A2, rmd160_f(79 - j, B2, C2, D2));
T = safe_add(T, x[i + rmd160_r2[j]]);
T = safe_add(T, rmd160_K2(j));
T = safe_add(bit_rol(T, rmd160_s2[j]), E2);
A2 = E2;
E2 = D2;
D2 = bit_rol(C2, 10);
C2 = B2;
B2 = T;
}
T = safe_add(h1, safe_add(C1, D2));
h1 = safe_add(h2, safe_add(D1, E2));
h2 = safe_add(h3, safe_add(E1, A2));
h3 = safe_add(h4, safe_add(A1, B2));
h4 = safe_add(h0, safe_add(B1, C2));
h0 = T;
}
return [h0, h1, h2, h3, h4];
};
function rmd160_f(j, x, y, z) {
return 0 <= j && j <= 15
? x ^ y ^ z
: 16 <= j && j <= 31
? (x & y) | (~x & z)
: 32 <= j && j <= 47
? (x | ~y) ^ z
: 48 <= j && j <= 63
? (x & z) | (y & ~z)
: 64 <= j && j <= 79
? x ^ (y | ~z)
: "rmd160_f: j out of range";
}
function rmd160_K1(j) {
return 0 <= j && j <= 15
? 0x00000000
: 16 <= j && j <= 31
? 0x5a827999
: 32 <= j && j <= 47
? 0x6ed9eba1
: 48 <= j && j <= 63
? 0x8f1bbcdc
: 64 <= j && j <= 79
? 0xa953fd4e
: "rmd160_K1: j out of range";
}
function rmd160_K2(j) {
return 0 <= j && j <= 15
? 0x50a28be6
: 16 <= j && j <= 31
? 0x5c4dd124
: 32 <= j && j <= 47
? 0x6d703ef3
: 48 <= j && j <= 63
? 0x7a6d76e9
: 64 <= j && j <= 79
? 0x00000000
: "rmd160_K2: j out of range";
}
var rmd160_r1 = [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
7,
4,
13,
1,
10,
6,
15,
3,
12,
0,
9,
5,
2,
14,
11,
8,
3,
10,
14,
4,
9,
15,
8,
1,
2,
7,
0,
6,
13,
11,
5,
12,
1,
9,
11,
10,
0,
8,
12,
4,
13,
3,
7,
15,
14,
5,
6,
2,
4,
0,
5,
9,
7,
12,
2,
10,
14,
1,
3,
8,
11,
6,
15,
13
];
var rmd160_r2 = [
5,
14,
7,
0,
9,
2,
11,
4,
13,
6,
15,
8,
1,
10,
3,
12,
6,
11,
3,
7,
0,
13,
5,
10,
14,
15,
8,
12,
4,
9,
1,
2,
15,
5,
1,
3,
7,
14,
6,
9,
11,
8,
12,
2,
10,
0,
4,
13,
8,
6,
4,
1,
3,
11,
15,
0,
5,
12,
2,
13,
9,
7,
10,
14,
12,
15,
10,
4,
1,
5,
8,
7,
6,
2,
13,
14,
0,
3,
9,
11
];
var rmd160_s1 = [
11,
14,
15,
12,
5,
8,
7,
9,
11,
13,
14,
15,
6,
7,
9,
8,
7,
6,
8,
13,
11,
9,
7,
15,
7,
12,
15,
9,
11,
7,
13,
12,
11,
13,
6,
7,
14,
9,
13,
15,
14,
8,
13,
6,
5,
12,
7,
5,
11,
12,
14,
15,
14,
15,
9,
8,
9,
14,
5,
6,
8,
6,
5,
12,
9,
15,
5,
11,
6,
8,
13,
12,
5,
12,
13,
14,
11,
8,
5,
6
];
var rmd160_s2 = [
8,
9,
9,
11,
13,
15,
15,
5,
7,
7,
8,
11,
14,
14,
12,
6,
9,
13,
15,
7,
12,
8,
9,
11,
7,
7,
12,
7,
6,
15,
13,
11,
9,
7,
15,
11,
8,
6,
6,
14,
12,
13,
5,
14,
13,
13,
7,
5,
15,
5,
8,
11,
14,
14,
6,
14,
6,
9,
12,
9,
12,
5,
15,
8,
8,
5,
12,
9,
12,
5,
14,
6,
8,
13,
6,
5,
15,
13,
11,
11
];
/*
* Add integers, wrapping at 2^32. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*/
function safe_add(x, y) {
var lsw = (x & 0xffff) + (y & 0xffff);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xffff);
}
/*
* Bitwise rotate a 32-bit number to the left.
*/
function bit_rol(num, cnt) {
return (num << cnt) | (num >>> (32 - cnt));
}
})();
</script>
<script type="text/javascript">
/*!
* Random number generator with ArcFour PRNG
*
* NOTE: For best results, put code like
* <body onclick='SecureRandom.seedTime();' onkeypress='SecureRandom.seedTime();'>
* in your main HTML document.
*
* Copyright Tom Wu, bitaddress.org BSD License.
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
*/
(function () {
// Constructor function of Global SecureRandom object
var sr = (window.SecureRandom = function () { });
// Properties
sr.state;
sr.pool;
sr.pptr;
sr.poolCopyOnInit;
// Pool size must be a multiple of 4 and greater than 32.
// An array of bytes the size of the pool will be passed to init()
sr.poolSize = 256;
// --- object methods ---
// public method
// ba: byte array
sr.prototype.nextBytes = function (ba) {
var i;
if (
window.crypto &&
window.crypto.getRandomValues &&
window.Uint8Array
) {
try {
var rvBytes = new Uint8Array(ba.length);
window.crypto.getRandomValues(rvBytes);
for (i = 0; i < ba.length; ++i) ba[i] = sr.getByte() ^ rvBytes[i];
return;
} catch (e) {
alert(e);
}
}
for (i = 0; i < ba.length; ++i) ba[i] = sr.getByte();
};
// --- static methods ---
// Mix in the current time (w/milliseconds) into the pool
// NOTE: this method should be called from body click/keypress event handlers to increase entropy
sr.seedTime = function () {
sr.seedInt(new Date().getTime());
};
sr.getByte = function () {
if (sr.state == null) {
sr.seedTime();
sr.state = sr.ArcFour(); // Plug in your RNG constructor here
sr.state.init(sr.pool);
sr.poolCopyOnInit = [];
for (sr.pptr = 0; sr.pptr < sr.pool.length; ++sr.pptr)
sr.poolCopyOnInit[sr.pptr] = sr.pool[sr.pptr];
sr.pptr = 0;
}
// TODO: allow reseeding after first request
return sr.state.next();
};
// Mix in a 32-bit integer into the pool
sr.seedInt = function (x) {
sr.seedInt8(x);
sr.seedInt8(x >> 8);
sr.seedInt8(x >> 16);
sr.seedInt8(x >> 24);
};
// Mix in a 16-bit integer into the pool
sr.seedInt16 = function (x) {
sr.seedInt8(x);
sr.seedInt8(x >> 8);
};
// Mix in a 8-bit integer into the pool
sr.seedInt8 = function (x) {
sr.pool[sr.pptr++] ^= x & 255;
if (sr.pptr >= sr.poolSize) sr.pptr -= sr.poolSize;
};
// Arcfour is a PRNG
sr.ArcFour = function () {
function Arcfour() {
this.i = 0;
this.j = 0;
this.S = new Array();
}
// Initialize arcfour context from key, an array of ints, each from [0..255]
function ARC4init(key) {
var i, j, t;
for (i = 0; i < 256; ++i) this.S[i] = i;
j = 0;
for (i = 0; i < 256; ++i) {
j = (j + this.S[i] + key[i % key.length]) & 255;
t = this.S[i];
this.S[i] = this.S[j];
this.S[j] = t;
}
this.i = 0;
this.j = 0;
}
function ARC4next() {
var t;
this.i = (this.i + 1) & 255;
this.j = (this.j + this.S[this.i]) & 255;
t = this.S[this.i];
this.S[this.i] = this.S[this.j];
this.S[this.j] = t;
return this.S[(t + this.S[this.i]) & 255];
}
Arcfour.prototype.init = ARC4init;
Arcfour.prototype.next = ARC4next;
return new Arcfour();
};
// Initialize the pool with junk if needed.
if (sr.pool == null) {
sr.pool = new Array();
sr.pptr = 0;
var t;
if (
window.crypto &&
window.crypto.getRandomValues &&
window.Uint8Array
) {
try {
// Use webcrypto if available
var ua = new Uint8Array(sr.poolSize);
window.crypto.getRandomValues(ua);
for (t = 0; t < sr.poolSize; ++t) sr.pool[sr.pptr++] = ua[t];
} catch (e) {
alert(e);
}
}
while (sr.pptr < sr.poolSize) {
// extract some randomness from Math.random()
t = Math.floor(65536 * Math.random());
sr.pool[sr.pptr++] = t >>> 8;
sr.pool[sr.pptr++] = t & 255;
}
sr.pptr = Math.floor(sr.poolSize * Math.random());
sr.seedTime();
// entropy
var entropyStr = "";
// screen size and color depth: ~4.8 to ~5.4 bits
entropyStr +=
window.screen.height *
window.screen.width *
window.screen.colorDepth;
entropyStr +=
window.screen.availHeight *
window.screen.availWidth *
window.screen.pixelDepth;
// time zone offset: ~4 bits
var dateObj = new Date();
var timeZoneOffset = dateObj.getTimezoneOffset();
entropyStr += timeZoneOffset;
// user agent: ~8.3 to ~11.6 bits
entropyStr += navigator.userAgent;
// browser plugin details: ~16.2 to ~21.8 bits
var pluginsStr = "";
for (var i = 0; i < navigator.plugins.length; i++) {
pluginsStr +=
navigator.plugins[i].name +
" " +
navigator.plugins[i].filename +
" " +
navigator.plugins[i].description +
" " +
navigator.plugins[i].version +
", ";
}
var mimeTypesStr = "";
for (var i = 0; i < navigator.mimeTypes.length; i++) {
mimeTypesStr +=
navigator.mimeTypes[i].description +
" " +
navigator.mimeTypes[i].type +
" " +
navigator.mimeTypes[i].suffixes +
", ";
}
entropyStr += pluginsStr + mimeTypesStr;
// cookies and storage: 1 bit
entropyStr +=
navigator.cookieEnabled +
typeof sessionStorage +
typeof localStorage;
// language: ~7 bit
entropyStr += navigator.language;
// history: ~2 bit
entropyStr += window.history.length;
// location
entropyStr += window.location;
var entropyBytes = Crypto.SHA256(entropyStr, {
asBytes: true
});
for (var i = 0; i < entropyBytes.length; i++) {
sr.seedInt8(entropyBytes[i]);
}
}
})();
</script>
<script type="text/javascript">
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/faa10f0f6a1fff0b9a99fffb9bc30cee33b17212/src/ecdsa.js
/*!
* Basic Javascript Elliptic Curve implementation
* Ported loosely from BouncyCastle's Java EC code
* Only Fp curves implemented for now
*
* Copyright Tom Wu, bitaddress.org BSD License.
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
*/
(function () {
// Constructor function of Global EllipticCurve object
var ec = (window.EllipticCurve = function () { });
// ----------------
// ECFieldElementFp constructor
// q instanceof BigInteger
// x instanceof BigInteger
ec.FieldElementFp = function (q, x) {
this.x = x;
// TODO if(x.compareTo(q) >= 0) error
this.q = q;
};
ec.FieldElementFp.prototype.equals = function (other) {
if (other == this) return true;
return this.q.equals(other.q) && this.x.equals(other.x);
};
ec.FieldElementFp.prototype.toBigInteger = function () {
return this.x;
};
ec.FieldElementFp.prototype.negate = function () {
return new ec.FieldElementFp(this.q, this.x.negate().mod(this.q));
};
ec.FieldElementFp.prototype.add = function (b) {
return new ec.FieldElementFp(
this.q,
this.x.add(b.toBigInteger()).mod(this.q)
);
};
ec.FieldElementFp.prototype.subtract = function (b) {
return new ec.FieldElementFp(
this.q,
this.x.subtract(b.toBigInteger()).mod(this.q)
);
};
ec.FieldElementFp.prototype.multiply = function (b) {
return new ec.FieldElementFp(
this.q,
this.x.multiply(b.toBigInteger()).mod(this.q)
);
};
ec.FieldElementFp.prototype.square = function () {
return new ec.FieldElementFp(this.q, this.x.square().mod(this.q));
};
ec.FieldElementFp.prototype.divide = function (b) {
return new ec.FieldElementFp(
this.q,
this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q)
);
};
ec.FieldElementFp.prototype.getByteLength = function () {
return Math.floor((this.toBigInteger().bitLength() + 7) / 8);
};
// D.1.4 91
/**
* return a sqrt root - the routine verifies that the calculation
* returns the right value - if none exists it returns null.
*
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
* Ported to JavaScript by bitaddress.org
*/
ec.FieldElementFp.prototype.sqrt = function () {
if (!this.q.testBit(0)) throw new Error("even value of q");
// p mod 4 == 3
if (this.q.testBit(1)) {
// z = g^(u+1) + p, p = 4u + 3
var z = new ec.FieldElementFp(
this.q,
this.x.modPow(this.q.shiftRight(2).add(BigInteger.ONE), this.q)
);
return z.square().equals(this) ? z : null;
}
// p mod 4 == 1
var qMinusOne = this.q.subtract(BigInteger.ONE);
var legendreExponent = qMinusOne.shiftRight(1);
if (!this.x.modPow(legendreExponent, this.q).equals(BigInteger.ONE))
return null;
var u = qMinusOne.shiftRight(2);
var k = u.shiftLeft(1).add(BigInteger.ONE);
var Q = this.x;
var fourQ = Q.shiftLeft(2).mod(this.q);
var U, V;
do {
var rand = new SecureRandom();
var P;
do {
P = new BigInteger(this.q.bitLength(), rand);
} while (
P.compareTo(this.q) >= 0 ||
!P.multiply(P)
.subtract(fourQ)
.modPow(legendreExponent, this.q)
.equals(qMinusOne)
);
var result = ec.FieldElementFp.fastLucasSequence(this.q, P, Q, k);
U = result[0];
V = result[1];
if (
V.multiply(V)
.mod(this.q)
.equals(fourQ)
) {
// Integer division by 2, mod q
if (V.testBit(0)) {
V = V.add(this.q);
}
V = V.shiftRight(1);
return new ec.FieldElementFp(this.q, V);
}
} while (U.equals(BigInteger.ONE) || U.equals(qMinusOne));
return null;
};
/*
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
* Ported to JavaScript by bitaddress.org
*/
ec.FieldElementFp.fastLucasSequence = function (p, P, Q, k) {
// TODO Research and apply "common-multiplicand multiplication here"
var n = k.bitLength();
var s = k.getLowestSetBit();
var Uh = BigInteger.ONE;
var Vl = BigInteger.TWO;
var Vh = P;
var Ql = BigInteger.ONE;
var Qh = BigInteger.ONE;
for (var j = n - 1; j >= s + 1; --j) {
Ql = Ql.multiply(Qh).mod(p);
if (k.testBit(j)) {
Qh = Ql.multiply(Q).mod(p);
Uh = Uh.multiply(Vh).mod(p);
Vl = Vh.multiply(Vl)
.subtract(P.multiply(Ql))
.mod(p);
Vh = Vh.multiply(Vh)
.subtract(Qh.shiftLeft(1))
.mod(p);
} else {
Qh = Ql;
Uh = Uh.multiply(Vl)
.subtract(Ql)
.mod(p);
Vh = Vh.multiply(Vl)
.subtract(P.multiply(Ql))
.mod(p);
Vl = Vl.multiply(Vl)
.subtract(Ql.shiftLeft(1))
.mod(p);
}
}
Ql = Ql.multiply(Qh).mod(p);
Qh = Ql.multiply(Q).mod(p);
Uh = Uh.multiply(Vl)
.subtract(Ql)
.mod(p);
Vl = Vh.multiply(Vl)
.subtract(P.multiply(Ql))
.mod(p);
Ql = Ql.multiply(Qh).mod(p);
for (var j = 1; j <= s; ++j) {
Uh = Uh.multiply(Vl).mod(p);
Vl = Vl.multiply(Vl)
.subtract(Ql.shiftLeft(1))
.mod(p);
Ql = Ql.multiply(Ql).mod(p);
}
return [Uh, Vl];
};
// ----------------
// ECPointFp constructor
ec.PointFp = function (curve, x, y, z, compressed) {
this.curve = curve;
this.x = x;
this.y = y;
// Projective coordinates: either zinv == null or z * zinv == 1
// z and zinv are just BigIntegers, not fieldElements
if (z == null) {
this.z = BigInteger.ONE;
} else {
this.z = z;
}
this.zinv = null;
// compression flag
this.compressed = !!compressed;
};
ec.PointFp.prototype.getX = function () {
if (this.zinv == null) {
this.zinv = this.z.modInverse(this.curve.q);
}
var r = this.x.toBigInteger().multiply(this.zinv);
this.curve.reduce(r);
return this.curve.fromBigInteger(r);
};
ec.PointFp.prototype.getY = function () {
if (this.zinv == null) {
this.zinv = this.z.modInverse(this.curve.q);
}
var r = this.y.toBigInteger().multiply(this.zinv);
this.curve.reduce(r);
return this.curve.fromBigInteger(r);
};
ec.PointFp.prototype.equals = function (other) {
if (other == this) return true;
if (this.isInfinity()) return other.isInfinity();
if (other.isInfinity()) return this.isInfinity();
var u, v;
// u = Y2 * Z1 - Y1 * Z2
u = other.y
.toBigInteger()
.multiply(this.z)
.subtract(this.y.toBigInteger().multiply(other.z))
.mod(this.curve.q);
if (!u.equals(BigInteger.ZERO)) return false;
// v = X2 * Z1 - X1 * Z2
v = other.x
.toBigInteger()
.multiply(this.z)
.subtract(this.x.toBigInteger().multiply(other.z))
.mod(this.curve.q);
return v.equals(BigInteger.ZERO);
};
ec.PointFp.prototype.isInfinity = function () {
if (this.x == null && this.y == null) return true;
return (
this.z.equals(BigInteger.ZERO) &&
!this.y.toBigInteger().equals(BigInteger.ZERO)
);
};
ec.PointFp.prototype.negate = function () {
return new ec.PointFp(this.curve, this.x, this.y.negate(), this.z);
};
ec.PointFp.prototype.add = function (b) {
if (this.isInfinity()) return b;
if (b.isInfinity()) return this;
// u = Y2 * Z1 - Y1 * Z2
var u = b.y
.toBigInteger()
.multiply(this.z)
.subtract(this.y.toBigInteger().multiply(b.z))
.mod(this.curve.q);
// v = X2 * Z1 - X1 * Z2
var v = b.x
.toBigInteger()
.multiply(this.z)
.subtract(this.x.toBigInteger().multiply(b.z))
.mod(this.curve.q);
if (BigInteger.ZERO.equals(v)) {
if (BigInteger.ZERO.equals(u)) {
return this.twice(); // this == b, so double
}
return this.curve.getInfinity(); // this = -b, so infinity
}
var THREE = new BigInteger("3");
var x1 = this.x.toBigInteger();
var y1 = this.y.toBigInteger();
var x2 = b.x.toBigInteger();
var y2 = b.y.toBigInteger();
var v2 = v.square();
var v3 = v2.multiply(v);
var x1v2 = x1.multiply(v2);
var zu2 = u.square().multiply(this.z);
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
var x3 = zu2
.subtract(x1v2.shiftLeft(1))
.multiply(b.z)
.subtract(v3)
.multiply(v)
.mod(this.curve.q);
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
var y3 = x1v2
.multiply(THREE)
.multiply(u)
.subtract(y1.multiply(v3))
.subtract(zu2.multiply(u))
.multiply(b.z)
.add(u.multiply(v3))
.mod(this.curve.q);
// z3 = v^3 * z1 * z2
var z3 = v3
.multiply(this.z)
.multiply(b.z)
.mod(this.curve.q);
return new ec.PointFp(
this.curve,
this.curve.fromBigInteger(x3),
this.curve.fromBigInteger(y3),
z3
);
};
ec.PointFp.prototype.twice = function () {
if (this.isInfinity()) return this;
if (this.y.toBigInteger().signum() == 0)
return this.curve.getInfinity();
// TODO: optimized handling of constants
var THREE = new BigInteger("3");
var x1 = this.x.toBigInteger();
var y1 = this.y.toBigInteger();
var y1z1 = y1.multiply(this.z);
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q);
var a = this.curve.a.toBigInteger();
// w = 3 * x1^2 + a * z1^2
var w = x1.square().multiply(THREE);
if (!BigInteger.ZERO.equals(a)) {
w = w.add(this.z.square().multiply(a));
}
w = w.mod(this.curve.q);
//this.curve.reduce(w);
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
var x3 = w
.square()
.subtract(x1.shiftLeft(3).multiply(y1sqz1))
.shiftLeft(1)
.multiply(y1z1)
.mod(this.curve.q);
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
var y3 = w
.multiply(THREE)
.multiply(x1)
.subtract(y1sqz1.shiftLeft(1))
.shiftLeft(2)
.multiply(y1sqz1)
.subtract(w.square().multiply(w))
.mod(this.curve.q);
// z3 = 8 * (y1 * z1)^3
var z3 = y1z1
.square()
.multiply(y1z1)
.shiftLeft(3)
.mod(this.curve.q);
return new ec.PointFp(
this.curve,
this.curve.fromBigInteger(x3),
this.curve.fromBigInteger(y3),
z3
);
};
// Simple NAF (Non-Adjacent Form) multiplication algorithm
// TODO: modularize the multiplication algorithm
ec.PointFp.prototype.multiply = function (k) {
if (this.isInfinity()) return this;
if (k.signum() == 0) return this.curve.getInfinity();
var e = k;
var h = e.multiply(new BigInteger("3"));
var neg = this.negate();
var R = this;
var i;
for (i = h.bitLength() - 2; i > 0; --i) {
R = R.twice();
var hBit = h.testBit(i);
var eBit = e.testBit(i);
if (hBit != eBit) {
R = R.add(hBit ? this : neg);
}
}
return R;
};
// Compute this*j + x*k (simultaneous multiplication)
ec.PointFp.prototype.multiplyTwo = function (j, x, k) {
var i;
if (j.bitLength() > k.bitLength()) i = j.bitLength() - 1;
else i = k.bitLength() - 1;
var R = this.curve.getInfinity();
var both = this.add(x);
while (i >= 0) {
R = R.twice();
if (j.testBit(i)) {
if (k.testBit(i)) {
R = R.add(both);
} else {
R = R.add(this);
}
} else {
if (k.testBit(i)) {
R = R.add(x);
}
}
--i;
}
return R;
};
// patched by bitaddress.org and Casascius for use with Bitcoin.ECKey
// patched by coretechs to support compressed public keys
ec.PointFp.prototype.getEncoded = function (compressed) {
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
var len = 32; // integerToBytes will zero pad if integer is less than 32 bytes. 32 bytes length is required by the Bitcoin protocol.
var enc = ec.integerToBytes(x, len);
// when compressed prepend byte depending if y point is even or odd
if (compressed) {
if (y.isEven()) {
enc.unshift(0x02);
} else {
enc.unshift(0x03);
}
} else {
enc.unshift(0x04);
enc = enc.concat(ec.integerToBytes(y, len)); // uncompressed public key appends the bytes of the y point
}
return enc;
};
ec.PointFp.decodeFrom = function (curve, enc) {
var type = enc[0];
var dataLen = enc.length - 1;
// Extract x and y as byte arrays
var xBa = enc.slice(1, 1 + dataLen / 2);
var yBa = enc.slice(1 + dataLen / 2, 1 + dataLen);
// Prepend zero byte to prevent interpretation as negative integer
xBa.unshift(0);
yBa.unshift(0);
// Convert to BigIntegers
var x = new BigInteger(xBa);
var y = new BigInteger(yBa);
// Return point
return new ec.PointFp(
curve,
curve.fromBigInteger(x),
curve.fromBigInteger(y)
);
};
ec.PointFp.prototype.add2D = function (b) {
if (this.isInfinity()) return b;
if (b.isInfinity()) return this;
if (this.x.equals(b.x)) {
if (this.y.equals(b.y)) {
// this = b, i.e. this must be doubled
return this.twice();
}
// this = -b, i.e. the result is the point at infinity
return this.curve.getInfinity();
}
var x_x = b.x.subtract(this.x);
var y_y = b.y.subtract(this.y);
var gamma = y_y.divide(x_x);
var x3 = gamma
.square()
.subtract(this.x)
.subtract(b.x);
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
return new ec.PointFp(this.curve, x3, y3);
};
ec.PointFp.prototype.twice2D = function () {
if (this.isInfinity()) return this;
if (this.y.toBigInteger().signum() == 0) {
// if y1 == 0, then (x1, y1) == (x1, -y1)
// and hence this = -this and thus 2(x1, y1) == infinity
return this.curve.getInfinity();
}
var TWO = this.curve.fromBigInteger(BigInteger.valueOf(2));
var THREE = this.curve.fromBigInteger(BigInteger.valueOf(3));
var gamma = this.x
.square()
.multiply(THREE)
.add(this.curve.a)
.divide(this.y.multiply(TWO));
var x3 = gamma.square().subtract(this.x.multiply(TWO));
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
return new ec.PointFp(this.curve, x3, y3);
};
ec.PointFp.prototype.multiply2D = function (k) {
if (this.isInfinity()) return this;
if (k.signum() == 0) return this.curve.getInfinity();
var e = k;
var h = e.multiply(new BigInteger("3"));
var neg = this.negate();
var R = this;
var i;
for (i = h.bitLength() - 2; i > 0; --i) {
R = R.twice();
var hBit = h.testBit(i);
var eBit = e.testBit(i);
if (hBit != eBit) {
R = R.add2D(hBit ? this : neg);
}
}
return R;
};
ec.PointFp.prototype.isOnCurve = function () {
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
var a = this.curve.getA().toBigInteger();
var b = this.curve.getB().toBigInteger();
var n = this.curve.getQ();
var lhs = y.multiply(y).mod(n);
var rhs = x
.multiply(x)
.multiply(x)
.add(a.multiply(x))
.add(b)
.mod(n);
return lhs.equals(rhs);
};
ec.PointFp.prototype.toString = function () {
return (
"(" +
this.getX()
.toBigInteger()
.toString() +
"," +
this.getY()
.toBigInteger()
.toString() +
")"
);
};
/**
* Validate an elliptic curve point.
*
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
*/
ec.PointFp.prototype.validate = function () {
var n = this.curve.getQ();
// Check Q != O
if (this.isInfinity()) {
throw new Error("Point is at infinity.");
}
// Check coordinate bounds
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
if (
x.compareTo(BigInteger.ONE) < 0 ||
x.compareTo(n.subtract(BigInteger.ONE)) > 0
) {
throw new Error("x coordinate out of bounds");
}
if (
y.compareTo(BigInteger.ONE) < 0 ||
y.compareTo(n.subtract(BigInteger.ONE)) > 0
) {
throw new Error("y coordinate out of bounds");
}
// Check y^2 = x^3 + ax + b (mod n)
if (!this.isOnCurve()) {
throw new Error("Point is not on the curve.");
}
// Check nQ = 0 (Q is a scalar multiple of G)
if (this.multiply(n).isInfinity()) {
// TODO: This check doesn't work - fix.
throw new Error("Point is not a scalar multiple of G.");
}
return true;
};
// ----------------
// ECCurveFp constructor
ec.CurveFp = function (q, a, b) {
this.q = q;
this.a = this.fromBigInteger(a);
this.b = this.fromBigInteger(b);
this.infinity = new ec.PointFp(this, null, null);
this.reducer = new Barrett(this.q);
};
ec.CurveFp.prototype.getQ = function () {
return this.q;
};
ec.CurveFp.prototype.getA = function () {
return this.a;
};
ec.CurveFp.prototype.getB = function () {
return this.b;
};
ec.CurveFp.prototype.equals = function (other) {
if (other == this) return true;
return (
this.q.equals(other.q) &&
this.a.equals(other.a) &&
this.b.equals(other.b)
);
};
ec.CurveFp.prototype.getInfinity = function () {
return this.infinity;
};
ec.CurveFp.prototype.fromBigInteger = function (x) {
return new ec.FieldElementFp(this.q, x);
};
ec.CurveFp.prototype.reduce = function (x) {
this.reducer.reduce(x);
};
// for now, work with hex strings because they're easier in JS
// compressed support added by bitaddress.org
ec.CurveFp.prototype.decodePointHex = function (s) {
var firstByte = parseInt(s.substr(0, 2), 16);
switch (
firstByte // first byte
) {
case 0:
return this.infinity;
case 2: // compressed
case 3: // compressed
var yTilde = firstByte & 1;
var xHex = s.substr(2, s.length - 2);
var X1 = new BigInteger(xHex, 16);
return this.decompressPoint(yTilde, X1);
case 4: // uncompressed
case 6: // hybrid
case 7: // hybrid
var len = (s.length - 2) / 2;
var xHex = s.substr(2, len);
var yHex = s.substr(len + 2, len);
return new ec.PointFp(
this,
this.fromBigInteger(new BigInteger(xHex, 16)),
this.fromBigInteger(new BigInteger(yHex, 16))
);
default:
// unsupported
return null;
}
};
ec.CurveFp.prototype.encodePointHex = function (p) {
if (p.isInfinity()) return "00";
var xHex = p
.getX()
.toBigInteger()
.toString(16);
var yHex = p
.getY()
.toBigInteger()
.toString(16);
var oLen = this.getQ().toString(16).length;
if (oLen % 2 != 0) oLen++;
while (xHex.length < oLen) {
xHex = "0" + xHex;
}
while (yHex.length < oLen) {
yHex = "0" + yHex;
}
return "04" + xHex + yHex;
};
/*
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
* Ported to JavaScript by bitaddress.org
*
* Number yTilde
* BigInteger X1
*/
ec.CurveFp.prototype.decompressPoint = function (yTilde, X1) {
var x = this.fromBigInteger(X1);
var alpha = x.multiply(x.square().add(this.getA())).add(this.getB());
var beta = alpha.sqrt();
// if we can't find a sqrt we haven't got a point on the curve - run!
if (beta == null) throw new Error("Invalid point compression");
var betaValue = beta.toBigInteger();
var bit0 = betaValue.testBit(0) ? 1 : 0;
if (bit0 != yTilde) {
// Use the other root
beta = this.fromBigInteger(this.getQ().subtract(betaValue));
}
return new ec.PointFp(this, x, beta, null, true);
};
ec.fromHex = function (s) {
return new BigInteger(s, 16);
};
ec.integerToBytes = function (i, len) {
var bytes = i.toByteArrayUnsigned();
if (len < bytes.length) {
bytes = bytes.slice(bytes.length - len);
} else
while (len > bytes.length) {
bytes.unshift(0);
}
return bytes;
};
// Named EC curves
// ----------------
// X9ECParameters constructor
ec.X9Parameters = function (curve, g, n, h) {
this.curve = curve;
this.g = g;
this.n = n;
this.h = h;
};
ec.X9Parameters.prototype.getCurve = function () {
return this.curve;
};
ec.X9Parameters.prototype.getG = function () {
return this.g;
};
ec.X9Parameters.prototype.getN = function () {
return this.n;
};
ec.X9Parameters.prototype.getH = function () {
return this.h;
};
// secp256k1 is the Curve used by Bitcoin
ec.secNamedCurves = {
// used by Bitcoin
secp256k1: function () {
// p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1
var p = ec.fromHex(
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F"
);
var a = BigInteger.ZERO;
var b = ec.fromHex("7");
var n = ec.fromHex(
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141"
);
var h = BigInteger.ONE;
var curve = new ec.CurveFp(p, a, b);
var G = curve.decodePointHex(
"04" +
"79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798" +
"483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8"
);
return new ec.X9Parameters(curve, G, n, h);
}
};
// secp256k1 called by Bitcoin's ECKEY
ec.getSECCurveByName = function (name) {
if (ec.secNamedCurves[name] == undefined) return null;
return ec.secNamedCurves[name]();
};
})();
</script>
<script type="text/javascript">
// secrets.js - by Alexander Stetsyuk - released under MIT License -- Implementation of Shamir Secret Sharing Scheme
(function (exports, global) {
var defaults = {
bits: 8, // default number of bits
radix: 16, // work with HEX by default
minBits: 3,
maxBits: 20, // this permits 1,048,575 shares, though going this high is NOT recommended in JS!
bytesPerChar: 2,
maxBytesPerChar: 6, // Math.pow(256,7) > Math.pow(2,53)
// Primitive polynomials (in decimal form) for Galois Fields GF(2^n), for 2 <= n <= 30
// The index of each term in the array corresponds to the n for that polynomial
// i.e. to get the polynomial for n=16, use primitivePolynomials[16]
primitivePolynomials: [
null,
null,
1,
3,
3,
5,
3,
3,
29,
17,
9,
5,
83,
27,
43,
3,
45,
9,
39,
39,
9,
5,
3,
33,
27,
9,
71,
39,
9,
5,
83
],
// warning for insecure PRNG
warning:
"WARNING:\nA secure random number generator was not found.\nUsing Math.random(), which is NOT cryptographically strong!"
};
// Protected settings object
var config = {};
/** @expose **/
exports.getConfig = function () {
return {
bits: config.bits,
unsafePRNG: config.unsafePRNG
};
};
function init(bits) {
if (
bits &&
(typeof bits !== "number" ||
bits % 1 !== 0 ||
bits < defaults.minBits ||
bits > defaults.maxBits)
) {
throw new Error(
"Number of bits must be an integer between " +
defaults.minBits +
" and " +
defaults.maxBits +
", inclusive."
);
}
config.radix = defaults.radix;
config.bits = bits || defaults.bits;
config.size = Math.pow(2, config.bits);
config.max = config.size - 1;
// Construct the exp and log tables for multiplication.
var logs = [],
exps = [],
x = 1,
primitive = defaults.primitivePolynomials[config.bits];
for (var i = 0; i < config.size; i++) {
exps[i] = x;
logs[x] = i;
x <<= 1;
if (x >= config.size) {
x ^= primitive;
x &= config.max;
}
}
config.logs = logs;
config.exps = exps;
}
/** @expose **/
exports.init = init;
function isInited() {
if (
!config.bits ||
!config.size ||
!config.max ||
!config.logs ||
!config.exps ||
config.logs.length !== config.size ||
config.exps.length !== config.size
) {
return false;
}
return true;
}
// Returns a pseudo-random number generator of the form function(bits){}
// which should output a random string of 1's and 0's of length `bits`
function getRNG() {
var randomBits, crypto;
function construct(bits, arr, radix, size) {
var str = "",
i = 0,
len = arr.length - 1;
while (i < len || str.length < bits) {
str += padLeft(parseInt(arr[i], radix).toString(2), size);
i++;
}
str = str.substr(-bits);
if ((str.match(/0/g) || []).length === str.length) {
// all zeros?
return null;
} else {
return str;
}
}
// node.js crypto.randomBytes()
if (
typeof require === "function" &&
(crypto = require("crypto")) &&
(randomBits = crypto["randomBytes"])
) {
return function (bits) {
var bytes = Math.ceil(bits / 8),
str = null;
while (str === null) {
str = construct(bits, randomBits(bytes).toString("hex"), 16, 4);
}
return str;
};
}
// browsers with window.crypto.getRandomValues()
if (
global["crypto"] &&
typeof global["crypto"]["getRandomValues"] === "function" &&
typeof global["Uint32Array"] === "function"
) {
crypto = global["crypto"];
return function (bits) {
var elems = Math.ceil(bits / 32),
str = null,
arr = new global["Uint32Array"](elems);
while (str === null) {
crypto["getRandomValues"](arr);
str = construct(bits, arr, 10, 32);
}
return str;
};
}
// A totally insecure RNG!!! (except in Safari)
// Will produce a warning every time it is called.
config.unsafePRNG = true;
warn();
var bitsPerNum = 32;
var max = Math.pow(2, bitsPerNum) - 1;
return function (bits) {
var elems = Math.ceil(bits / bitsPerNum);
var arr = [],
str = null;
while (str === null) {
for (var i = 0; i < elems; i++) {
arr[i] = Math.floor(Math.random() * max + 1);
}
str = construct(bits, arr, 10, bitsPerNum);
}
return str;
};
}
// Warn about using insecure rng.
// Called when Math.random() is being used.
function warn() {
global["console"]["warn"](defaults.warning);
if (typeof global["alert"] === "function" && config.alert) {
global["alert"](defaults.warning);
}
}
// Set the PRNG to use. If no RNG function is supplied, pick a default using getRNG()
/** @expose **/
exports.setRNG = function (rng, alert) {
if (!isInited()) {
this.init();
}
config.unsafePRNG = false;
rng = rng || getRNG();
// test the RNG (5 times)
if (
typeof rng !== "function" ||
typeof rng(config.bits) !== "string" ||
!parseInt(rng(config.bits), 2) ||
rng(config.bits).length > config.bits ||
rng(config.bits).length < config.bits
) {
throw new Error(
"Random number generator is invalid. Supply an RNG of the form function(bits){} that returns a string containing 'bits' number of random 1's and 0's."
);
} else {
config.rng = rng;
}
config.alert = !!alert;
return !!config.unsafePRNG;
};
function isSetRNG() {
return typeof config.rng === "function";
}
// Generates a random bits-length number string using the PRNG
/** @expose **/
exports.random = function (bits) {
if (!isSetRNG()) {
this.setRNG();
}
if (typeof bits !== "number" || bits % 1 !== 0 || bits < 2) {
throw new Error(
"Number of bits must be an integer greater than 1."
);
}
if (config.unsafePRNG) {
warn();
}
return bin2hex(config.rng(bits));
};
// Divides a `secret` number String str expressed in radix `inputRadix` (optional, default 16)
// into `numShares` shares, each expressed in radix `outputRadix` (optional, default to `inputRadix`),
// requiring `threshold` number of shares to reconstruct the secret.
// Optionally, zero-pads the secret to a length that is a multiple of padLength before sharing.
/** @expose **/
exports.share = function (
secret,
numShares,
threshold,
padLength,
withoutPrefix
) {
if (!isInited()) {
this.init();
}
if (!isSetRNG()) {
this.setRNG();
}
padLength = padLength || 0;
if (typeof secret !== "string") {
throw new Error("Secret must be a string.");
}
if (
typeof numShares !== "number" ||
numShares % 1 !== 0 ||
numShares < 2
) {
throw new Error(
"Number of shares must be an integer between 2 and 2^bits-1 (" +
config.max +
"), inclusive."
);
}
if (numShares > config.max) {
var neededBits = Math.ceil(Math.log(numShares + 1) / Math.LN2);
throw new Error(
"Number of shares must be an integer between 2 and 2^bits-1 (" +
config.max +
"), inclusive. To create " +
numShares +
" shares, use at least " +
neededBits +
" bits."
);
}
if (
typeof threshold !== "number" ||
threshold % 1 !== 0 ||
threshold < 2
) {
throw new Error(
"Threshold number of shares must be an integer between 2 and 2^bits-1 (" +
config.max +
"), inclusive."
);
}
if (threshold > config.max) {
var neededBits = Math.ceil(Math.log(threshold + 1) / Math.LN2);
throw new Error(
"Threshold number of shares must be an integer between 2 and 2^bits-1 (" +
config.max +
"), inclusive. To use a threshold of " +
threshold +
", use at least " +
neededBits +
" bits."
);
}
if (typeof padLength !== "number" || padLength % 1 !== 0) {
throw new Error(
"Zero-pad length must be an integer greater than 1."
);
}
if (config.unsafePRNG) {
warn();
}
secret = "1" + hex2bin(secret); // append a 1 so that we can preserve the correct number of leading zeros in our secret
secret = split(secret, padLength);
var x = new Array(numShares),
y = new Array(numShares);
for (var i = 0, len = secret.length; i < len; i++) {
var subShares = this._getShares(secret[i], numShares, threshold);
for (var j = 0; j < numShares; j++) {
x[j] = x[j] || subShares[j].x.toString(config.radix);
y[j] = padLeft(subShares[j].y.toString(2)) + (y[j] ? y[j] : "");
}
}
var padding = config.max.toString(config.radix).length;
if (withoutPrefix) {
for (var i = 0; i < numShares; i++) {
x[i] = bin2hex(y[i]);
}
} else {
for (var i = 0; i < numShares; i++) {
x[i] =
config.bits.toString(36).toUpperCase() +
padLeft(x[i], padding) +
bin2hex(y[i]);
}
}
return x;
};
// This is the basic polynomial generation and evaluation function
// for a `config.bits`-length secret (NOT an arbitrary length)
// Note: no error-checking at this stage! If `secrets` is NOT
// a NUMBER less than 2^bits-1, the output will be incorrect!
/** @expose **/
exports._getShares = function (secret, numShares, threshold) {
var shares = [];
var coeffs = [secret];
for (var i = 1; i < threshold; i++) {
coeffs[i] = parseInt(config.rng(config.bits), 2);
}
for (var i = 1, len = numShares + 1; i < len; i++) {
shares[i - 1] = {
x: i,
y: horner(i, coeffs)
};
}
return shares;
};
// Polynomial evaluation at `x` using Horner's Method
// TODO: this can possibly be sped up using other methods
// NOTE: fx=fx * x + coeff[i] -> exp(log(fx) + log(x)) + coeff[i],
// so if fx===0, just set fx to coeff[i] because
// using the exp/log form will result in incorrect value
function horner(x, coeffs) {
var logx = config.logs[x];
var fx = 0;
for (var i = coeffs.length - 1; i >= 0; i--) {
if (fx === 0) {
fx = coeffs[i];
continue;
}
fx = config.exps[(logx + config.logs[fx]) % config.max] ^ coeffs[i];
}
return fx;
}
function inArray(arr, val) {
for (var i = 0, len = arr.length; i < len; i++) {
if (arr[i] === val) {
return true;
}
}
return false;
}
function processShare(share) {
var bits = parseInt(share[0], 36);
if (
bits &&
(typeof bits !== "number" ||
bits % 1 !== 0 ||
bits < defaults.minBits ||
bits > defaults.maxBits)
) {
throw new Error(
"Number of bits must be an integer between " +
defaults.minBits +
" and " +
defaults.maxBits +
", inclusive."
);
}
var max = Math.pow(2, bits) - 1;
var idLength = max.toString(config.radix).length;
var id = parseInt(share.substr(1, idLength), config.radix);
if (typeof id !== "number" || id % 1 !== 0 || id < 1 || id > max) {
throw new Error(
"Share id must be an integer between 1 and " +
config.max +
", inclusive."
);
}
share = share.substr(idLength + 1);
if (!share.length) {
throw new Error("Invalid share: zero-length share.");
}
return {
bits: bits,
id: id,
value: share
};
}
/** @expose **/
exports._processShare = processShare;
// Protected method that evaluates the Lagrange interpolation
// polynomial at x=`at` for individual config.bits-length
// segments of each share in the `shares` Array.
// Each share is expressed in base `inputRadix`. The output
// is expressed in base `outputRadix'
function combine(at, shares) {
var setBits,
share,
x = [],
y = [],
result = "",
idx;
for (var i = 0, len = shares.length; i < len; i++) {
share = processShare(shares[i]);
if (typeof setBits === "undefined") {
setBits = share["bits"];
} else if (share["bits"] !== setBits) {
throw new Error("Mismatched shares: Different bit settings.");
}
if (config.bits !== setBits) {
init(setBits);
}
if (inArray(x, share["id"])) {
// repeated x value?
continue;
}
idx = x.push(share["id"]) - 1;
share = split(hex2bin(share["value"]));
for (var j = 0, len2 = share.length; j < len2; j++) {
y[j] = y[j] || [];
y[j][idx] = share[j];
}
}
for (var i = 0, len = y.length; i < len; i++) {
result = padLeft(lagrange(at, x, y[i]).toString(2)) + result;
}
if (at === 0) {
// reconstructing the secret
var idx = result.indexOf("1"); //find the first 1
return bin2hex(result.slice(idx + 1));
} else {
// generating a new share
return bin2hex(result);
}
}
// Combine `shares` Array into the original secret
/** @expose **/
exports.combine = function (shares) {
return combine(0, shares);
};
// Generate a new share with id `id` (a number between 1 and 2^bits-1)
// `id` can be a Number or a String in the default radix (16)
/** @expose **/
exports.newShare = function (id, shares) {
if (typeof id === "string") {
id = parseInt(id, config.radix);
}
var share = processShare(shares[0]);
var max = Math.pow(2, share["bits"]) - 1;
if (typeof id !== "number" || id % 1 !== 0 || id < 1 || id > max) {
throw new Error(
"Share id must be an integer between 1 and " +
config.max +
", inclusive."
);
}
var padding = max.toString(config.radix).length;
return (
config.bits.toString(36).toUpperCase() +
padLeft(id.toString(config.radix), padding) +
combine(id, shares)
);
};
// Evaluate the Lagrange interpolation polynomial at x = `at`
// using x and y Arrays that are of the same length, with
// corresponding elements constituting points on the polynomial.
function lagrange(at, x, y) {
var sum = 0,
product,
i,
j;
for (var i = 0, len = x.length; i < len; i++) {
if (!y[i]) {
continue;
}
product = config.logs[y[i]];
for (var j = 0; j < len; j++) {
if (i === j) {
continue;
}
if (at === x[j]) {
// happens when computing a share that is in the list of shares used to compute it
product = -1; // fix for a zero product term, after which the sum should be sum^0 = sum, not sum^1
break;
}
product =
(product +
config.logs[at ^ x[j]] -
config.logs[x[i] ^ x[j]] +
config.max) /* to make sure it's not negative */ %
config.max;
}
sum = product === -1 ? sum : sum ^ config.exps[product]; // though exps[-1]= undefined and undefined ^ anything = anything in chrome, this behavior may not hold everywhere, so do the check
}
return sum;
}
/** @expose **/
exports._lagrange = lagrange;
// Splits a number string `bits`-length segments, after first
// optionally zero-padding it to a length that is a multiple of `padLength.
// Returns array of integers (each less than 2^bits-1), with each element
// representing a `bits`-length segment of the input string from right to left,
// i.e. parts[0] represents the right-most `bits`-length segment of the input string.
function split(str, padLength) {
if (padLength) {
str = padLeft(str, padLength);
}
var parts = [];
for (var i = str.length; i > config.bits; i -= config.bits) {
parts.push(parseInt(str.slice(i - config.bits, i), 2));
}
parts.push(parseInt(str.slice(0, i), 2));
return parts;
}
// Pads a string `str` with zeros on the left so that its length is a multiple of `bits`
function padLeft(str, bits) {
bits = bits || config.bits;
var missing = str.length % bits;
return (missing ? new Array(bits - missing + 1).join("0") : "") + str;
}
function hex2bin(str) {
var bin = "",
num;
for (var i = str.length - 1; i >= 0; i--) {
num = parseInt(str[i], 16);
if (isNaN(num)) {
throw new Error("Invalid hex character.");
}
bin = padLeft(num.toString(2), 4) + bin;
}
return bin;
}
function bin2hex(str) {
var hex = "",
num;
str = padLeft(str, 4);
for (var i = str.length; i >= 4; i -= 4) {
num = parseInt(str.slice(i - 4, i), 2);
if (isNaN(num)) {
throw new Error("Invalid binary character.");
}
hex = num.toString(16) + hex;
}
return hex;
}
// Converts a given UTF16 character string to the HEX representation.
// Each character of the input string is represented by
// `bytesPerChar` bytes in the output string.
/** @expose **/
exports.str2hex = function (str, bytesPerChar) {
if (typeof str !== "string") {
throw new Error("Input must be a character string.");
}
bytesPerChar = bytesPerChar || defaults.bytesPerChar;
if (
typeof bytesPerChar !== "number" ||
bytesPerChar % 1 !== 0 ||
bytesPerChar < 1 ||
bytesPerChar > defaults.maxBytesPerChar
) {
throw new Error(
"Bytes per character must be an integer between 1 and " +
defaults.maxBytesPerChar +
", inclusive."
);
}
var hexChars = 2 * bytesPerChar;
var max = Math.pow(16, hexChars) - 1;
var out = "",
num;
for (var i = 0, len = str.length; i < len; i++) {
num = str[i].charCodeAt();
if (isNaN(num)) {
throw new Error("Invalid character: " + str[i]);
} else if (num > max) {
var neededBytes = Math.ceil(Math.log(num + 1) / Math.log(256));
throw new Error(
"Invalid character code (" +
num +
"). Maximum allowable is 256^bytes-1 (" +
max +
"). To convert this character, use at least " +
neededBytes +
" bytes."
);
} else {
out = padLeft(num.toString(16), hexChars) + out;
}
}
return out;
};
// Converts a given HEX number string to a UTF16 character string.
/** @expose **/
exports.hex2str = function (str, bytesPerChar) {
if (typeof str !== "string") {
throw new Error("Input must be a hexadecimal string.");
}
bytesPerChar = bytesPerChar || defaults.bytesPerChar;
if (
typeof bytesPerChar !== "number" ||
bytesPerChar % 1 !== 0 ||
bytesPerChar < 1 ||
bytesPerChar > defaults.maxBytesPerChar
) {
throw new Error(
"Bytes per character must be an integer between 1 and " +
defaults.maxBytesPerChar +
", inclusive."
);
}
var hexChars = 2 * bytesPerChar;
var out = "";
str = padLeft(str, hexChars);
for (var i = 0, len = str.length; i < len; i += hexChars) {
out =
String.fromCharCode(parseInt(str.slice(i, i + hexChars), 16)) +
out;
}
return out;
};
// by default, initialize without an RNG
exports.init();
})(
typeof module !== "undefined" && module["exports"]
? module["exports"]
: (window["secrets"] = {}),
typeof GLOBAL !== "undefined" ? GLOBAL : window
);
</script>
<script type="text/javascript">
// Upstream 'BigInteger' here:
// Original Author: http://www-cs-students.stanford.edu/~tjw/jsbn/
// Follows 'jsbn' on Github: https://github.com/jasondavies/jsbn
// Review and Testing: https://github.com/cryptocoinjs/bigi/
/*!
* Basic JavaScript BN library - subset useful for RSA encryption. v1.4
*
* Copyright (c) 2005 Tom Wu
* All Rights Reserved.
* BSD License
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
*
* Copyright Stephan Thomas
* Copyright pointbiz
*/
(function () {
// (public) Constructor function of Global BigInteger object
var BigInteger = (window.BigInteger = function BigInteger(a, b, c) {
if (!(this instanceof BigInteger)) return new BigInteger(a, b, c);
if (a != null)
if ("number" == typeof a) this.fromNumber(a, b, c);
else if (b == null && "string" != typeof a) this.fromString(a, 256);
else this.fromString(a, b);
});
// Bits per digit
var dbits;
// JavaScript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = (canary & 0xffffff) == 0xefcafe;
// return new, unset BigInteger
function nbi() {
return new BigInteger(null);
}
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i, x, w, j, c, n) {
while (--n >= 0) {
var v = x * this[i++] + w[j] + c;
c = Math.floor(v / 0x4000000);
w[j++] = v & 0x3ffffff;
}
return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i, x, w, j, c, n) {
var xl = x & 0x7fff,
xh = x >> 15;
while (--n >= 0) {
var l = this[i] & 0x7fff;
var h = this[i++] >> 15;
var m = xh * l + h * xl;
l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
w[j++] = l & 0x3fffffff;
}
return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i, x, w, j, c, n) {
var xl = x & 0x3fff,
xh = x >> 14;
while (--n >= 0) {
var l = this[i] & 0x3fff;
var h = this[i++] >> 14;
var m = xh * l + h * xl;
l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
c = (l >> 28) + (m >> 14) + xh * h;
w[j++] = l & 0xfffffff;
}
return c;
}
if (j_lm && navigator.appName == "Microsoft Internet Explorer") {
BigInteger.prototype.am = am2;
dbits = 30;
} else if (j_lm && navigator.appName != "Netscape") {
BigInteger.prototype.am = am1;
dbits = 26;
} else {
// Mozilla/Netscape seems to prefer am3
BigInteger.prototype.am = am3;
dbits = 28;
}
BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = (1 << dbits) - 1;
BigInteger.prototype.DV = 1 << dbits;
var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2, BI_FP);
BigInteger.prototype.F1 = BI_FP - dbits;
BigInteger.prototype.F2 = 2 * dbits - BI_FP;
// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr, vv;
rr = "0".charCodeAt(0);
for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
rr = "a".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
rr = "A".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
function int2char(n) {
return BI_RM.charAt(n);
}
function intAt(s, i) {
var c = BI_RC[s.charCodeAt(i)];
return c == null ? -1 : c;
}
// return bigint initialized to value
function nbv(i) {
var r = nbi();
r.fromInt(i);
return r;
}
// returns bit length of the integer x
function nbits(x) {
var r = 1,
t;
if ((t = x >>> 16) != 0) {
x = t;
r += 16;
}
if ((t = x >> 8) != 0) {
x = t;
r += 8;
}
if ((t = x >> 4) != 0) {
x = t;
r += 4;
}
if ((t = x >> 2) != 0) {
x = t;
r += 2;
}
if ((t = x >> 1) != 0) {
x = t;
r += 1;
}
return r;
}
// (protected) copy this to r
BigInteger.prototype.copyTo = function (r) {
for (var i = this.t - 1; i >= 0; --i) r[i] = this[i];
r.t = this.t;
r.s = this.s;
};
// (protected) set from integer value x, -DV <= x < DV
BigInteger.prototype.fromInt = function (x) {
this.t = 1;
this.s = x < 0 ? -1 : 0;
if (x > 0) this[0] = x;
else if (x < -1) this[0] = x + this.DV;
else this.t = 0;
};
// (protected) set from string and radix
BigInteger.prototype.fromString = function (s, b) {
var k;
if (b == 16) k = 4;
else if (b == 8) k = 3;
else if (b == 256) k = 8;
// byte array
else if (b == 2) k = 1;
else if (b == 32) k = 5;
else if (b == 4) k = 2;
else {
this.fromRadix(s, b);
return;
}
this.t = 0;
this.s = 0;
var i = s.length,
mi = false,
sh = 0;
while (--i >= 0) {
var x = k == 8 ? s[i] & 0xff : intAt(s, i);
if (x < 0) {
if (s.charAt(i) == "-") mi = true;
continue;
}
mi = false;
if (sh == 0) this[this.t++] = x;
else if (sh + k > this.DB) {
this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh;
this[this.t++] = x >> (this.DB - sh);
} else this[this.t - 1] |= x << sh;
sh += k;
if (sh >= this.DB) sh -= this.DB;
}
if (k == 8 && (s[0] & 0x80) != 0) {
this.s = -1;
if (sh > 0) this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh;
}
this.clamp();
if (mi) BigInteger.ZERO.subTo(this, this);
};
// (protected) clamp off excess high words
BigInteger.prototype.clamp = function () {
var c = this.s & this.DM;
while (this.t > 0 && this[this.t - 1] == c) --this.t;
};
// (protected) r = this << n*DB
BigInteger.prototype.dlShiftTo = function (n, r) {
var i;
for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i];
for (i = n - 1; i >= 0; --i) r[i] = 0;
r.t = this.t + n;
r.s = this.s;
};
// (protected) r = this >> n*DB
BigInteger.prototype.drShiftTo = function (n, r) {
for (var i = n; i < this.t; ++i) r[i - n] = this[i];
r.t = Math.max(this.t - n, 0);
r.s = this.s;
};
// (protected) r = this << n
BigInteger.prototype.lShiftTo = function (n, r) {
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << cbs) - 1;
var ds = Math.floor(n / this.DB),
c = (this.s << bs) & this.DM,
i;
for (i = this.t - 1; i >= 0; --i) {
r[i + ds + 1] = (this[i] >> cbs) | c;
c = (this[i] & bm) << bs;
}
for (i = ds - 1; i >= 0; --i) r[i] = 0;
r[ds] = c;
r.t = this.t + ds + 1;
r.s = this.s;
r.clamp();
};
// (protected) r = this >> n
BigInteger.prototype.rShiftTo = function (n, r) {
r.s = this.s;
var ds = Math.floor(n / this.DB);
if (ds >= this.t) {
r.t = 0;
return;
}
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << bs) - 1;
r[0] = this[ds] >> bs;
for (var i = ds + 1; i < this.t; ++i) {
r[i - ds - 1] |= (this[i] & bm) << cbs;
r[i - ds] = this[i] >> bs;
}
if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs;
r.t = this.t - ds;
r.clamp();
};
// (protected) r = this - a
BigInteger.prototype.subTo = function (a, r) {
var i = 0,
c = 0,
m = Math.min(a.t, this.t);
while (i < m) {
c += this[i] - a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t) {
c -= a.s;
while (i < this.t) {
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
} else {
c += this.s;
while (i < a.t) {
c -= a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c -= a.s;
}
r.s = c < 0 ? -1 : 0;
if (c < -1) r[i++] = this.DV + c;
else if (c > 0) r[i++] = c;
r.t = i;
r.clamp();
};
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
BigInteger.prototype.multiplyTo = function (a, r) {
var x = this.abs(),
y = a.abs();
var i = x.t;
r.t = i + y.t;
while (--i >= 0) r[i] = 0;
for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
r.s = 0;
r.clamp();
if (this.s != a.s) BigInteger.ZERO.subTo(r, r);
};
// (protected) r = this^2, r != this (HAC 14.16)
BigInteger.prototype.squareTo = function (r) {
var x = this.abs();
var i = (r.t = 2 * x.t);
while (--i >= 0) r[i] = 0;
for (i = 0; i < x.t - 1; ++i) {
var c = x.am(i, x[i], r, 2 * i, 0, 1);
if (
(r[i + x.t] += x.am(
i + 1,
2 * x[i],
r,
2 * i + 1,
c,
x.t - i - 1
)) >= x.DV
) {
r[i + x.t] -= x.DV;
r[i + x.t + 1] = 1;
}
}
if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
r.s = 0;
r.clamp();
};
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
BigInteger.prototype.divRemTo = function (m, q, r) {
var pm = m.abs();
if (pm.t <= 0) return;
var pt = this.abs();
if (pt.t < pm.t) {
if (q != null) q.fromInt(0);
if (r != null) this.copyTo(r);
return;
}
if (r == null) r = nbi();
var y = nbi(),
ts = this.s,
ms = m.s;
var nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus
if (nsh > 0) {
pm.lShiftTo(nsh, y);
pt.lShiftTo(nsh, r);
} else {
pm.copyTo(y);
pt.copyTo(r);
}
var ys = y.t;
var y0 = y[ys - 1];
if (y0 == 0) return;
var yt = y0 * (1 << this.F1) + (ys > 1 ? y[ys - 2] >> this.F2 : 0);
var d1 = this.FV / yt,
d2 = (1 << this.F1) / yt,
e = 1 << this.F2;
var i = r.t,
j = i - ys,
t = q == null ? nbi() : q;
y.dlShiftTo(j, t);
if (r.compareTo(t) >= 0) {
r[r.t++] = 1;
r.subTo(t, r);
}
BigInteger.ONE.dlShiftTo(ys, t);
t.subTo(y, y); // "negative" y so we can replace sub with am later
while (y.t < ys) y[y.t++] = 0;
while (--j >= 0) {
// Estimate quotient digit
var qd =
r[--i] == y0
? this.DM
: Math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) {
// Try it out
y.dlShiftTo(j, t);
r.subTo(t, r);
while (r[i] < --qd) r.subTo(t, r);
}
}
if (q != null) {
r.drShiftTo(ys, q);
if (ts != ms) BigInteger.ZERO.subTo(q, q);
}
r.t = ys;
r.clamp();
if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder
if (ts < 0) BigInteger.ZERO.subTo(r, r);
};
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
BigInteger.prototype.invDigit = function () {
if (this.t < 1) return 0;
var x = this[0];
if ((x & 1) == 0) return 0;
var y = x & 3; // y == 1/x mod 2^2
y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4
y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8
y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y * (2 - ((x * y) % this.DV))) % this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return y > 0 ? this.DV - y : -y;
};
// (protected) true iff this is even
BigInteger.prototype.isEven = function () {
return (this.t > 0 ? this[0] & 1 : this.s) == 0;
};
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
BigInteger.prototype.exp = function (e, z) {
if (e > 0xffffffff || e < 1) return BigInteger.ONE;
var r = nbi(),
r2 = nbi(),
g = z.convert(this),
i = nbits(e) - 1;
g.copyTo(r);
while (--i >= 0) {
z.sqrTo(r, r2);
if ((e & (1 << i)) > 0) z.mulTo(r2, g, r);
else {
var t = r;
r = r2;
r2 = t;
}
}
return z.revert(r);
};
// (public) return string representation in given radix
BigInteger.prototype.toString = function (b) {
if (this.s < 0) return "-" + this.negate().toString(b);
var k;
if (b == 16) k = 4;
else if (b == 8) k = 3;
else if (b == 2) k = 1;
else if (b == 32) k = 5;
else if (b == 4) k = 2;
else return this.toRadix(b);
var km = (1 << k) - 1,
d,
m = false,
r = "",
i = this.t;
var p = this.DB - ((i * this.DB) % k);
if (i-- > 0) {
if (p < this.DB && (d = this[i] >> p) > 0) {
m = true;
r = int2char(d);
}
while (i >= 0) {
if (p < k) {
d = (this[i] & ((1 << p) - 1)) << (k - p);
d |= this[--i] >> (p += this.DB - k);
} else {
d = (this[i] >> (p -= k)) & km;
if (p <= 0) {
p += this.DB;
--i;
}
}
if (d > 0) m = true;
if (m) r += int2char(d);
}
}
return m ? r : "0";
};
// (public) -this
BigInteger.prototype.negate = function () {
var r = nbi();
BigInteger.ZERO.subTo(this, r);
return r;
};
// (public) |this|
BigInteger.prototype.abs = function () {
return this.s < 0 ? this.negate() : this;
};
// (public) return + if this > a, - if this < a, 0 if equal
BigInteger.prototype.compareTo = function (a) {
var r = this.s - a.s;
if (r != 0) return r;
var i = this.t;
r = i - a.t;
if (r != 0) return this.s < 0 ? -r : r;
while (--i >= 0) if ((r = this[i] - a[i]) != 0) return r;
return 0;
};
// (public) return the number of bits in "this"
BigInteger.prototype.bitLength = function () {
if (this.t <= 0) return 0;
return (
this.DB * (this.t - 1) +
nbits(this[this.t - 1] ^ (this.s & this.DM))
);
};
// (public) this mod a
BigInteger.prototype.mod = function (a) {
var r = nbi();
this.abs().divRemTo(a, null, r);
if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r);
return r;
};
// (public) this^e % m, 0 <= e < 2^32
BigInteger.prototype.modPowInt = function (e, m) {
var z;
if (e < 256 || m.isEven()) z = new Classic(m);
else z = new Montgomery(m);
return this.exp(e, z);
};
// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);
// Copyright (c) 2005-2009 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Extended JavaScript BN functions, required for RSA private ops.
// Version 1.1: new BigInteger("0", 10) returns "proper" zero
// Version 1.2: square() API, isProbablePrime fix
// return index of lowest 1-bit in x, x < 2^31
function lbit(x) {
if (x == 0) return -1;
var r = 0;
if ((x & 0xffff) == 0) {
x >>= 16;
r += 16;
}
if ((x & 0xff) == 0) {
x >>= 8;
r += 8;
}
if ((x & 0xf) == 0) {
x >>= 4;
r += 4;
}
if ((x & 3) == 0) {
x >>= 2;
r += 2;
}
if ((x & 1) == 0) ++r;
return r;
}
// return number of 1 bits in x
function cbit(x) {
var r = 0;
while (x != 0) {
x &= x - 1;
++r;
}
return r;
}
var lowprimes = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997
];
var lplim = (1 << 26) / lowprimes[lowprimes.length - 1];
// (protected) return x s.t. r^x < DV
BigInteger.prototype.chunkSize = function (r) {
return Math.floor((Math.LN2 * this.DB) / Math.log(r));
};
// (protected) convert to radix string
BigInteger.prototype.toRadix = function (b) {
if (b == null) b = 10;
if (this.signum() == 0 || b < 2 || b > 36) return "0";
var cs = this.chunkSize(b);
var a = Math.pow(b, cs);
var d = nbv(a),
y = nbi(),
z = nbi(),
r = "";
this.divRemTo(d, y, z);
while (y.signum() > 0) {
r = (a + z.intValue()).toString(b).substr(1) + r;
y.divRemTo(d, y, z);
}
return z.intValue().toString(b) + r;
};
// (protected) convert from radix string
BigInteger.prototype.fromRadix = function (s, b) {
this.fromInt(0);
if (b == null) b = 10;
var cs = this.chunkSize(b);
var d = Math.pow(b, cs),
mi = false,
j = 0,
w = 0;
for (var i = 0; i < s.length; ++i) {
var x = intAt(s, i);
if (x < 0) {
if (s.charAt(i) == "-" && this.signum() == 0) mi = true;
continue;
}
w = b * w + x;
if (++j >= cs) {
this.dMultiply(d);
this.dAddOffset(w, 0);
j = 0;
w = 0;
}
}
if (j > 0) {
this.dMultiply(Math.pow(b, j));
this.dAddOffset(w, 0);
}
if (mi) BigInteger.ZERO.subTo(this, this);
};
// (protected) alternate constructor
BigInteger.prototype.fromNumber = function (a, b, c) {
if ("number" == typeof b) {
// new BigInteger(int,int,RNG)
if (a < 2) this.fromInt(1);
else {
this.fromNumber(a, c);
if (!this.testBit(a - 1))
// force MSB set
this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this);
if (this.isEven()) this.dAddOffset(1, 0); // force odd
while (!this.isProbablePrime(b)) {
this.dAddOffset(2, 0);
if (this.bitLength() > a)
this.subTo(BigInteger.ONE.shiftLeft(a - 1), this);
}
}
} else {
// new BigInteger(int,RNG)
var x = new Array(),
t = a & 7;
x.length = (a >> 3) + 1;
b.nextBytes(x);
if (t > 0) x[0] &= (1 << t) - 1;
else x[0] = 0;
this.fromString(x, 256);
}
};
// (protected) r = this op a (bitwise)
BigInteger.prototype.bitwiseTo = function (a, op, r) {
var i,
f,
m = Math.min(a.t, this.t);
for (i = 0; i < m; ++i) r[i] = op(this[i], a[i]);
if (a.t < this.t) {
f = a.s & this.DM;
for (i = m; i < this.t; ++i) r[i] = op(this[i], f);
r.t = this.t;
} else {
f = this.s & this.DM;
for (i = m; i < a.t; ++i) r[i] = op(f, a[i]);
r.t = a.t;
}
r.s = op(this.s, a.s);
r.clamp();
};
// (protected) this op (1<<n)
BigInteger.prototype.changeBit = function (n, op) {
var r = BigInteger.ONE.shiftLeft(n);
this.bitwiseTo(r, op, r);
return r;
};
// (protected) r = this + a
BigInteger.prototype.addTo = function (a, r) {
var i = 0,
c = 0,
m = Math.min(a.t, this.t);
while (i < m) {
c += this[i] + a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t) {
c += a.s;
while (i < this.t) {
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
} else {
c += this.s;
while (i < a.t) {
c += a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += a.s;
}
r.s = c < 0 ? -1 : 0;
if (c > 0) r[i++] = c;
else if (c < -1) r[i++] = this.DV + c;
r.t = i;
r.clamp();
};
// (protected) this *= n, this >= 0, 1 < n < DV
BigInteger.prototype.dMultiply = function (n) {
this[this.t] = this.am(0, n - 1, this, 0, 0, this.t);
++this.t;
this.clamp();
};
// (protected) this += n << w words, this >= 0
BigInteger.prototype.dAddOffset = function (n, w) {
if (n == 0) return;
while (this.t <= w) this[this.t++] = 0;
this[w] += n;
while (this[w] >= this.DV) {
this[w] -= this.DV;
if (++w >= this.t) this[this.t++] = 0;
++this[w];
}
};
// (protected) r = lower n words of "this * a", a.t <= n
// "this" should be the larger one if appropriate.
BigInteger.prototype.multiplyLowerTo = function (a, n, r) {
var i = Math.min(this.t + a.t, n);
r.s = 0; // assumes a,this >= 0
r.t = i;
while (i > 0) r[--i] = 0;
var j;
for (j = r.t - this.t; i < j; ++i)
r[i + this.t] = this.am(0, a[i], r, i, 0, this.t);
for (j = Math.min(a.t, n); i < j; ++i)
this.am(0, a[i], r, i, 0, n - i);
r.clamp();
};
// (protected) r = "this * a" without lower n words, n > 0
// "this" should be the larger one if appropriate.
BigInteger.prototype.multiplyUpperTo = function (a, n, r) {
--n;
var i = (r.t = this.t + a.t - n);
r.s = 0; // assumes a,this >= 0
while (--i >= 0) r[i] = 0;
for (i = Math.max(n - this.t, 0); i < a.t; ++i)
r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n);
r.clamp();
r.drShiftTo(1, r);
};
// (protected) this % n, n < 2^26
BigInteger.prototype.modInt = function (n) {
if (n <= 0) return 0;
var d = this.DV % n,
r = this.s < 0 ? n - 1 : 0;
if (this.t > 0)
if (d == 0) r = this[0] % n;
else
for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n;
return r;
};
// (protected) true if probably prime (HAC 4.24, Miller-Rabin)
BigInteger.prototype.millerRabin = function (t) {
var n1 = this.subtract(BigInteger.ONE);
var k = n1.getLowestSetBit();
if (k <= 0) return false;
var r = n1.shiftRight(k);
t = (t + 1) >> 1;
if (t > lowprimes.length) t = lowprimes.length;
var a = nbi();
for (var i = 0; i < t; ++i) {
//Pick bases at random, instead of starting at 2
a.fromInt(lowprimes[Math.floor(Math.random() * lowprimes.length)]);
var y = a.modPow(r, this);
if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
var j = 1;
while (j++ < k && y.compareTo(n1) != 0) {
y = y.modPowInt(2, this);
if (y.compareTo(BigInteger.ONE) == 0) return false;
}
if (y.compareTo(n1) != 0) return false;
}
}
return true;
};
// (public)
BigInteger.prototype.clone = function () {
var r = nbi();
this.copyTo(r);
return r;
};
// (public) return value as integer
BigInteger.prototype.intValue = function () {
if (this.s < 0) {
if (this.t == 1) return this[0] - this.DV;
else if (this.t == 0) return -1;
} else if (this.t == 1) return this[0];
else if (this.t == 0) return 0;
// assumes 16 < DB < 32
return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0];
};
// (public) return value as byte
BigInteger.prototype.byteValue = function () {
return this.t == 0 ? this.s : (this[0] << 24) >> 24;
};
// (public) return value as short (assumes DB>=16)
BigInteger.prototype.shortValue = function () {
return this.t == 0 ? this.s : (this[0] << 16) >> 16;
};
// (public) 0 if this == 0, 1 if this > 0
BigInteger.prototype.signum = function () {
if (this.s < 0) return -1;
else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
else return 1;
};
// (public) convert to bigendian byte array
BigInteger.prototype.toByteArray = function () {
var i = this.t,
r = new Array();
r[0] = this.s;
var p = this.DB - ((i * this.DB) % 8),
d,
k = 0;
if (i-- > 0) {
if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p)
r[k++] = d | (this.s << (this.DB - p));
while (i >= 0) {
if (p < 8) {
d = (this[i] & ((1 << p) - 1)) << (8 - p);
d |= this[--i] >> (p += this.DB - 8);
} else {
d = (this[i] >> (p -= 8)) & 0xff;
if (p <= 0) {
p += this.DB;
--i;
}
}
if ((d & 0x80) != 0) d |= -256;
if (k == 0 && (this.s & 0x80) != (d & 0x80)) ++k;
if (k > 0 || d != this.s) r[k++] = d;
}
}
return r;
};
BigInteger.prototype.equals = function (a) {
return this.compareTo(a) == 0;
};
BigInteger.prototype.min = function (a) {
return this.compareTo(a) < 0 ? this : a;
};
BigInteger.prototype.max = function (a) {
return this.compareTo(a) > 0 ? this : a;
};
// (public) this & a
function op_and(x, y) {
return x & y;
}
BigInteger.prototype.and = function (a) {
var r = nbi();
this.bitwiseTo(a, op_and, r);
return r;
};
// (public) this | a
function op_or(x, y) {
return x | y;
}
BigInteger.prototype.or = function (a) {
var r = nbi();
this.bitwiseTo(a, op_or, r);
return r;
};
// (public) this ^ a
function op_xor(x, y) {
return x ^ y;
}
BigInteger.prototype.xor = function (a) {
var r = nbi();
this.bitwiseTo(a, op_xor, r);
return r;
};
// (public) this & ~a
function op_andnot(x, y) {
return x & ~y;
}
BigInteger.prototype.andNot = function (a) {
var r = nbi();
this.bitwiseTo(a, op_andnot, r);
return r;
};
// (public) ~this
BigInteger.prototype.not = function () {
var r = nbi();
for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i];
r.t = this.t;
r.s = ~this.s;
return r;
};
// (public) this << n
BigInteger.prototype.shiftLeft = function (n) {
var r = nbi();
if (n < 0) this.rShiftTo(-n, r);
else this.lShiftTo(n, r);
return r;
};
// (public) this >> n
BigInteger.prototype.shiftRight = function (n) {
var r = nbi();
if (n < 0) this.lShiftTo(-n, r);
else this.rShiftTo(n, r);
return r;
};
// (public) returns index of lowest 1-bit (or -1 if none)
BigInteger.prototype.getLowestSetBit = function () {
for (var i = 0; i < this.t; ++i)
if (this[i] != 0) return i * this.DB + lbit(this[i]);
if (this.s < 0) return this.t * this.DB;
return -1;
};
// (public) return number of set bits
BigInteger.prototype.bitCount = function () {
var r = 0,
x = this.s & this.DM;
for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x);
return r;
};
// (public) true iff nth bit is set
BigInteger.prototype.testBit = function (n) {
var j = Math.floor(n / this.DB);
if (j >= this.t) return this.s != 0;
return (this[j] & (1 << n % this.DB)) != 0;
};
// (public) this | (1<<n)
BigInteger.prototype.setBit = function (n) {
return this.changeBit(n, op_or);
};
// (public) this & ~(1<<n)
BigInteger.prototype.clearBit = function (n) {
return this.changeBit(n, op_andnot);
};
// (public) this ^ (1<<n)
BigInteger.prototype.flipBit = function (n) {
return this.changeBit(n, op_xor);
};
// (public) this + a
BigInteger.prototype.add = function (a) {
var r = nbi();
this.addTo(a, r);
return r;
};
// (public) this - a
BigInteger.prototype.subtract = function (a) {
var r = nbi();
this.subTo(a, r);
return r;
};
// (public) this * a
BigInteger.prototype.multiply = function (a) {
var r = nbi();
this.multiplyTo(a, r);
return r;
};
// (public) this / a
BigInteger.prototype.divide = function (a) {
var r = nbi();
this.divRemTo(a, r, null);
return r;
};
// (public) this % a
BigInteger.prototype.remainder = function (a) {
var r = nbi();
this.divRemTo(a, null, r);
return r;
};
// (public) [this/a,this%a]
BigInteger.prototype.divideAndRemainder = function (a) {
var q = nbi(),
r = nbi();
this.divRemTo(a, q, r);
return new Array(q, r);
};
// (public) this^e % m (HAC 14.85)
BigInteger.prototype.modPow = function (e, m) {
var i = e.bitLength(),
k,
r = nbv(1),
z;
if (i <= 0) return r;
else if (i < 18) k = 1;
else if (i < 48) k = 3;
else if (i < 144) k = 4;
else if (i < 768) k = 5;
else k = 6;
if (i < 8) z = new Classic(m);
else if (m.isEven()) z = new Barrett(m);
else z = new Montgomery(m);
// precomputation
var g = new Array(),
n = 3,
k1 = k - 1,
km = (1 << k) - 1;
g[1] = z.convert(this);
if (k > 1) {
var g2 = nbi();
z.sqrTo(g[1], g2);
while (n <= km) {
g[n] = nbi();
z.mulTo(g2, g[n - 2], g[n]);
n += 2;
}
}
var j = e.t - 1,
w,
is1 = true,
r2 = nbi(),
t;
i = nbits(e[j]) - 1;
while (j >= 0) {
if (i >= k1) w = (e[j] >> (i - k1)) & km;
else {
w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i);
if (j > 0) w |= e[j - 1] >> (this.DB + i - k1);
}
n = k;
while ((w & 1) == 0) {
w >>= 1;
--n;
}
if ((i -= n) < 0) {
i += this.DB;
--j;
}
if (is1) {
// ret == 1, don't bother squaring or multiplying it
g[w].copyTo(r);
is1 = false;
} else {
while (n > 1) {
z.sqrTo(r, r2);
z.sqrTo(r2, r);
n -= 2;
}
if (n > 0) z.sqrTo(r, r2);
else {
t = r;
r = r2;
r2 = t;
}
z.mulTo(r2, g[w], r);
}
while (j >= 0 && (e[j] & (1 << i)) == 0) {
z.sqrTo(r, r2);
t = r;
r = r2;
r2 = t;
if (--i < 0) {
i = this.DB - 1;
--j;
}
}
}
return z.revert(r);
};
// (public) 1/this % m (HAC 14.61)
BigInteger.prototype.modInverse = function (m) {
var ac = m.isEven();
if (this.signum() === 0) throw new Error("division by zero");
if ((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
var u = m.clone(),
v = this.clone();
var a = nbv(1),
b = nbv(0),
c = nbv(0),
d = nbv(1);
while (u.signum() != 0) {
while (u.isEven()) {
u.rShiftTo(1, u);
if (ac) {
if (!a.isEven() || !b.isEven()) {
a.addTo(this, a);
b.subTo(m, b);
}
a.rShiftTo(1, a);
} else if (!b.isEven()) b.subTo(m, b);
b.rShiftTo(1, b);
}
while (v.isEven()) {
v.rShiftTo(1, v);
if (ac) {
if (!c.isEven() || !d.isEven()) {
c.addTo(this, c);
d.subTo(m, d);
}
c.rShiftTo(1, c);
} else if (!d.isEven()) d.subTo(m, d);
d.rShiftTo(1, d);
}
if (u.compareTo(v) >= 0) {
u.subTo(v, u);
if (ac) a.subTo(c, a);
b.subTo(d, b);
} else {
v.subTo(u, v);
if (ac) c.subTo(a, c);
d.subTo(b, d);
}
}
if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
while (d.compareTo(m) >= 0) d.subTo(m, d);
while (d.signum() < 0) d.addTo(m, d);
return d;
};
// (public) this^e
BigInteger.prototype.pow = function (e) {
return this.exp(e, new NullExp());
};
// (public) gcd(this,a) (HAC 14.54)
BigInteger.prototype.gcd = function (a) {
var x = this.s < 0 ? this.negate() : this.clone();
var y = a.s < 0 ? a.negate() : a.clone();
if (x.compareTo(y) < 0) {
var t = x;
x = y;
y = t;
}
var i = x.getLowestSetBit(),
g = y.getLowestSetBit();
if (g < 0) return x;
if (i < g) g = i;
if (g > 0) {
x.rShiftTo(g, x);
y.rShiftTo(g, y);
}
while (x.signum() > 0) {
if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x);
if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y);
if (x.compareTo(y) >= 0) {
x.subTo(y, x);
x.rShiftTo(1, x);
} else {
y.subTo(x, y);
y.rShiftTo(1, y);
}
}
if (g > 0) y.lShiftTo(g, y);
return y;
};
// (public) test primality with certainty >= 1-.5^t
BigInteger.prototype.isProbablePrime = function (t) {
var i,
x = this.abs();
if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) {
for (i = 0; i < lowprimes.length; ++i)
if (x[0] == lowprimes[i]) return true;
return false;
}
if (x.isEven()) return false;
i = 1;
while (i < lowprimes.length) {
var m = lowprimes[i],
j = i + 1;
while (j < lowprimes.length && m < lplim) m *= lowprimes[j++];
m = x.modInt(m);
while (i < j) if (m % lowprimes[i++] == 0) return false;
}
return x.millerRabin(t);
};
// JSBN-specific extension
// (public) this^2
BigInteger.prototype.square = function () {
var r = nbi();
this.squareTo(r);
return r;
};
// NOTE: BigInteger interfaces not implemented in jsbn:
// BigInteger(int signum, byte[] magnitude)
// double doubleValue()
// float floatValue()
// int hashCode()
// long longValue()
// static BigInteger valueOf(long val)
// Copyright Stephan Thomas (start) --- //
// https://raw.github.com/bitcoinjs/bitcoinjs-lib/07f9d55ccb6abd962efb6befdd37671f85ea4ff9/src/util.js
// BigInteger monkey patching
BigInteger.valueOf = nbv;
/**
* Returns a byte array representation of the big integer.
*
* This returns the absolute of the contained value in big endian
* form. A value of zero results in an empty array.
*/
BigInteger.prototype.toByteArrayUnsigned = function () {
var ba = this.abs().toByteArray();
if (ba.length) {
if (ba[0] == 0) {
ba = ba.slice(1);
}
return ba.map(function (v) {
return v < 0 ? v + 256 : v;
});
} else {
// Empty array, nothing to do
return ba;
}
};
/**
* Turns a byte array into a big integer.
*
* This function will interpret a byte array as a big integer in big
* endian notation and ignore leading zeros.
*/
BigInteger.fromByteArrayUnsigned = function (ba) {
if (!ba.length) {
return ba.valueOf(0);
} else if (ba[0] & 0x80) {
// Prepend a zero so the BigInteger class doesn't mistake this
// for a negative integer.
return new BigInteger([0].concat(ba));
} else {
return new BigInteger(ba);
}
};
/**
* Converts big integer to signed byte representation.
*
* The format for this value uses a the most significant bit as a sign
* bit. If the most significant bit is already occupied by the
* absolute value, an extra byte is prepended and the sign bit is set
* there.
*
* Examples:
*
* 0 => 0x00
* 1 => 0x01
* -1 => 0x81
* 127 => 0x7f
* -127 => 0xff
* 128 => 0x0080
* -128 => 0x8080
* 255 => 0x00ff
* -255 => 0x80ff
* 16300 => 0x3fac
* -16300 => 0xbfac
* 62300 => 0x00f35c
* -62300 => 0x80f35c
*/
BigInteger.prototype.toByteArraySigned = function () {
var val = this.abs().toByteArrayUnsigned();
var neg = this.compareTo(BigInteger.ZERO) < 0;
if (neg) {
if (val[0] & 0x80) {
val.unshift(0x80);
} else {
val[0] |= 0x80;
}
} else {
if (val[0] & 0x80) {
val.unshift(0x00);
}
}
return val;
};
/**
* Parse a signed big integer byte representation.
*
* For details on the format please see BigInteger.toByteArraySigned.
*/
BigInteger.fromByteArraySigned = function (ba) {
// Check for negative value
if (ba[0] & 0x80) {
// Remove sign bit
ba[0] &= 0x7f;
return BigInteger.fromByteArrayUnsigned(ba).negate();
} else {
return BigInteger.fromByteArrayUnsigned(ba);
}
};
// Copyright Stephan Thomas (end) --- //
// ****** REDUCTION ******* //
// Modular reduction using "classic" algorithm
var Classic = (window.Classic = function Classic(m) {
this.m = m;
});
Classic.prototype.convert = function (x) {
if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
else return x;
};
Classic.prototype.revert = function (x) {
return x;
};
Classic.prototype.reduce = function (x) {
x.divRemTo(this.m, null, x);
};
Classic.prototype.mulTo = function (x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
};
Classic.prototype.sqrTo = function (x, r) {
x.squareTo(r);
this.reduce(r);
};
// Montgomery reduction
var Montgomery = (window.Montgomery = function Montgomery(m) {
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp & 0x7fff;
this.mph = this.mp >> 15;
this.um = (1 << (m.DB - 15)) - 1;
this.mt2 = 2 * m.t;
});
// xR mod m
Montgomery.prototype.convert = function (x) {
var r = nbi();
x.abs().dlShiftTo(this.m.t, r);
r.divRemTo(this.m, null, r);
if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r);
return r;
};
// x/R mod m
Montgomery.prototype.revert = function (x) {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
};
// x = x/R mod m (HAC 14.32)
Montgomery.prototype.reduce = function (x) {
while (
x.t <= this.mt2 // pad x so am has enough room later
)
x[x.t++] = 0;
for (var i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x[i]*mp mod DV
var j = x[i] & 0x7fff;
var u0 =
(j * this.mpl +
(((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) &
x.DM;
// use am to combine the multiply-shift-add into one call
j = i + this.m.t;
x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
// propagate carry
while (x[j] >= x.DV) {
x[j] -= x.DV;
x[++j]++;
}
}
x.clamp();
x.drShiftTo(this.m.t, x);
if (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
};
// r = "xy/R mod m"; x,y != r
Montgomery.prototype.mulTo = function (x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
};
// r = "x^2/R mod m"; x != r
Montgomery.prototype.sqrTo = function (x, r) {
x.squareTo(r);
this.reduce(r);
};
// A "null" reducer
var NullExp = (window.NullExp = function NullExp() { });
NullExp.prototype.convert = function (x) {
return x;
};
NullExp.prototype.revert = function (x) {
return x;
};
NullExp.prototype.mulTo = function (x, y, r) {
x.multiplyTo(y, r);
};
NullExp.prototype.sqrTo = function (x, r) {
x.squareTo(r);
};
// Barrett modular reduction
var Barrett = (window.Barrett = function Barrett(m) {
// setup Barrett
this.r2 = nbi();
this.q3 = nbi();
BigInteger.ONE.dlShiftTo(2 * m.t, this.r2);
this.mu = this.r2.divide(m);
this.m = m;
});
Barrett.prototype.convert = function (x) {
if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m);
else if (x.compareTo(this.m) < 0) return x;
else {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
};
Barrett.prototype.revert = function (x) {
return x;
};
// x = x mod m (HAC 14.42)
Barrett.prototype.reduce = function (x) {
x.drShiftTo(this.m.t - 1, this.r2);
if (x.t > this.m.t + 1) {
x.t = this.m.t + 1;
x.clamp();
}
this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3);
this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2);
while (x.compareTo(this.r2) < 0) x.dAddOffset(1, this.m.t + 1);
x.subTo(this.r2, x);
while (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
};
// r = x*y mod m; x,y != r
Barrett.prototype.mulTo = function (x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
};
// r = x^2 mod m; x != r
Barrett.prototype.sqrTo = function (x, r) {
x.squareTo(r);
this.reduce(r);
};
})();
</script>
<script type="text/javascript">
//---------------------------------------------------------------------
// QRCode for JavaScript
//
// Copyright (c) 2009 Kazuhiko Arase
//
// URL: http://www.d-project.com/
//
// Licensed under the MIT license:
// http://www.opensource.org/licenses/mit-license.php
//
// The word "QR Code" is registered trademark of
// DENSO WAVE INCORPORATED
// http://www.denso-wave.com/qrcode/faqpatent-e.html
//
//---------------------------------------------------------------------
(function () {
//---------------------------------------------------------------------
// QRCode
//---------------------------------------------------------------------
var QRCode = (window.QRCode = function (typeNumber, errorCorrectLevel) {
this.typeNumber = typeNumber;
this.errorCorrectLevel = errorCorrectLevel;
this.modules = null;
this.moduleCount = 0;
this.dataCache = null;
this.dataList = new Array();
});
QRCode.prototype = {
addData: function (data) {
var newData = new QRCode.QR8bitByte(data);
this.dataList.push(newData);
this.dataCache = null;
},
isDark: function (row, col) {
if (
row < 0 ||
this.moduleCount <= row ||
col < 0 ||
this.moduleCount <= col
) {
throw new Error(row + "," + col);
}
return this.modules[row][col];
},
getModuleCount: function () {
return this.moduleCount;
},
make: function () {
this.makeImpl(false, this.getBestMaskPattern());
},
makeImpl: function (test, maskPattern) {
this.moduleCount = this.typeNumber * 4 + 17;
this.modules = new Array(this.moduleCount);
for (var row = 0; row < this.moduleCount; row++) {
this.modules[row] = new Array(this.moduleCount);
for (var col = 0; col < this.moduleCount; col++) {
this.modules[row][col] = null; //(col + row) % 3;
}
}
this.setupPositionProbePattern(0, 0);
this.setupPositionProbePattern(this.moduleCount - 7, 0);
this.setupPositionProbePattern(0, this.moduleCount - 7);
this.setupPositionAdjustPattern();
this.setupTimingPattern();
this.setupTypeInfo(test, maskPattern);
if (this.typeNumber >= 7) {
this.setupTypeNumber(test);
}
if (this.dataCache == null) {
this.dataCache = QRCode.createData(
this.typeNumber,
this.errorCorrectLevel,
this.dataList
);
}
this.mapData(this.dataCache, maskPattern);
},
setupPositionProbePattern: function (row, col) {
for (var r = -1; r <= 7; r++) {
if (row + r <= -1 || this.moduleCount <= row + r) continue;
for (var c = -1; c <= 7; c++) {
if (col + c <= -1 || this.moduleCount <= col + c) continue;
if (
(0 <= r && r <= 6 && (c == 0 || c == 6)) ||
(0 <= c && c <= 6 && (r == 0 || r == 6)) ||
(2 <= r && r <= 4 && 2 <= c && c <= 4)
) {
this.modules[row + r][col + c] = true;
} else {
this.modules[row + r][col + c] = false;
}
}
}
},
getBestMaskPattern: function () {
var minLostPoint = 0;
var pattern = 0;
for (var i = 0; i < 8; i++) {
this.makeImpl(true, i);
var lostPoint = QRCode.Util.getLostPoint(this);
if (i == 0 || minLostPoint > lostPoint) {
minLostPoint = lostPoint;
pattern = i;
}
}
return pattern;
},
createMovieClip: function (target_mc, instance_name, depth) {
var qr_mc = target_mc.createEmptyMovieClip(instance_name, depth);
var cs = 1;
this.make();
for (var row = 0; row < this.modules.length; row++) {
var y = row * cs;
for (var col = 0; col < this.modules[row].length; col++) {
var x = col * cs;
var dark = this.modules[row][col];
if (dark) {
qr_mc.beginFill(0, 100);
qr_mc.moveTo(x, y);
qr_mc.lineTo(x + cs, y);
qr_mc.lineTo(x + cs, y + cs);
qr_mc.lineTo(x, y + cs);
qr_mc.endFill();
}
}
}
return qr_mc;
},
setupTimingPattern: function () {
for (var r = 8; r < this.moduleCount - 8; r++) {
if (this.modules[r][6] != null) {
continue;
}
this.modules[r][6] = r % 2 == 0;
}
for (var c = 8; c < this.moduleCount - 8; c++) {
if (this.modules[6][c] != null) {
continue;
}
this.modules[6][c] = c % 2 == 0;
}
},
setupPositionAdjustPattern: function () {
var pos = QRCode.Util.getPatternPosition(this.typeNumber);
for (var i = 0; i < pos.length; i++) {
for (var j = 0; j < pos.length; j++) {
var row = pos[i];
var col = pos[j];
if (this.modules[row][col] != null) {
continue;
}
for (var r = -2; r <= 2; r++) {
for (var c = -2; c <= 2; c++) {
if (
r == -2 ||
r == 2 ||
c == -2 ||
c == 2 ||
(r == 0 && c == 0)
) {
this.modules[row + r][col + c] = true;
} else {
this.modules[row + r][col + c] = false;
}
}
}
}
}
},
setupTypeNumber: function (test) {
var bits = QRCode.Util.getBCHTypeNumber(this.typeNumber);
for (var i = 0; i < 18; i++) {
var mod = !test && ((bits >> i) & 1) == 1;
this.modules[Math.floor(i / 3)][
(i % 3) + this.moduleCount - 8 - 3
] = mod;
}
for (var i = 0; i < 18; i++) {
var mod = !test && ((bits >> i) & 1) == 1;
this.modules[(i % 3) + this.moduleCount - 8 - 3][
Math.floor(i / 3)
] = mod;
}
},
setupTypeInfo: function (test, maskPattern) {
var data = (this.errorCorrectLevel << 3) | maskPattern;
var bits = QRCode.Util.getBCHTypeInfo(data);
// vertical
for (var i = 0; i < 15; i++) {
var mod = !test && ((bits >> i) & 1) == 1;
if (i < 6) {
this.modules[i][8] = mod;
} else if (i < 8) {
this.modules[i + 1][8] = mod;
} else {
this.modules[this.moduleCount - 15 + i][8] = mod;
}
}
// horizontal
for (var i = 0; i < 15; i++) {
var mod = !test && ((bits >> i) & 1) == 1;
if (i < 8) {
this.modules[8][this.moduleCount - i - 1] = mod;
} else if (i < 9) {
this.modules[8][15 - i - 1 + 1] = mod;
} else {
this.modules[8][15 - i - 1] = mod;
}
}
// fixed module
this.modules[this.moduleCount - 8][8] = !test;
},
mapData: function (data, maskPattern) {
var inc = -1;
var row = this.moduleCount - 1;
var bitIndex = 7;
var byteIndex = 0;
for (var col = this.moduleCount - 1; col > 0; col -= 2) {
if (col == 6) col--;
while (true) {
for (var c = 0; c < 2; c++) {
if (this.modules[row][col - c] == null) {
var dark = false;
if (byteIndex < data.length) {
dark = ((data[byteIndex] >>> bitIndex) & 1) == 1;
}
var mask = QRCode.Util.getMask(maskPattern, row, col - c);
if (mask) {
dark = !dark;
}
this.modules[row][col - c] = dark;
bitIndex--;
if (bitIndex == -1) {
byteIndex++;
bitIndex = 7;
}
}
}
row += inc;
if (row < 0 || this.moduleCount <= row) {
row -= inc;
inc = -inc;
break;
}
}
}
}
};
QRCode.PAD0 = 0xec;
QRCode.PAD1 = 0x11;
QRCode.createData = function (typeNumber, errorCorrectLevel, dataList) {
var rsBlocks = QRCode.RSBlock.getRSBlocks(
typeNumber,
errorCorrectLevel
);
var buffer = new QRCode.BitBuffer();
for (var i = 0; i < dataList.length; i++) {
var data = dataList[i];
buffer.put(data.mode, 4);
buffer.put(
data.getLength(),
QRCode.Util.getLengthInBits(data.mode, typeNumber)
);
data.write(buffer);
}
// calc num max data.
var totalDataCount = 0;
for (var i = 0; i < rsBlocks.length; i++) {
totalDataCount += rsBlocks[i].dataCount;
}
if (buffer.getLengthInBits() > totalDataCount * 8) {
throw new Error(
"code length overflow. (" +
buffer.getLengthInBits() +
">" +
totalDataCount * 8 +
")"
);
}
// end code
if (buffer.getLengthInBits() + 4 <= totalDataCount * 8) {
buffer.put(0, 4);
}
// padding
while (buffer.getLengthInBits() % 8 != 0) {
buffer.putBit(false);
}
// padding
while (true) {
if (buffer.getLengthInBits() >= totalDataCount * 8) {
break;
}
buffer.put(QRCode.PAD0, 8);
if (buffer.getLengthInBits() >= totalDataCount * 8) {
break;
}
buffer.put(QRCode.PAD1, 8);
}
return QRCode.createBytes(buffer, rsBlocks);
};
QRCode.createBytes = function (buffer, rsBlocks) {
var offset = 0;
var maxDcCount = 0;
var maxEcCount = 0;
var dcdata = new Array(rsBlocks.length);
var ecdata = new Array(rsBlocks.length);
for (var r = 0; r < rsBlocks.length; r++) {
var dcCount = rsBlocks[r].dataCount;
var ecCount = rsBlocks[r].totalCount - dcCount;
maxDcCount = Math.max(maxDcCount, dcCount);
maxEcCount = Math.max(maxEcCount, ecCount);
dcdata[r] = new Array(dcCount);
for (var i = 0; i < dcdata[r].length; i++) {
dcdata[r][i] = 0xff & buffer.buffer[i + offset];
}
offset += dcCount;
var rsPoly = QRCode.Util.getErrorCorrectPolynomial(ecCount);
var rawPoly = new QRCode.Polynomial(
dcdata[r],
rsPoly.getLength() - 1
);
var modPoly = rawPoly.mod(rsPoly);
ecdata[r] = new Array(rsPoly.getLength() - 1);
for (var i = 0; i < ecdata[r].length; i++) {
var modIndex = i + modPoly.getLength() - ecdata[r].length;
ecdata[r][i] = modIndex >= 0 ? modPoly.get(modIndex) : 0;
}
}
var totalCodeCount = 0;
for (var i = 0; i < rsBlocks.length; i++) {
totalCodeCount += rsBlocks[i].totalCount;
}
var data = new Array(totalCodeCount);
var index = 0;
for (var i = 0; i < maxDcCount; i++) {
for (var r = 0; r < rsBlocks.length; r++) {
if (i < dcdata[r].length) {
data[index++] = dcdata[r][i];
}
}
}
for (var i = 0; i < maxEcCount; i++) {
for (var r = 0; r < rsBlocks.length; r++) {
if (i < ecdata[r].length) {
data[index++] = ecdata[r][i];
}
}
}
return data;
};
//---------------------------------------------------------------------
// QR8bitByte
//---------------------------------------------------------------------
QRCode.QR8bitByte = function (data) {
this.mode = QRCode.Mode.MODE_8BIT_BYTE;
this.data = data;
};
QRCode.QR8bitByte.prototype = {
getLength: function (buffer) {
return this.data.length;
},
write: function (buffer) {
for (var i = 0; i < this.data.length; i++) {
// not JIS ...
buffer.put(this.data.charCodeAt(i), 8);
}
}
};
//---------------------------------------------------------------------
// QRMode
//---------------------------------------------------------------------
QRCode.Mode = {
MODE_NUMBER: 1 << 0,
MODE_ALPHA_NUM: 1 << 1,
MODE_8BIT_BYTE: 1 << 2,
MODE_KANJI: 1 << 3
};
//---------------------------------------------------------------------
// QRErrorCorrectLevel
//---------------------------------------------------------------------
QRCode.ErrorCorrectLevel = {
L: 1,
M: 0,
Q: 3,
H: 2
};
//---------------------------------------------------------------------
// QRMaskPattern
//---------------------------------------------------------------------
QRCode.MaskPattern = {
PATTERN000: 0,
PATTERN001: 1,
PATTERN010: 2,
PATTERN011: 3,
PATTERN100: 4,
PATTERN101: 5,
PATTERN110: 6,
PATTERN111: 7
};
//---------------------------------------------------------------------
// QRUtil
//---------------------------------------------------------------------
QRCode.Util = {
PATTERN_POSITION_TABLE: [
[],
[6, 18],
[6, 22],
[6, 26],
[6, 30],
[6, 34],
[6, 22, 38],
[6, 24, 42],
[6, 26, 46],
[6, 28, 50],
[6, 30, 54],
[6, 32, 58],
[6, 34, 62],
[6, 26, 46, 66],
[6, 26, 48, 70],
[6, 26, 50, 74],
[6, 30, 54, 78],
[6, 30, 56, 82],
[6, 30, 58, 86],
[6, 34, 62, 90],
[6, 28, 50, 72, 94],
[6, 26, 50, 74, 98],
[6, 30, 54, 78, 102],
[6, 28, 54, 80, 106],
[6, 32, 58, 84, 110],
[6, 30, 58, 86, 114],
[6, 34, 62, 90, 118],
[6, 26, 50, 74, 98, 122],
[6, 30, 54, 78, 102, 126],
[6, 26, 52, 78, 104, 130],
[6, 30, 56, 82, 108, 134],
[6, 34, 60, 86, 112, 138],
[6, 30, 58, 86, 114, 142],
[6, 34, 62, 90, 118, 146],
[6, 30, 54, 78, 102, 126, 150],
[6, 24, 50, 76, 102, 128, 154],
[6, 28, 54, 80, 106, 132, 158],
[6, 32, 58, 84, 110, 136, 162],
[6, 26, 54, 82, 110, 138, 166],
[6, 30, 58, 86, 114, 142, 170]
],
G15:
(1 << 10) |
(1 << 8) |
(1 << 5) |
(1 << 4) |
(1 << 2) |
(1 << 1) |
(1 << 0),
G18:
(1 << 12) |
(1 << 11) |
(1 << 10) |
(1 << 9) |
(1 << 8) |
(1 << 5) |
(1 << 2) |
(1 << 0),
G15_MASK: (1 << 14) | (1 << 12) | (1 << 10) | (1 << 4) | (1 << 1),
getBCHTypeInfo: function (data) {
var d = data << 10;
while (
QRCode.Util.getBCHDigit(d) -
QRCode.Util.getBCHDigit(QRCode.Util.G15) >=
0
) {
d ^=
QRCode.Util.G15 <<
(QRCode.Util.getBCHDigit(d) -
QRCode.Util.getBCHDigit(QRCode.Util.G15));
}
return ((data << 10) | d) ^ QRCode.Util.G15_MASK;
},
getBCHTypeNumber: function (data) {
var d = data << 12;
while (
QRCode.Util.getBCHDigit(d) -
QRCode.Util.getBCHDigit(QRCode.Util.G18) >=
0
) {
d ^=
QRCode.Util.G18 <<
(QRCode.Util.getBCHDigit(d) -
QRCode.Util.getBCHDigit(QRCode.Util.G18));
}
return (data << 12) | d;
},
getBCHDigit: function (data) {
var digit = 0;
while (data != 0) {
digit++;
data >>>= 1;
}
return digit;
},
getPatternPosition: function (typeNumber) {
return QRCode.Util.PATTERN_POSITION_TABLE[typeNumber - 1];
},
getMask: function (maskPattern, i, j) {
switch (maskPattern) {
case QRCode.MaskPattern.PATTERN000:
return (i + j) % 2 == 0;
case QRCode.MaskPattern.PATTERN001:
return i % 2 == 0;
case QRCode.MaskPattern.PATTERN010:
return j % 3 == 0;
case QRCode.MaskPattern.PATTERN011:
return (i + j) % 3 == 0;
case QRCode.MaskPattern.PATTERN100:
return (Math.floor(i / 2) + Math.floor(j / 3)) % 2 == 0;
case QRCode.MaskPattern.PATTERN101:
return ((i * j) % 2) + ((i * j) % 3) == 0;
case QRCode.MaskPattern.PATTERN110:
return (((i * j) % 2) + ((i * j) % 3)) % 2 == 0;
case QRCode.MaskPattern.PATTERN111:
return (((i * j) % 3) + ((i + j) % 2)) % 2 == 0;
default:
throw new Error("bad maskPattern:" + maskPattern);
}
},
getErrorCorrectPolynomial: function (errorCorrectLength) {
var a = new QRCode.Polynomial([1], 0);
for (var i = 0; i < errorCorrectLength; i++) {
a = a.multiply(
new QRCode.Polynomial([1, QRCode.Math.gexp(i)], 0)
);
}
return a;
},
getLengthInBits: function (mode, type) {
if (1 <= type && type < 10) {
// 1 - 9
switch (mode) {
case QRCode.Mode.MODE_NUMBER:
return 10;
case QRCode.Mode.MODE_ALPHA_NUM:
return 9;
case QRCode.Mode.MODE_8BIT_BYTE:
return 8;
case QRCode.Mode.MODE_KANJI:
return 8;
default:
throw new Error("mode:" + mode);
}
} else if (type < 27) {
// 10 - 26
switch (mode) {
case QRCode.Mode.MODE_NUMBER:
return 12;
case QRCode.Mode.MODE_ALPHA_NUM:
return 11;
case QRCode.Mode.MODE_8BIT_BYTE:
return 16;
case QRCode.Mode.MODE_KANJI:
return 10;
default:
throw new Error("mode:" + mode);
}
} else if (type < 41) {
// 27 - 40
switch (mode) {
case QRCode.Mode.MODE_NUMBER:
return 14;
case QRCode.Mode.MODE_ALPHA_NUM:
return 13;
case QRCode.Mode.MODE_8BIT_BYTE:
return 16;
case QRCode.Mode.MODE_KANJI:
return 12;
default:
throw new Error("mode:" + mode);
}
} else {
throw new Error("type:" + type);
}
},
getLostPoint: function (qrCode) {
var moduleCount = qrCode.getModuleCount();
var lostPoint = 0;
// LEVEL1
for (var row = 0; row < moduleCount; row++) {
for (var col = 0; col < moduleCount; col++) {
var sameCount = 0;
var dark = qrCode.isDark(row, col);
for (var r = -1; r <= 1; r++) {
if (row + r < 0 || moduleCount <= row + r) {
continue;
}
for (var c = -1; c <= 1; c++) {
if (col + c < 0 || moduleCount <= col + c) {
continue;
}
if (r == 0 && c == 0) {
continue;
}
if (dark == qrCode.isDark(row + r, col + c)) {
sameCount++;
}
}
}
if (sameCount > 5) {
lostPoint += 3 + sameCount - 5;
}
}
}
// LEVEL2
for (var row = 0; row < moduleCount - 1; row++) {
for (var col = 0; col < moduleCount - 1; col++) {
var count = 0;
if (qrCode.isDark(row, col)) count++;
if (qrCode.isDark(row + 1, col)) count++;
if (qrCode.isDark(row, col + 1)) count++;
if (qrCode.isDark(row + 1, col + 1)) count++;
if (count == 0 || count == 4) {
lostPoint += 3;
}
}
}
// LEVEL3
for (var row = 0; row < moduleCount; row++) {
for (var col = 0; col < moduleCount - 6; col++) {
if (
qrCode.isDark(row, col) &&
!qrCode.isDark(row, col + 1) &&
qrCode.isDark(row, col + 2) &&
qrCode.isDark(row, col + 3) &&
qrCode.isDark(row, col + 4) &&
!qrCode.isDark(row, col + 5) &&
qrCode.isDark(row, col + 6)
) {
lostPoint += 40;
}
}
}
for (var col = 0; col < moduleCount; col++) {
for (var row = 0; row < moduleCount - 6; row++) {
if (
qrCode.isDark(row, col) &&
!qrCode.isDark(row + 1, col) &&
qrCode.isDark(row + 2, col) &&
qrCode.isDark(row + 3, col) &&
qrCode.isDark(row + 4, col) &&
!qrCode.isDark(row + 5, col) &&
qrCode.isDark(row + 6, col)
) {
lostPoint += 40;
}
}
}
// LEVEL4
var darkCount = 0;
for (var col = 0; col < moduleCount; col++) {
for (var row = 0; row < moduleCount; row++) {
if (qrCode.isDark(row, col)) {
darkCount++;
}
}
}
var ratio =
Math.abs((100 * darkCount) / moduleCount / moduleCount - 50) / 5;
lostPoint += ratio * 10;
return lostPoint;
}
};
//---------------------------------------------------------------------
// QRMath
//---------------------------------------------------------------------
QRCode.Math = {
glog: function (n) {
if (n < 1) {
throw new Error("glog(" + n + ")");
}
return QRCode.Math.LOG_TABLE[n];
},
gexp: function (n) {
while (n < 0) {
n += 255;
}
while (n >= 256) {
n -= 255;
}
return QRCode.Math.EXP_TABLE[n];
},
EXP_TABLE: new Array(256),
LOG_TABLE: new Array(256)
};
for (var i = 0; i < 8; i++) {
QRCode.Math.EXP_TABLE[i] = 1 << i;
}
for (var i = 8; i < 256; i++) {
QRCode.Math.EXP_TABLE[i] =
QRCode.Math.EXP_TABLE[i - 4] ^
QRCode.Math.EXP_TABLE[i - 5] ^
QRCode.Math.EXP_TABLE[i - 6] ^
QRCode.Math.EXP_TABLE[i - 8];
}
for (var i = 0; i < 255; i++) {
QRCode.Math.LOG_TABLE[QRCode.Math.EXP_TABLE[i]] = i;
}
//---------------------------------------------------------------------
// QRPolynomial
//---------------------------------------------------------------------
QRCode.Polynomial = function (num, shift) {
if (num.length == undefined) {
throw new Error(num.length + "/" + shift);
}
var offset = 0;
while (offset < num.length && num[offset] == 0) {
offset++;
}
this.num = new Array(num.length - offset + shift);
for (var i = 0; i < num.length - offset; i++) {
this.num[i] = num[i + offset];
}
};
QRCode.Polynomial.prototype = {
get: function (index) {
return this.num[index];
},
getLength: function () {
return this.num.length;
},
multiply: function (e) {
var num = new Array(this.getLength() + e.getLength() - 1);
for (var i = 0; i < this.getLength(); i++) {
for (var j = 0; j < e.getLength(); j++) {
num[i + j] ^= QRCode.Math.gexp(
QRCode.Math.glog(this.get(i)) + QRCode.Math.glog(e.get(j))
);
}
}
return new QRCode.Polynomial(num, 0);
},
mod: function (e) {
if (this.getLength() - e.getLength() < 0) {
return this;
}
var ratio =
QRCode.Math.glog(this.get(0)) - QRCode.Math.glog(e.get(0));
var num = new Array(this.getLength());
for (var i = 0; i < this.getLength(); i++) {
num[i] = this.get(i);
}
for (var i = 0; i < e.getLength(); i++) {
num[i] ^= QRCode.Math.gexp(QRCode.Math.glog(e.get(i)) + ratio);
}
// recursive call
return new QRCode.Polynomial(num, 0).mod(e);
}
};
//---------------------------------------------------------------------
// QRRSBlock
//---------------------------------------------------------------------
QRCode.RSBlock = function (totalCount, dataCount) {
this.totalCount = totalCount;
this.dataCount = dataCount;
};
QRCode.RSBlock.RS_BLOCK_TABLE = [
// L
// M
// Q
// H
// 1
[1, 26, 19],
[1, 26, 16],
[1, 26, 13],
[1, 26, 9],
// 2
[1, 44, 34],
[1, 44, 28],
[1, 44, 22],
[1, 44, 16],
// 3
[1, 70, 55],
[1, 70, 44],
[2, 35, 17],
[2, 35, 13],
// 4
[1, 100, 80],
[2, 50, 32],
[2, 50, 24],
[4, 25, 9],
// 5
[1, 134, 108],
[2, 67, 43],
[2, 33, 15, 2, 34, 16],
[2, 33, 11, 2, 34, 12],
// 6
[2, 86, 68],
[4, 43, 27],
[4, 43, 19],
[4, 43, 15],
// 7
[2, 98, 78],
[4, 49, 31],
[2, 32, 14, 4, 33, 15],
[4, 39, 13, 1, 40, 14],
// 8
[2, 121, 97],
[2, 60, 38, 2, 61, 39],
[4, 40, 18, 2, 41, 19],
[4, 40, 14, 2, 41, 15],
// 9
[2, 146, 116],
[3, 58, 36, 2, 59, 37],
[4, 36, 16, 4, 37, 17],
[4, 36, 12, 4, 37, 13],
// 10
[2, 86, 68, 2, 87, 69],
[4, 69, 43, 1, 70, 44],
[6, 43, 19, 2, 44, 20],
[6, 43, 15, 2, 44, 16]
];
QRCode.RSBlock.getRSBlocks = function (typeNumber, errorCorrectLevel) {
var rsBlock = QRCode.RSBlock.getRsBlockTable(
typeNumber,
errorCorrectLevel
);
if (rsBlock == undefined) {
throw new Error(
"bad rs block @ typeNumber:" +
typeNumber +
"/errorCorrectLevel:" +
errorCorrectLevel
);
}
var length = rsBlock.length / 3;
var list = new Array();
for (var i = 0; i < length; i++) {
var count = rsBlock[i * 3 + 0];
var totalCount = rsBlock[i * 3 + 1];
var dataCount = rsBlock[i * 3 + 2];
for (var j = 0; j < count; j++) {
list.push(new QRCode.RSBlock(totalCount, dataCount));
}
}
return list;
};
QRCode.RSBlock.getRsBlockTable = function (
typeNumber,
errorCorrectLevel
) {
switch (errorCorrectLevel) {
case QRCode.ErrorCorrectLevel.L:
return QRCode.RSBlock.RS_BLOCK_TABLE[(typeNumber - 1) * 4 + 0];
case QRCode.ErrorCorrectLevel.M:
return QRCode.RSBlock.RS_BLOCK_TABLE[(typeNumber - 1) * 4 + 1];
case QRCode.ErrorCorrectLevel.Q:
return QRCode.RSBlock.RS_BLOCK_TABLE[(typeNumber - 1) * 4 + 2];
case QRCode.ErrorCorrectLevel.H:
return QRCode.RSBlock.RS_BLOCK_TABLE[(typeNumber - 1) * 4 + 3];
default:
return undefined;
}
};
//---------------------------------------------------------------------
// QRBitBuffer
//---------------------------------------------------------------------
QRCode.BitBuffer = function () {
this.buffer = new Array();
this.length = 0;
};
QRCode.BitBuffer.prototype = {
get: function (index) {
var bufIndex = Math.floor(index / 8);
return ((this.buffer[bufIndex] >>> (7 - (index % 8))) & 1) == 1;
},
put: function (num, length) {
for (var i = 0; i < length; i++) {
this.putBit(((num >>> (length - i - 1)) & 1) == 1);
}
},
getLengthInBits: function () {
return this.length;
},
putBit: function (bit) {
var bufIndex = Math.floor(this.length / 8);
if (this.buffer.length <= bufIndex) {
this.buffer.push(0);
}
if (bit) {
this.buffer[bufIndex] |= 0x80 >>> this.length % 8;
}
this.length++;
}
};
})();
</script>
<script type="text/javascript">
/*
Copyright (c) 2011 Stefan Thomas
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/1a7fc9d063f864058809d06ef4542af40be3558f/src/bitcoin.js
(function (exports) {
var Bitcoin = exports;
})("object" === typeof module ? module.exports : (window.Bitcoin = {}));
</script>
<script type="text/javascript">
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/c952aaeb3ee472e3776655b8ea07299ebed702c7/src/base58.js
(function (Bitcoin) {
Bitcoin.Base58 = {
alphabet:
"123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz",
validRegex: /^[1-9A-HJ-NP-Za-km-z]+$/,
base: BigInteger.valueOf(58),
/**
* Convert a byte array to a base58-encoded string.
*
* Written by Mike Hearn for BitcoinJ.
* Copyright (c) 2011 Google Inc.
*
* Ported to JavaScript by Stefan Thomas.
*/
encode: function (input) {
var bi = BigInteger.fromByteArrayUnsigned(input);
var chars = [];
while (bi.compareTo(B58.base) >= 0) {
var mod = bi.mod(B58.base);
chars.unshift(B58.alphabet[mod.intValue()]);
bi = bi.subtract(mod).divide(B58.base);
}
chars.unshift(B58.alphabet[bi.intValue()]);
// Convert leading zeros too.
for (var i = 0; i < input.length; i++) {
if (input[i] == 0x00) {
chars.unshift(B58.alphabet[0]);
} else break;
}
return chars.join("");
},
/**
* Convert a base58-encoded string to a byte array.
*
* Written by Mike Hearn for BitcoinJ.
* Copyright (c) 2011 Google Inc.
*
* Ported to JavaScript by Stefan Thomas.
*/
decode: function (input) {
var bi = BigInteger.valueOf(0);
var leadingZerosNum = 0;
for (var i = input.length - 1; i >= 0; i--) {
var alphaIndex = B58.alphabet.indexOf(input[i]);
if (alphaIndex < 0) {
throw "Invalid character";
}
bi = bi.add(
BigInteger.valueOf(alphaIndex).multiply(
B58.base.pow(input.length - 1 - i)
)
);
// This counts leading zero bytes
if (input[i] == "1") leadingZerosNum++;
else leadingZerosNum = 0;
}
var bytes = bi.toByteArrayUnsigned();
// Add leading zeros
while (leadingZerosNum-- > 0) bytes.unshift(0);
return bytes;
}
};
var B58 = Bitcoin.Base58;
})("undefined" != typeof Bitcoin ? Bitcoin : module.exports);
</script>
<script type="text/javascript">
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/09e8c6e184d6501a0c2c59d73ca64db5c0d3eb95/src/address.js
Bitcoin.Address = function (bytes, networkVersion) {
if ("string" == typeof bytes) {
bytes = Bitcoin.Address.decodeString(bytes);
}
this.hash = bytes;
// changesMadeByAbhishek: add networkVersion dynamically
//this.version = Bitcoin.Address.networkVersion;
this.version = networkVersion;
};
//Bitcoin.Address.networkVersion = 0x23; // (FLO mainnet 0x23, 35D), (Bitcoin Mainnet, 0x00, 0D)
//Bitcoin.Address.networkVersion = 0x73; // (FLO mainnet 0x23, 35D), (Bitcoin Mainnet, 0x00, 0D)
/**
* Serialize this object as a standard Bitcoin address.
*
* Returns the address as a base58-encoded string in the standardized format.
*/
Bitcoin.Address.prototype.toString = function () {
// Get a copy of the hash
var hash = this.hash.slice(0);
// Version
hash.unshift(this.version);
var checksum = Crypto.SHA256(
Crypto.SHA256(hash, {
asBytes: true
}),
{
asBytes: true
}
);
var bytes = hash.concat(checksum.slice(0, 4));
return Bitcoin.Base58.encode(bytes);
};
Bitcoin.Address.prototype.getHashBase64 = function () {
return Crypto.util.bytesToBase64(this.hash);
};
/**
* Parse a Bitcoin address contained in a string.
*/
Bitcoin.Address.decodeString = function (string) {
var bytes = Bitcoin.Base58.decode(string);
var hash = bytes.slice(0, 21);
var checksum = Crypto.SHA256(
Crypto.SHA256(hash, {
asBytes: true
}),
{
asBytes: true
}
);
if (
checksum[0] != bytes[21] ||
checksum[1] != bytes[22] ||
checksum[2] != bytes[23] ||
checksum[3] != bytes[24]
) {
throw "Checksum validation failed!";
}
var version = hash.shift();
if (version != 0) {
throw "Version " + version + " not supported!";
}
return hash;
};
</script>
<script type="text/javascript">
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/e90780d3d3b8fc0d027d2bcb38b80479902f223e/src/ecdsa.js
Bitcoin.ECDSA = (function () {
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
var rng = new SecureRandom();
var P_OVER_FOUR = null;
function implShamirsTrick(P, k, Q, l) {
var m = Math.max(k.bitLength(), l.bitLength());
var Z = P.add2D(Q);
var R = P.curve.getInfinity();
for (var i = m - 1; i >= 0; --i) {
R = R.twice2D();
R.z = BigInteger.ONE;
if (k.testBit(i)) {
if (l.testBit(i)) {
R = R.add2D(Z);
} else {
R = R.add2D(P);
}
} else {
if (l.testBit(i)) {
R = R.add2D(Q);
}
}
}
return R;
}
var ECDSA = {
getBigRandom: function (limit) {
return new BigInteger(limit.bitLength(), rng)
.mod(limit.subtract(BigInteger.ONE))
.add(BigInteger.ONE);
},
sign: function (hash, priv) {
var d = priv;
var n = ecparams.getN();
var e = BigInteger.fromByteArrayUnsigned(hash);
do {
var k = ECDSA.getBigRandom(n);
var G = ecparams.getG();
var Q = G.multiply(k);
var r = Q.getX()
.toBigInteger()
.mod(n);
} while (r.compareTo(BigInteger.ZERO) <= 0);
var s = k
.modInverse(n)
.multiply(e.add(d.multiply(r)))
.mod(n);
return ECDSA.serializeSig(r, s);
},
verify: function (hash, sig, pubkey) {
var r, s;
if (Bitcoin.Util.isArray(sig)) {
var obj = ECDSA.parseSig(sig);
r = obj.r;
s = obj.s;
} else if ("object" === typeof sig && sig.r && sig.s) {
r = sig.r;
s = sig.s;
} else {
throw "Invalid value for signature";
}
var Q;
if (pubkey instanceof ec.PointFp) {
Q = pubkey;
} else if (Bitcoin.Util.isArray(pubkey)) {
Q = EllipticCurve.PointFp.decodeFrom(ecparams.getCurve(), pubkey);
} else {
throw "Invalid format for pubkey value, must be byte array or ec.PointFp";
}
var e = BigInteger.fromByteArrayUnsigned(hash);
return ECDSA.verifyRaw(e, r, s, Q);
},
verifyRaw: function (e, r, s, Q) {
var n = ecparams.getN();
var G = ecparams.getG();
if (r.compareTo(BigInteger.ONE) < 0 || r.compareTo(n) >= 0)
return false;
if (s.compareTo(BigInteger.ONE) < 0 || s.compareTo(n) >= 0)
return false;
var c = s.modInverse(n);
var u1 = e.multiply(c).mod(n);
var u2 = r.multiply(c).mod(n);
// TODO(!!!): For some reason Shamir's trick isn't working with
// signed message verification!? Probably an implementation
// error!
//var point = implShamirsTrick(G, u1, Q, u2);
var point = G.multiply(u1).add(Q.multiply(u2));
var v = point
.getX()
.toBigInteger()
.mod(n);
return v.equals(r);
},
/**
* Serialize a signature into DER format.
*
* Takes two BigIntegers representing r and s and returns a byte array.
*/
serializeSig: function (r, s) {
var rBa = r.toByteArraySigned();
var sBa = s.toByteArraySigned();
var sequence = [];
sequence.push(0x02); // INTEGER
sequence.push(rBa.length);
sequence = sequence.concat(rBa);
sequence.push(0x02); // INTEGER
sequence.push(sBa.length);
sequence = sequence.concat(sBa);
sequence.unshift(sequence.length);
sequence.unshift(0x30); // SEQUENCE
return sequence;
},
/**
* Parses a byte array containing a DER-encoded signature.
*
* This function will return an object of the form:
*
* {
* r: BigInteger,
* s: BigInteger
* }
*/
parseSig: function (sig) {
var cursor;
if (sig[0] != 0x30)
throw new Error("Signature not a valid DERSequence");
cursor = 2;
if (sig[cursor] != 0x02)
throw new Error(
"First element in signature must be a DERInteger"
);
var rBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]);
cursor += 2 + sig[cursor + 1];
if (sig[cursor] != 0x02)
throw new Error(
"Second element in signature must be a DERInteger"
);
var sBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]);
cursor += 2 + sig[cursor + 1];
//if (cursor != sig.length)
// throw new Error("Extra bytes in signature");
var r = BigInteger.fromByteArrayUnsigned(rBa);
var s = BigInteger.fromByteArrayUnsigned(sBa);
return {
r: r,
s: s
};
},
parseSigCompact: function (sig) {
if (sig.length !== 65) {
throw "Signature has the wrong length";
}
// Signature is prefixed with a type byte storing three bits of
// information.
var i = sig[0] - 27;
if (i < 0 || i > 7) {
throw "Invalid signature type";
}
var n = ecparams.getN();
var r = BigInteger.fromByteArrayUnsigned(sig.slice(1, 33)).mod(n);
var s = BigInteger.fromByteArrayUnsigned(sig.slice(33, 65)).mod(n);
return {
r: r,
s: s,
i: i
};
},
/**
* Recover a public key from a signature.
*
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
* Key Recovery Operation".
*
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*/
recoverPubKey: function (r, s, hash, i) {
// The recovery parameter i has two bits.
i = i & 3;
// The less significant bit specifies whether the y coordinate
// of the compressed point is even or not.
var isYEven = i & 1;
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1;
var n = ecparams.getN();
var G = ecparams.getG();
var curve = ecparams.getCurve();
var p = curve.getQ();
var a = curve.getA().toBigInteger();
var b = curve.getB().toBigInteger();
// We precalculate (p + 1) / 4 where p is if the field order
if (!P_OVER_FOUR) {
P_OVER_FOUR = p.add(BigInteger.ONE).divide(BigInteger.valueOf(4));
}
// 1.1 Compute x
var x = isSecondKey ? r.add(n) : r;
// 1.3 Convert x to point
var alpha = x
.multiply(x)
.multiply(x)
.add(a.multiply(x))
.add(b)
.mod(p);
var beta = alpha.modPow(P_OVER_FOUR, p);
var xorOdd = beta.isEven() ? i % 2 : (i + 1) % 2;
// If beta is even, but y isn't or vice versa, then convert it,
// otherwise we're done and y == beta.
var y = (beta.isEven()
? !isYEven
: isYEven)
? beta
: p.subtract(beta);
// 1.4 Check that nR is at infinity
var R = new EllipticCurve.PointFp(
curve,
curve.fromBigInteger(x),
curve.fromBigInteger(y)
);
R.validate();
// 1.5 Compute e from M
var e = BigInteger.fromByteArrayUnsigned(hash);
var eNeg = BigInteger.ZERO.subtract(e).mod(n);
// 1.6 Compute Q = r^-1 (sR - eG)
var rInv = r.modInverse(n);
var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv);
Q.validate();
if (!ECDSA.verifyRaw(e, r, s, Q)) {
throw "Pubkey recovery unsuccessful";
}
var pubKey = new Bitcoin.ECKey();
pubKey.pub = Q;
return pubKey;
},
/**
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
calcPubkeyRecoveryParam: function (address, r, s, hash) {
for (var i = 0; i < 4; i++) {
try {
var pubkey = Bitcoin.ECDSA.recoverPubKey(r, s, hash, i);
if (pubkey.getBitcoinAddress().toString() == address) {
return i;
}
} catch (e) { }
}
throw "Unable to find valid recovery factor";
}
};
return ECDSA;
})();
</script>
<script type="text/javascript">
Bitcoin.KeyPool = (function () {
var KeyPool = function () {
this.keyArray = [];
this.push = function (item) {
if (item == null || item.priv == null) return;
var doAdd = true;
// prevent duplicates from being added to the array
for (var index in this.keyArray) {
var currentItem = this.keyArray[index];
if (
currentItem != null &&
currentItem.priv != null &&
item.getBitcoinAddress() == currentItem.getBitcoinAddress()
) {
doAdd = false;
break;
}
}
if (doAdd) this.keyArray.push(item);
};
this.reset = function () {
this.keyArray = [];
};
this.getArray = function () {
// copy array
return this.keyArray.slice(0);
};
this.setArray = function (ka) {
this.keyArray = ka;
};
this.length = function () {
return this.keyArray.length;
};
this.toString = function () {
var keyPoolString = "# = " + this.length() + "\n";
var pool = this.getArray();
for (var index in pool) {
var item = pool[index];
if (
Bitcoin.Util.hasMethods(item, "getBitcoinAddress", "toString")
) {
if (item != null) {
keyPoolString +=
'"' +
item.getBitcoinAddress() +
'"' +
', "' +
item.toString("wif") +
'"\n';
}
}
}
return keyPoolString;
};
return this;
};
return new KeyPool();
})();
Bitcoin.Bip38Key = (function () {
var Bip38 = function (address, encryptedKey) {
this.address = address;
this.priv = encryptedKey;
};
Bip38.prototype.getBitcoinAddress = function () {
return this.address;
};
Bip38.prototype.toString = function () {
return this.priv;
};
return Bip38;
})();
//https://raw.github.com/pointbiz/bitcoinjs-lib/9b2f94a028a7bc9bed94e0722563e9ff1d8e8db8/src/eckey.js
Bitcoin.ECKey = (function () {
var ECDSA = Bitcoin.ECDSA;
var KeyPool = Bitcoin.KeyPool;
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
var ECKey = function (input) {
if (!input) {
// Generate new key
var n = ecparams.getN();
this.priv = ECDSA.getBigRandom(n);
} else if (input instanceof BigInteger) {
// Input is a private key value
this.priv = input;
} else if (Bitcoin.Util.isArray(input)) {
// Prepend zero byte to prevent interpretation as negative integer
this.priv = BigInteger.fromByteArrayUnsigned(input);
} else if ("string" == typeof input) {
var bytes = null;
try {
if (ECKey.isWalletImportFormat(input)) {
bytes = ECKey.decodeWalletImportFormat(input);
} else if (ECKey.isCompressedWalletImportFormat(input)) {
bytes = ECKey.decodeCompressedWalletImportFormat(input);
this.compressed = true;
} else if (ECKey.isMiniFormat(input)) {
bytes = Crypto.SHA256(input, {
asBytes: true
});
} else if (ECKey.isHexFormat(input)) {
bytes = Crypto.util.hexToBytes(input);
} else if (ECKey.isBase64Format(input)) {
bytes = Crypto.util.base64ToBytes(input);
} else {
bytes = ECKey.decodeCompressedWalletImportFormat(input);
this.compressed = true;
}
} catch (exc1) {
this.setError(exc1);
}
if (ECKey.isBase6Format(input)) {
this.priv = new BigInteger(input, 6);
} else if (bytes == null || bytes.length != 32) {
this.priv = null;
} else {
// Prepend zero byte to prevent interpretation as negative integer
this.priv = BigInteger.fromByteArrayUnsigned(bytes);
}
}
this.compressed =
this.compressed == undefined
? !!ECKey.compressByDefault
: this.compressed;
try {
// check not zero
if (this.priv != null && BigInteger.ZERO.compareTo(this.priv) == 0)
this.setError("Error: BigInteger equal to zero.");
// valid range [0x1, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364140])
var hexKeyRangeLimit =
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364140";
var rangeLimitBytes = Crypto.util.hexToBytes(hexKeyRangeLimit);
var limitBigInt = BigInteger.fromByteArrayUnsigned(rangeLimitBytes);
if (this.priv != null && limitBigInt.compareTo(this.priv) < 0)
this.setError("Error: BigInteger outside of curve range.");
if (this.priv != null) {
KeyPool.push(this);
}
} catch (exc2) {
this.setError(exc2);
}
};
//FLO Mainnet (0xA3) --- FLO Testnet (0xEF)
// changesMadeByAbhishek: Change below line to flo mainnet (0xA3) when deploying
ECKey.privateKeyPrefix = 0xef; //(Bitcoin mainnet 0x80 testnet 0xEF) (FLO mainnet 0xA3 163 D)
/**
* Whether public keys should be returned compressed by default.
*/
ECKey.compressByDefault = false;
/**
* Set whether the public key should be returned compressed or not.
*/
ECKey.prototype.setError = function (err) {
this.error = err;
this.priv = null;
return this;
};
/**
* Set whether the public key should be returned compressed or not.
*/
ECKey.prototype.setCompressed = function (v) {
this.compressed = !!v;
if (this.pubPoint) this.pubPoint.compressed = this.compressed;
return this;
};
/*
* Return public key as a byte array in DER encoding
*/
ECKey.prototype.getPub = function () {
if (this.compressed) {
if (this.pubComp) return this.pubComp;
return (this.pubComp = this.getPubPoint().getEncoded(1));
} else {
if (this.pubUncomp) return this.pubUncomp;
return (this.pubUncomp = this.getPubPoint().getEncoded(0));
}
};
/**
* Return public point as ECPoint object.
*/
ECKey.prototype.getPubPoint = function () {
if (!this.pubPoint) {
this.pubPoint = ecparams.getG().multiply(this.priv);
this.pubPoint.compressed = this.compressed;
}
return this.pubPoint;
};
ECKey.prototype.getPubKeyHex = function () {
if (this.compressed) {
if (this.pubKeyHexComp) return this.pubKeyHexComp;
return (this.pubKeyHexComp = Crypto.util
.bytesToHex(this.getPub())
.toString()
.toUpperCase());
} else {
if (this.pubKeyHexUncomp) return this.pubKeyHexUncomp;
return (this.pubKeyHexUncomp = Crypto.util
.bytesToHex(this.getPub())
.toString()
.toUpperCase());
}
};
/**
* Get the pubKeyHash for this key.
*
* This is calculated as RIPE160(SHA256([encoded pubkey])) and returned as
* a byte array.
*/
ECKey.prototype.getPubKeyHash = function () {
if (this.compressed) {
if (this.pubKeyHashComp) return this.pubKeyHashComp;
return (this.pubKeyHashComp = Bitcoin.Util.sha256ripe160(
this.getPub()
));
} else {
if (this.pubKeyHashUncomp) return this.pubKeyHashUncomp;
return (this.pubKeyHashUncomp = Bitcoin.Util.sha256ripe160(
this.getPub()
));
}
};
ECKey.prototype.getBitcoinAddress = function (networkVersion) {
var hash = this.getPubKeyHash();
var addr = new Bitcoin.Address(hash, networkVersion);
return addr.toString();
};
/*
* Takes a public point as a hex string or byte array
*/
ECKey.prototype.setPub = function (pub) {
// byte array
if (Bitcoin.Util.isArray(pub)) {
pub = Crypto.util
.bytesToHex(pub)
.toString()
.toUpperCase();
}
var ecPoint = ecparams.getCurve().decodePointHex(pub);
this.setCompressed(ecPoint.compressed);
this.pubPoint = ecPoint;
return this;
};
// Sipa Private Key Wallet Import Format
ECKey.prototype.getBitcoinWalletImportFormat = function () {
var bytes = this.getBitcoinPrivateKeyByteArray();
if (bytes == null) return "";
bytes.unshift(ECKey.privateKeyPrefix); // prepend 0x80 byte
if (this.compressed) bytes.push(0x01); // append 0x01 byte for compressed format
var checksum = Crypto.SHA256(
Crypto.SHA256(bytes, {
asBytes: true
}),
{
asBytes: true
}
);
bytes = bytes.concat(checksum.slice(0, 4));
var privWif = Bitcoin.Base58.encode(bytes);
return privWif;
};
// Private Key Hex Format
ECKey.prototype.getBitcoinHexFormat = function () {
return Crypto.util
.bytesToHex(this.getBitcoinPrivateKeyByteArray())
.toString()
.toUpperCase();
};
// Private Key Base64 Format
ECKey.prototype.getBitcoinBase64Format = function () {
return Crypto.util.bytesToBase64(
this.getBitcoinPrivateKeyByteArray()
);
};
ECKey.prototype.getBitcoinPrivateKeyByteArray = function () {
if (this.priv == null) return null;
// Get a copy of private key as a byte array
var bytes = this.priv.toByteArrayUnsigned();
// zero pad if private key is less than 32 bytes
while (bytes.length < 32) bytes.unshift(0x00);
return bytes;
};
ECKey.prototype.toString = function (format) {
format = format || "";
if (
format.toString().toLowerCase() == "base64" ||
format.toString().toLowerCase() == "b64"
) {
return this.getBitcoinBase64Format();
}
// Wallet Import Format
else if (format.toString().toLowerCase() == "wif") {
return this.getBitcoinWalletImportFormat();
} else {
return this.getBitcoinHexFormat();
}
};
ECKey.prototype.sign = function (hash) {
return ECDSA.sign(hash, this.priv);
};
ECKey.prototype.verify = function (hash, sig) {
return ECDSA.verify(hash, sig, this.getPub());
};
/**
* Parse a wallet import format private key contained in a string.
*/
ECKey.decodeWalletImportFormat = function (privStr) {
var bytes = Bitcoin.Base58.decode(privStr);
var hash = bytes.slice(0, 33);
var checksum = Crypto.SHA256(
Crypto.SHA256(hash, {
asBytes: true
}),
{
asBytes: true
}
);
if (
checksum[0] != bytes[33] ||
checksum[1] != bytes[34] ||
checksum[2] != bytes[35] ||
checksum[3] != bytes[36]
) {
throw "Checksum validation failed!";
}
var version = hash.shift();
if (version != ECKey.privateKeyPrefix) {
throw "Version " + version + " not supported!";
}
return hash;
};
/**
* Parse a compressed wallet import format private key contained in a string.
*/
ECKey.decodeCompressedWalletImportFormat = function (privStr) {
var bytes = Bitcoin.Base58.decode(privStr);
var hash = bytes.slice(0, 34);
var checksum = Crypto.SHA256(
Crypto.SHA256(hash, {
asBytes: true
}),
{
asBytes: true
}
);
if (
checksum[0] != bytes[34] ||
checksum[1] != bytes[35] ||
checksum[2] != bytes[36] ||
checksum[3] != bytes[37]
) {
throw "Checksum validation failed!";
}
var version = hash.shift();
if (version != ECKey.privateKeyPrefix) {
throw "Version " + version + " not supported!";
}
hash.pop();
return hash;
};
// 64 characters [0-9A-F]
ECKey.isHexFormat = function (key) {
key = key.toString();
return /^[A-Fa-f0-9]{64}$/.test(key);
};
// 51 characters base58, always starts with a '5'
ECKey.isWalletImportFormat = function (key) {
key = key.toString();
return ECKey.privateKeyPrefix == 0x80
? /^5[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{50}$/.test(
key
)
: /^9[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{50}$/.test(
key
);
};
// 52 characters base58
ECKey.isCompressedWalletImportFormat = function (key) {
key = key.toString();
switch (ECKey.currentBlockchain) {
case "BTC":
return /^[LK][123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{51}$/.test(
key
)
break;
case "BTC_TEST":
return /^c[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{51}$/.test(
key
);
break;
case "FLO":
return /^R[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{51}$/.test(key);
break;
case "FLO_TEST":
return /^c[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{51}$/.test(key);
break;
default:
break;
}
};
// 44 characters
ECKey.isBase64Format = function (key) {
key = key.toString();
return /^[ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789=+\/]{44}$/.test(
key
);
};
// 99 characters, 1=1, if using dice convert 6 to 0
ECKey.isBase6Format = function (key) {
key = key.toString();
return /^[012345]{99}$/.test(key);
};
// 22, 26 or 30 characters, always starts with an 'S'
ECKey.isMiniFormat = function (key) {
key = key.toString();
var validChars22 = /^S[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{21}$/.test(
key
);
var validChars26 = /^S[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{25}$/.test(
key
);
var validChars30 = /^S[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{29}$/.test(
key
);
var testBytes = Crypto.SHA256(key + "?", {
asBytes: true
});
return (
(testBytes[0] === 0x00 || testBytes[0] === 0x01) &&
(validChars22 || validChars26 || validChars30)
);
};
return ECKey;
})();
</script>
<script type="text/javascript">
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/09e8c6e184d6501a0c2c59d73ca64db5c0d3eb95/src/util.js
// Bitcoin utility functions
Bitcoin.Util = {
/**
* Cross-browser compatibility version of Array.isArray.
*/
isArray:
Array.isArray ||
function (o) {
return Object.prototype.toString.call(o) === "[object Array]";
},
/**
* Create an array of a certain length filled with a specific value.
*/
makeFilledArray: function (len, val) {
var array = [];
var i = 0;
while (i < len) {
array[i++] = val;
}
return array;
},
/**
* Turn an integer into a "var_int".
*
* "var_int" is a variable length integer used by Bitcoin's binary format.
*
* Returns a byte array.
*/
numToVarInt: function (i) {
if (i < 0xfd) {
// unsigned char
return [i];
} else if (i <= 1 << 16) {
// unsigned short (LE)
return [0xfd, i >>> 8, i & 255];
} else if (i <= 1 << 32) {
// unsigned int (LE)
return [0xfe].concat(Crypto.util.wordsToBytes([i]));
} else {
// unsigned long long (LE)
return [0xff].concat(Crypto.util.wordsToBytes([i >>> 32, i]));
}
},
/**
* Parse a Bitcoin value byte array, returning a BigInteger.
*/
valueToBigInt: function (valueBuffer) {
if (valueBuffer instanceof BigInteger) return valueBuffer;
// Prepend zero byte to prevent interpretation as negative integer
return BigInteger.fromByteArrayUnsigned(valueBuffer);
},
/**
* Format a Bitcoin value as a string.
*
* Takes a BigInteger or byte-array and returns that amount of Bitcoins in a
* nice standard formatting.
*
* Examples:
* 12.3555
* 0.1234
* 900.99998888
* 34.00
*/
formatValue: function (valueBuffer) {
var value = this.valueToBigInt(valueBuffer).toString();
var integerPart =
value.length > 8 ? value.substr(0, value.length - 8) : "0";
var decimalPart =
value.length > 8 ? value.substr(value.length - 8) : value;
while (decimalPart.length < 8) decimalPart = "0" + decimalPart;
decimalPart = decimalPart.replace(/0*$/, "");
while (decimalPart.length < 2) decimalPart += "0";
return integerPart + "." + decimalPart;
},
/**
* Parse a floating point string as a Bitcoin value.
*
* Keep in mind that parsing user input is messy. You should always display
* the parsed value back to the user to make sure we understood his input
* correctly.
*/
parseValue: function (valueString) {
// TODO: Detect other number formats (e.g. comma as decimal separator)
var valueComp = valueString.split(".");
var integralPart = valueComp[0];
var fractionalPart = valueComp[1] || "0";
while (fractionalPart.length < 8) fractionalPart += "0";
fractionalPart = fractionalPart.replace(/^0+/g, "");
var value = BigInteger.valueOf(parseInt(integralPart));
value = value.multiply(BigInteger.valueOf(100000000));
value = value.add(BigInteger.valueOf(parseInt(fractionalPart)));
return value;
},
/**
* Calculate RIPEMD160(SHA256(data)).
*
* Takes an arbitrary byte array as inputs and returns the hash as a byte
* array.
*/
sha256ripe160: function (data) {
return Crypto.RIPEMD160(
Crypto.SHA256(data, {
asBytes: true
}),
{
asBytes: true
}
);
},
// double sha256
dsha256: function (data) {
return Crypto.SHA256(
Crypto.SHA256(data, {
asBytes: true
}),
{
asBytes: true
}
);
},
// duck typing method
hasMethods: function (obj /*, method list as strings */) {
var i = 1,
methodName;
while ((methodName = arguments[i++])) {
if (typeof obj[methodName] != "function") {
return false;
}
}
return true;
}
};
</script>
<script type="text/javascript">
/*
* Copyright (c) 2010-2011 Intalio Pte, All Rights Reserved
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// https://github.com/cheongwy/node-scrypt-js
(function () {
var MAX_VALUE = 2147483647;
var workerUrl = null;
//function scrypt(byte[] passwd, byte[] salt, int N, int r, int p, int dkLen)
/*
* N = Cpu cost
* r = Memory cost
* p = parallelization cost
*
*/
window.Crypto_scrypt = function (
passwd,
salt,
N,
r,
p,
dkLen,
callback
) {
if (N == 0 || (N & (N - 1)) != 0)
throw Error("N must be > 0 and a power of 2");
if (N > MAX_VALUE / 128 / r) throw Error("Parameter N is too large");
if (r > MAX_VALUE / 128 / p) throw Error("Parameter r is too large");
var PBKDF2_opts = {
iterations: 1,
hasher: Crypto.SHA256,
asBytes: true
};
var B = Crypto.PBKDF2(passwd, salt, p * 128 * r, PBKDF2_opts);
try {
var i = 0;
var worksDone = 0;
var makeWorker = function () {
if (!workerUrl) {
var code = "(" + scryptCore.toString() + ")()";
var blob;
try {
blob = new Blob([code], {
type: "text/javascript"
});
} catch (e) {
window.BlobBuilder =
window.BlobBuilder ||
window.WebKitBlobBuilder ||
window.MozBlobBuilder ||
window.MSBlobBuilder;
blob = new BlobBuilder();
blob.append(code);
blob = blob.getBlob("text/javascript");
}
workerUrl = URL.createObjectURL(blob);
}
var worker = new Worker(workerUrl);
worker.onmessage = function (event) {
var Bi = event.data[0],
Bslice = event.data[1];
worksDone++;
if (i < p) {
worker.postMessage([N, r, p, B, i++]);
}
var length = Bslice.length,
destPos = Bi * 128 * r,
srcPos = 0;
while (length--) {
B[destPos++] = Bslice[srcPos++];
}
if (worksDone == p) {
callback(Crypto.PBKDF2(passwd, B, dkLen, PBKDF2_opts));
}
};
return worker;
};
var workers = [makeWorker(), makeWorker()];
workers[0].postMessage([N, r, p, B, i++]);
if (p > 1) {
workers[1].postMessage([N, r, p, B, i++]);
}
} catch (e) {
window.setTimeout(function () {
scryptCore();
callback(Crypto.PBKDF2(passwd, B, dkLen, PBKDF2_opts));
}, 0);
}
// using this function to enclose everything needed to create a worker (but also invokable directly for synchronous use)
function scryptCore() {
var XY = [],
V = [];
if (typeof B === "undefined") {
onmessage = function (event) {
var data = event.data;
var N = data[0],
r = data[1],
p = data[2],
B = data[3],
i = data[4];
var Bslice = [];
arraycopy32(B, i * 128 * r, Bslice, 0, 128 * r);
smix(Bslice, 0, r, N, V, XY);
postMessage([i, Bslice]);
};
} else {
for (var i = 0; i < p; i++) {
smix(B, i * 128 * r, r, N, V, XY);
}
}
function smix(B, Bi, r, N, V, XY) {
var Xi = 0;
var Yi = 128 * r;
var i;
arraycopy32(B, Bi, XY, Xi, Yi);
for (i = 0; i < N; i++) {
arraycopy32(XY, Xi, V, i * Yi, Yi);
blockmix_salsa8(XY, Xi, Yi, r);
}
for (i = 0; i < N; i++) {
var j = integerify(XY, Xi, r) & (N - 1);
blockxor(V, j * Yi, XY, Xi, Yi);
blockmix_salsa8(XY, Xi, Yi, r);
}
arraycopy32(XY, Xi, B, Bi, Yi);
}
function blockmix_salsa8(BY, Bi, Yi, r) {
var X = [];
var i;
arraycopy32(BY, Bi + (2 * r - 1) * 64, X, 0, 64);
for (i = 0; i < 2 * r; i++) {
blockxor(BY, i * 64, X, 0, 64);
salsa20_8(X);
arraycopy32(X, 0, BY, Yi + i * 64, 64);
}
for (i = 0; i < r; i++) {
arraycopy32(BY, Yi + i * 2 * 64, BY, Bi + i * 64, 64);
}
for (i = 0; i < r; i++) {
arraycopy32(
BY,
Yi + (i * 2 + 1) * 64,
BY,
Bi + (i + r) * 64,
64
);
}
}
function R(a, b) {
return (a << b) | (a >>> (32 - b));
}
function salsa20_8(B) {
var B32 = new Array(32);
var x = new Array(32);
var i;
for (i = 0; i < 16; i++) {
B32[i] = (B[i * 4 + 0] & 0xff) << 0;
B32[i] |= (B[i * 4 + 1] & 0xff) << 8;
B32[i] |= (B[i * 4 + 2] & 0xff) << 16;
B32[i] |= (B[i * 4 + 3] & 0xff) << 24;
}
arraycopy(B32, 0, x, 0, 16);
for (i = 8; i > 0; i -= 2) {
x[4] ^= R(x[0] + x[12], 7);
x[8] ^= R(x[4] + x[0], 9);
x[12] ^= R(x[8] + x[4], 13);
x[0] ^= R(x[12] + x[8], 18);
x[9] ^= R(x[5] + x[1], 7);
x[13] ^= R(x[9] + x[5], 9);
x[1] ^= R(x[13] + x[9], 13);
x[5] ^= R(x[1] + x[13], 18);
x[14] ^= R(x[10] + x[6], 7);
x[2] ^= R(x[14] + x[10], 9);
x[6] ^= R(x[2] + x[14], 13);
x[10] ^= R(x[6] + x[2], 18);
x[3] ^= R(x[15] + x[11], 7);
x[7] ^= R(x[3] + x[15], 9);
x[11] ^= R(x[7] + x[3], 13);
x[15] ^= R(x[11] + x[7], 18);
x[1] ^= R(x[0] + x[3], 7);
x[2] ^= R(x[1] + x[0], 9);
x[3] ^= R(x[2] + x[1], 13);
x[0] ^= R(x[3] + x[2], 18);
x[6] ^= R(x[5] + x[4], 7);
x[7] ^= R(x[6] + x[5], 9);
x[4] ^= R(x[7] + x[6], 13);
x[5] ^= R(x[4] + x[7], 18);
x[11] ^= R(x[10] + x[9], 7);
x[8] ^= R(x[11] + x[10], 9);
x[9] ^= R(x[8] + x[11], 13);
x[10] ^= R(x[9] + x[8], 18);
x[12] ^= R(x[15] + x[14], 7);
x[13] ^= R(x[12] + x[15], 9);
x[14] ^= R(x[13] + x[12], 13);
x[15] ^= R(x[14] + x[13], 18);
}
for (i = 0; i < 16; ++i) B32[i] = x[i] + B32[i];
for (i = 0; i < 16; i++) {
var bi = i * 4;
B[bi + 0] = (B32[i] >> 0) & 0xff;
B[bi + 1] = (B32[i] >> 8) & 0xff;
B[bi + 2] = (B32[i] >> 16) & 0xff;
B[bi + 3] = (B32[i] >> 24) & 0xff;
}
}
function blockxor(S, Si, D, Di, len) {
var i = len >> 6;
while (i--) {
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
D[Di++] ^= S[Si++];
}
}
function integerify(B, bi, r) {
var n;
bi += (2 * r - 1) * 64;
n = (B[bi + 0] & 0xff) << 0;
n |= (B[bi + 1] & 0xff) << 8;
n |= (B[bi + 2] & 0xff) << 16;
n |= (B[bi + 3] & 0xff) << 24;
return n;
}
function arraycopy(src, srcPos, dest, destPos, length) {
while (length--) {
dest[destPos++] = src[srcPos++];
}
}
function arraycopy32(src, srcPos, dest, destPos, length) {
var i = length >> 5;
while (i--) {
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
dest[destPos++] = src[srcPos++];
}
}
} // scryptCore
}; // window.Crypto_scrypt
})();
</script>
<!-- bitjs.js -->
<script>
function bitjslib(crypto_asset) {
var bitjs = (window.bitjs[crypto_asset] = function () { });
if (crypto_asset == "BTC") {
bitjs.priv = 0x80; //mainnet 0x80, testnet:
bitjs.pub = 0x00; //mainnet 0x23, testnet:
} else if (crypto_asset == "BTC_TEST") {
bitjs.priv = 0xef;
bitjs.pub = 0x6f;
} else if (crypto_asset == "FLO") {
bitjs.priv = 0xa3;
bitjs.pub = 0x23;
} else if (crypto_asset == "FLO_TEST") {
bitjs.priv = 0xef;
bitjs.pub = 0x73;
} else {
bitjs.priv = 0xef;
bitjs.pub = 0x6f;
}
/* public vars */
bitjs.compressed = true;
/* provide a privkey and return an WIF */
bitjs.privkey2wif = function (h) {
var r = Crypto.util.hexToBytes(h);
if (bitjs.compressed == true) {
r.push(0x01);
}
r.unshift(bitjs.priv);
var hash = Crypto.SHA256(
Crypto.SHA256(r, {
asBytes: true
}),
{
asBytes: true
}
);
var checksum = hash.slice(0, 4);
return B58.encode(r.concat(checksum));
};
/* convert a wif key back to a private key */
bitjs.wif2privkey = function (wif) {
var compressed = false;
var decode = B58.decode(wif);
var key = decode.slice(0, decode.length - 4);
key = key.slice(1, key.length);
if (key.length >= 33 && key[key.length - 1] == 0x01) {
key = key.slice(0, key.length - 1);
compressed = true;
}
return {
privkey: Crypto.util.bytesToHex(key),
compressed: compressed
};
};
/* convert a wif to a pubkey */
bitjs.wif2pubkey = function (wif) {
var compressed = bitjs.compressed;
var r = bitjs.wif2privkey(wif);
bitjs.compressed = r["compressed"];
var pubkey = bitjs.newPubkey(r["privkey"]);
bitjs.compressed = compressed;
return {
pubkey: pubkey,
compressed: r["compressed"]
};
};
/* convert a wif to a address */
bitjs.wif2address = function (wif) {
var r = bitjs.wif2pubkey(wif);
return {
address: bitjs.pubkey2address(r["pubkey"]),
compressed: r["compressed"]
};
};
/* generate a public key from a private key */
bitjs.newPubkey = function (hash) {
var privateKeyBigInt = BigInteger.fromByteArrayUnsigned(
Crypto.util.hexToBytes(hash)
);
var curve = EllipticCurve.getSECCurveByName("secp256k1");
var curvePt = curve.getG().multiply(privateKeyBigInt);
var x = curvePt.getX().toBigInteger();
var y = curvePt.getY().toBigInteger();
var publicKeyBytes = EllipticCurve.integerToBytes(x, 32);
publicKeyBytes = publicKeyBytes.concat(
EllipticCurve.integerToBytes(y, 32)
);
publicKeyBytes.unshift(0x04);
if (bitjs.compressed == true) {
var publicKeyBytesCompressed = EllipticCurve.integerToBytes(x, 32);
if (y.isEven()) {
publicKeyBytesCompressed.unshift(0x02);
} else {
publicKeyBytesCompressed.unshift(0x03);
}
return Crypto.util.bytesToHex(publicKeyBytesCompressed);
} else {
return Crypto.util.bytesToHex(publicKeyBytes);
}
};
/* provide a public key and return address */
bitjs.pubkey2address = function (h, byte) {
var r = ripemd160(
Crypto.SHA256(Crypto.util.hexToBytes(h), {
asBytes: true
})
);
r.unshift(byte || bitjs.pub);
var hash = Crypto.SHA256(
Crypto.SHA256(r, {
asBytes: true
}),
{
asBytes: true
}
);
var checksum = hash.slice(0, 4);
return B58.encode(r.concat(checksum));
};
bitjs.transaction = function () {
var btrx = {};
btrx.inputs = [];
btrx.outputs = [];
btrx.locktime = 0;
if (crypto_asset == "FLO" || crypto_asset == "FLO_TEST") {
btrx.version = 2; //flochange look at this version
btrx.floData = ""; //flochange .. look at this
} else if (crypto_asset == "BTC" || crypto_asset == "BTC_TEST") {
btrx.version = 1;
}
btrx.addinput = function (txid, index, scriptPubKey, sequence) {
var o = {};
o.outpoint = {
hash: txid,
index: index
};
//o.script = []; Signature and Public Key should be added after singning
o.script = Crypto.util.hexToBytes(scriptPubKey); //push previous output pubkey script
o.sequence = sequence || (btrx.locktime == 0 ? 4294967295 : 0);
return this.inputs.push(o);
};
btrx.addoutput = function (address, value) {
var o = {};
var buf = [];
var addrDecoded = btrx.addressDecode(address);
o.value = new BigInteger("" + Math.round(value * 1 * 1e8), 10);
buf.push(118); //OP_DUP
buf.push(169); //OP_HASH160
buf.push(addrDecoded.length);
buf = buf.concat(addrDecoded); // address in bytes
buf.push(136); //OP_EQUALVERIFY
buf.push(172); // OP_CHECKSIG
o.script = buf;
return this.outputs.push(o);
};
if (crypto_asset == "FLO" || crypto_asset == "FLO_TEST") {
btrx.addflodata = function (txcomments) {
// flochange - this whole function needs to be done
this.floData = txcomments;
return this.floData; //flochange .. returning the txcomments -- check if the function return will assign
};
}
// Only standard addresses
btrx.addressDecode = function (address) {
var bytes = B58.decode(address);
var front = bytes.slice(0, bytes.length - 4);
var back = bytes.slice(bytes.length - 4);
var checksum = Crypto.SHA256(
Crypto.SHA256(front, {
asBytes: true
}),
{
asBytes: true
}
).slice(0, 4);
if (checksum + "" == back + "") {
return front.slice(1);
}
};
/* generate the transaction hash to sign from a transaction input */
btrx.transactionHash = function (index, sigHashType) {
var clone = bitjs.clone(this);
var shType = sigHashType || 1;
/* black out all other ins, except this one */
for (var i = 0; i < clone.inputs.length; i++) {
if (index != i) {
clone.inputs[i].script = [];
}
}
if (clone.inputs && clone.inputs[index]) {
/* SIGHASH : For more info on sig hashs see https://en.bitcoin.it/wiki/OP_CHECKSIG
and https://bitcoin.org/en/developer-guide#signature-hash-type */
if (shType == 1) {
//SIGHASH_ALL 0x01
} else if (shType == 2) {
//SIGHASH_NONE 0x02
clone.outputs = [];
for (var i = 0; i < clone.inputs.length; i++) {
if (index != i) {
clone.inputs[i].sequence = 0;
}
}
} else if (shType == 3) {
//SIGHASH_SINGLE 0x03
clone.outputs.length = index + 1;
for (var i = 0; i < index; i++) {
clone.outputs[i].value = -1;
clone.outputs[i].script = [];
}
for (var i = 0; i < clone.inputs.length; i++) {
if (index != i) {
clone.inputs[i].sequence = 0;
}
}
} else if (shType >= 128) {
//SIGHASH_ANYONECANPAY 0x80
clone.inputs = [clone.inputs[index]];
if (shType == 129) {
// SIGHASH_ALL + SIGHASH_ANYONECANPAY
} else if (shType == 130) {
// SIGHASH_NONE + SIGHASH_ANYONECANPAY
clone.outputs = [];
} else if (shType == 131) {
// SIGHASH_SINGLE + SIGHASH_ANYONECANPAY
clone.outputs.length = index + 1;
for (var i = 0; i < index; i++) {
clone.outputs[i].value = -1;
clone.outputs[i].script = [];
}
}
}
var buffer = Crypto.util.hexToBytes(clone.serialize());
buffer = buffer.concat(bitjs.numToBytes(parseInt(shType), 4));
var hash = Crypto.SHA256(buffer, {
asBytes: true
});
var r = Crypto.util.bytesToHex(
Crypto.SHA256(hash, {
asBytes: true
})
);
return r;
} else {
return false;
}
};
/* generate a signature from a transaction hash */
btrx.transactionSig = function (index, wif, sigHashType, txhash) {
function serializeSig(r, s) {
var rBa = r.toByteArraySigned();
var sBa = s.toByteArraySigned();
var sequence = [];
sequence.push(0x02); // INTEGER
sequence.push(rBa.length);
sequence = sequence.concat(rBa);
sequence.push(0x02); // INTEGER
sequence.push(sBa.length);
sequence = sequence.concat(sBa);
sequence.unshift(sequence.length);
sequence.unshift(0x30); // SEQUENCE
return sequence;
}
var shType = sigHashType || 1;
var hash =
txhash ||
Crypto.util.hexToBytes(this.transactionHash(index, shType));
if (hash) {
var curve = EllipticCurve.getSECCurveByName("secp256k1");
var key = bitjs.wif2privkey(wif);
var priv = BigInteger.fromByteArrayUnsigned(
Crypto.util.hexToBytes(key["privkey"])
);
var n = curve.getN();
var e = BigInteger.fromByteArrayUnsigned(hash);
var badrs = 0;
do {
var k = this.deterministicK(wif, hash, badrs);
var G = curve.getG();
var Q = G.multiply(k);
var r = Q.getX()
.toBigInteger()
.mod(n);
var s = k
.modInverse(n)
.multiply(e.add(priv.multiply(r)))
.mod(n);
badrs++;
} while (
r.compareTo(BigInteger.ZERO) <= 0 ||
s.compareTo(BigInteger.ZERO) <= 0
);
// Force lower s values per BIP62
var halfn = n.shiftRight(1);
if (s.compareTo(halfn) > 0) {
s = n.subtract(s);
}
var sig = serializeSig(r, s);
sig.push(parseInt(shType, 10));
return Crypto.util.bytesToHex(sig);
} else {
return false;
}
};
// https://tools.ietf.org/html/rfc6979#section-3.2
btrx.deterministicK = function (wif, hash, badrs) {
// if r or s were invalid when this function was used in signing,
// we do not want to actually compute r, s here for efficiency, so,
// we can increment badrs. explained at end of RFC 6979 section 3.2
// wif is b58check encoded wif privkey.
// hash is byte array of transaction digest.
// badrs is used only if the k resulted in bad r or s.
// some necessary things out of the way for clarity.
badrs = badrs || 0;
var key = bitjs.wif2privkey(wif);
var x = Crypto.util.hexToBytes(key["privkey"]);
var curve = EllipticCurve.getSECCurveByName("secp256k1");
var N = curve.getN();
// Step: a
// hash is a byteArray of the message digest. so h1 == hash in our case
// Step: b
var v = [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
];
// Step: c
var k = [
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
];
// Step: d
k = Crypto.HMAC(
Crypto.SHA256,
v
.concat([0])
.concat(x)
.concat(hash),
k,
{
asBytes: true
}
);
// Step: e
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
// Step: f
k = Crypto.HMAC(
Crypto.SHA256,
v
.concat([1])
.concat(x)
.concat(hash),
k,
{
asBytes: true
}
);
// Step: g
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
// Step: h1
var T = [];
// Step: h2 (since we know tlen = qlen, just copy v to T.)
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
T = v;
// Step: h3
var KBigInt = BigInteger.fromByteArrayUnsigned(T);
// loop if KBigInt is not in the range of [1, N-1] or if badrs needs incrementing.
var i = 0;
while (
KBigInt.compareTo(N) >= 0 ||
KBigInt.compareTo(BigInteger.ZERO) <= 0 ||
i < badrs
) {
k = Crypto.HMAC(Crypto.SHA256, v.concat([0]), k, {
asBytes: true
});
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
v = Crypto.HMAC(Crypto.SHA256, v, k, {
asBytes: true
});
T = v;
KBigInt = BigInteger.fromByteArrayUnsigned(T);
i++;
}
return KBigInt;
};
/* sign a "standard" input */
btrx.signinput = function (index, wif, sigHashType) {
var key = bitjs.wif2pubkey(wif);
var shType = sigHashType || 1;
var signature = this.transactionSig(index, wif, shType);
var buf = [];
var sigBytes = Crypto.util.hexToBytes(signature);
buf.push(sigBytes.length);
buf = buf.concat(sigBytes);
var pubKeyBytes = Crypto.util.hexToBytes(key["pubkey"]);
buf.push(pubKeyBytes.length);
buf = buf.concat(pubKeyBytes);
this.inputs[index].script = buf;
return true;
};
/* sign inputs */
btrx.sign = function (wifs, sigHashType) {
var shType = sigHashType || 1;
for (var i = 0; i < this.inputs.length; i++) {
this.signinput(i, wifs[i], shType);
}
return this.serialize();
};
/* serialize a transaction */
btrx.serialize = function () {
if (crypto_asset == "FLO" || crypto_asset == "FLO_TEST") {
var buffer = [];
buffer = buffer.concat(
bitjs.numToBytes(parseInt(this.version), 4)
);
buffer = buffer.concat(bitjs.numToVarInt(this.inputs.length));
for (var i = 0; i < this.inputs.length; i++) {
var txin = this.inputs[i];
buffer = buffer.concat(
Crypto.util.hexToBytes(txin.outpoint.hash).reverse()
);
buffer = buffer.concat(
bitjs.numToBytes(parseInt(txin.outpoint.index), 4)
);
var scriptBytes = txin.script;
buffer = buffer.concat(bitjs.numToVarInt(scriptBytes.length));
buffer = buffer.concat(scriptBytes);
buffer = buffer.concat(
bitjs.numToBytes(parseInt(txin.sequence), 4)
);
}
buffer = buffer.concat(bitjs.numToVarInt(this.outputs.length));
for (var i = 0; i < this.outputs.length; i++) {
var txout = this.outputs[i];
buffer = buffer.concat(bitjs.numToBytes(txout.value, 8));
var scriptBytes = txout.script;
buffer = buffer.concat(bitjs.numToVarInt(scriptBytes.length));
buffer = buffer.concat(scriptBytes);
}
buffer = buffer.concat(
bitjs.numToBytes(parseInt(this.locktime), 4)
);
flohex = ascii_to_hexa(this.floData);
floDataCount = this.floData.length;
//flochange -- creating unique data character count logic for floData. This string is prefixed before actual floData string in Raw Transaction
if (floDataCount <= 16) {
floDataCountString = floDataCount.toString(16);
floDataCountString = "0" + floDataCountString;
} else if (floDataCount < 253) {
floDataCountString = floDataCount.toString(16);
} else if (floDataCount <= 1023) {
floDataCountAdjusted =
floDataCount - 253 + parseInt("0xfd00fd");
floDataCountStringAdjusted = floDataCountAdjusted.toString(16);
floDataCountString =
floDataCountStringAdjusted.substr(0, 2) +
floDataCountStringAdjusted.substr(4, 2) +
floDataCountStringAdjusted.substr(2, 2);
} else {
floDataCountString = "Character Limit Exceeded";
}
return (
Crypto.util.bytesToHex(buffer) + floDataCountString + flohex
); // flochange -- Addition of floDataCountString and floData in serialization
} else if (crypto_asset == "BTC" || crypto_asset == "BTC_TEST") {
var buffer = [];
buffer = buffer.concat(
bitjs.numToBytes(parseInt(this.version), 4)
);
buffer = buffer.concat(bitjs.numToVarInt(this.inputs.length));
for (var i = 0; i < this.inputs.length; i++) {
var txin = this.inputs[i];
buffer = buffer.concat(
Crypto.util.hexToBytes(txin.outpoint.hash).reverse()
);
buffer = buffer.concat(
bitjs.numToBytes(parseInt(txin.outpoint.index), 4)
);
var scriptBytes = txin.script;
buffer = buffer.concat(bitjs.numToVarInt(scriptBytes.length));
buffer = buffer.concat(scriptBytes);
buffer = buffer.concat(
bitjs.numToBytes(parseInt(txin.sequence), 4)
);
}
buffer = buffer.concat(bitjs.numToVarInt(this.outputs.length));
for (var i = 0; i < this.outputs.length; i++) {
var txout = this.outputs[i];
buffer = buffer.concat(bitjs.numToBytes(txout.value, 8));
var scriptBytes = txout.script;
buffer = buffer.concat(bitjs.numToVarInt(scriptBytes.length));
buffer = buffer.concat(scriptBytes);
}
buffer = buffer.concat(
bitjs.numToBytes(parseInt(this.locktime), 4)
);
return Crypto.util.bytesToHex(buffer);
}
};
return btrx;
};
bitjs.numToBytes = function (num, bytes) {
if (typeof bytes === "undefined") bytes = 8;
if (bytes == 0) {
return [];
} else if (num == -1) {
return Crypto.util.hexToBytes("ffffffffffffffff");
} else {
return [num % 256].concat(
bitjs.numToBytes(Math.floor(num / 256), bytes - 1)
);
}
};
bitjs.numToByteArray = function (num) {
if (num <= 256) {
return [num];
} else {
return [num % 256].concat(
bitjs.numToByteArray(Math.floor(num / 256))
);
}
};
bitjs.numToVarInt = function (num) {
if (num < 253) {
return [num];
} else if (num < 65536) {
return [253].concat(bitjs.numToBytes(num, 2));
} else if (num < 4294967296) {
return [254].concat(bitjs.numToBytes(num, 4));
} else {
return [255].concat(bitjs.numToBytes(num, 8));
}
};
bitjs.bytesToNum = function (bytes) {
if (bytes.length == 0) return 0;
else return bytes[0] + 256 * bitjs.bytesToNum(bytes.slice(1));
};
/* clone an object */
bitjs.clone = function (obj) {
if (obj == null || typeof obj != "object") return obj;
var temp = new obj.constructor();
for (var key in obj) {
if (obj.hasOwnProperty(key)) {
temp[key] = bitjs.clone(obj[key]);
}
}
return temp;
};
var B58 = (bitjs.Base58 = {
alphabet:
"123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz",
validRegex: /^[1-9A-HJ-NP-Za-km-z]+$/,
base: BigInteger.valueOf(58),
/**
* Convert a byte array to a base58-encoded string.
*
* Written by Mike Hearn for BitcoinJ.
* Copyright (c) 2011 Google Inc.
*
* Ported to JavaScript by Stefan Thomas.
*/
encode: function (input) {
var bi = BigInteger.fromByteArrayUnsigned(input);
var chars = [];
while (bi.compareTo(B58.base) >= 0) {
var mod = bi.mod(B58.base);
chars.unshift(B58.alphabet[mod.intValue()]);
bi = bi.subtract(mod).divide(B58.base);
}
chars.unshift(B58.alphabet[bi.intValue()]);
// Convert leading zeros too.
for (var i = 0; i < input.length; i++) {
if (input[i] == 0x00) {
chars.unshift(B58.alphabet[0]);
} else break;
}
return chars.join("");
},
/**
* Convert a base58-encoded string to a byte array.
*
* Written by Mike Hearn for BitcoinJ.
* Copyright (c) 2011 Google Inc.
*
* Ported to JavaScript by Stefan Thomas.
*/
decode: function (input) {
var bi = BigInteger.valueOf(0);
var leadingZerosNum = 0;
for (var i = input.length - 1; i >= 0; i--) {
var alphaIndex = B58.alphabet.indexOf(input[i]);
if (alphaIndex < 0) {
throw "Invalid character";
}
bi = bi.add(
BigInteger.valueOf(alphaIndex).multiply(
B58.base.pow(input.length - 1 - i)
)
);
// This counts leading zero bytes
if (input[i] == "1") leadingZerosNum++;
else leadingZerosNum = 0;
}
var bytes = bi.toByteArrayUnsigned();
// Add leading zeros
while (leadingZerosNum-- > 0) bytes.unshift(0);
return bytes;
}
});
return bitjs;
}
</script>
<!-- Shamir's secret (https://github.com/amper5and/secrets.js) -->
<script>
// secrets.js - by Alexander Stetsyuk - released under MIT License
(function (exports, global) {
var defaults = {
bits: 8, // default number of bits
radix: 16, // work with HEX by default
minBits: 3,
maxBits: 20, // this permits 1,048,575 shares, though going this high is NOT recommended in JS!
bytesPerChar: 2,
maxBytesPerChar: 6, // Math.pow(256,7) > Math.pow(2,53)
// Primitive polynomials (in decimal form) for Galois Fields GF(2^n), for 2 <= n <= 30
// The index of each term in the array corresponds to the n for that polynomial
// i.e. to get the polynomial for n=16, use primitivePolynomials[16]
primitivePolynomials: [
null,
null,
1,
3,
3,
5,
3,
3,
29,
17,
9,
5,
83,
27,
43,
3,
45,
9,
39,
39,
9,
5,
3,
33,
27,
9,
71,
39,
9,
5,
83
],
// warning for insecure PRNG
warning:
"WARNING:\nA secure random number generator was not found.\nUsing Math.random(), which is NOT cryptographically strong!"
};
// Protected settings object
var config = {};
/** @expose **/
exports.getConfig = function () {
return {
bits: config.bits,
unsafePRNG: config.unsafePRNG
};
};
function init(bits) {
if (
bits &&
(typeof bits !== "number" ||
bits % 1 !== 0 ||
bits < defaults.minBits ||
bits > defaults.maxBits)
) {
throw new Error(
"Number of bits must be an integer between " +
defaults.minBits +
" and " +
defaults.maxBits +
", inclusive."
);
}
config.radix = defaults.radix;
config.bits = bits || defaults.bits;
config.size = Math.pow(2, config.bits);
config.max = config.size - 1;
// Construct the exp and log tables for multiplication.
var logs = [],
exps = [],
x = 1,
primitive = defaults.primitivePolynomials[config.bits];
for (var i = 0; i < config.size; i++) {
exps[i] = x;
logs[x] = i;
x <<= 1;
if (x >= config.size) {
x ^= primitive;
x &= config.max;
}
}
config.logs = logs;
config.exps = exps;
}
/** @expose **/
exports.init = init;
function isInited() {
if (
!config.bits ||
!config.size ||
!config.max ||
!config.logs ||
!config.exps ||
config.logs.length !== config.size ||
config.exps.length !== config.size
) {
return false;
}
return true;
}
// Returns a pseudo-random number generator of the form function(bits){}
// which should output a random string of 1's and 0's of length `bits`
function getRNG() {
var randomBits, crypto;
function construct(bits, arr, radix, size) {
var str = "",
i = 0,
len = arr.length - 1;
while (i < len || str.length < bits) {
str += padLeft(parseInt(arr[i], radix).toString(2), size);
i++;
}
str = str.substr(-bits);
if ((str.match(/0/g) || []).length === str.length) {
// all zeros?
return null;
} else {
return str;
}
}
// node.js crypto.randomBytes()
if (
typeof require === "function" &&
(crypto = require("crypto")) &&
(randomBits = crypto["randomBytes"])
) {
return function (bits) {
var bytes = Math.ceil(bits / 8),
str = null;
while (str === null) {
str = construct(bits, randomBits(bytes).toString("hex"), 16, 4);
}
return str;
};
}
// browsers with window.crypto.getRandomValues()
if (
global["crypto"] &&
typeof global["crypto"]["getRandomValues"] === "function" &&
typeof global["Uint32Array"] === "function"
) {
crypto = global["crypto"];
return function (bits) {
var elems = Math.ceil(bits / 32),
str = null,
arr = new global["Uint32Array"](elems);
while (str === null) {
crypto["getRandomValues"](arr);
str = construct(bits, arr, 10, 32);
}
return str;
};
}
// A totally insecure RNG!!! (except in Safari)
// Will produce a warning every time it is called.
config.unsafePRNG = true;
warn();
var bitsPerNum = 32;
var max = Math.pow(2, bitsPerNum) - 1;
return function (bits) {
var elems = Math.ceil(bits / bitsPerNum);
var arr = [],
str = null;
while (str === null) {
for (var i = 0; i < elems; i++) {
arr[i] = Math.floor(Math.random() * max + 1);
}
str = construct(bits, arr, 10, bitsPerNum);
}
return str;
};
}
// Warn about using insecure rng.
// Called when Math.random() is being used.
function warn() {
global["console"]["warn"](defaults.warning);
if (typeof global["alert"] === "function" && config.alert) {
global["alert"](defaults.warning);
}
}
// Set the PRNG to use. If no RNG function is supplied, pick a default using getRNG()
/** @expose **/
exports.setRNG = function (rng, alert) {
if (!isInited()) {
this.init();
}
config.unsafePRNG = false;
rng = rng || getRNG();
// test the RNG (5 times)
if (
typeof rng !== "function" ||
typeof rng(config.bits) !== "string" ||
!parseInt(rng(config.bits), 2) ||
rng(config.bits).length > config.bits ||
rng(config.bits).length < config.bits
) {
throw new Error(
"Random number generator is invalid. Supply an RNG of the form function(bits){} that returns a string containing 'bits' number of random 1's and 0's."
);
} else {
config.rng = rng;
}
config.alert = !!alert;
return !!config.unsafePRNG;
};
function isSetRNG() {
return typeof config.rng === "function";
}
// Generates a random bits-length number string using the PRNG
/** @expose **/
exports.random = function (bits) {
if (!isSetRNG()) {
this.setRNG();
}
if (typeof bits !== "number" || bits % 1 !== 0 || bits < 2) {
throw new Error(
"Number of bits must be an integer greater than 1."
);
}
if (config.unsafePRNG) {
warn();
}
return bin2hex(config.rng(bits));
};
// Divides a `secret` number String str expressed in radix `inputRadix` (optional, default 16)
// into `numShares` shares, each expressed in radix `outputRadix` (optional, default to `inputRadix`),
// requiring `threshold` number of shares to reconstruct the secret.
// Optionally, zero-pads the secret to a length that is a multiple of padLength before sharing.
/** @expose **/
exports.share = function (
secret,
numShares,
threshold,
padLength,
withoutPrefix
) {
if (!isInited()) {
this.init();
}
if (!isSetRNG()) {
this.setRNG();
}
padLength = padLength || 0;
if (typeof secret !== "string") {
throw new Error("Secret must be a string.");
}
if (
typeof numShares !== "number" ||
numShares % 1 !== 0 ||
numShares < 2
) {
throw new Error(
"Number of shares must be an integer between 2 and 2^bits-1 (" +
config.max +
"), inclusive."
);
}
if (numShares > config.max) {
var neededBits = Math.ceil(Math.log(numShares + 1) / Math.LN2);
throw new Error(
"Number of shares must be an integer between 2 and 2^bits-1 (" +
config.max +
"), inclusive. To create " +
numShares +
" shares, use at least " +
neededBits +
" bits."
);
}
if (
typeof threshold !== "number" ||
threshold % 1 !== 0 ||
threshold < 2
) {
throw new Error(
"Threshold number of shares must be an integer between 2 and 2^bits-1 (" +
config.max +
"), inclusive."
);
}
if (threshold > config.max) {
var neededBits = Math.ceil(Math.log(threshold + 1) / Math.LN2);
throw new Error(
"Threshold number of shares must be an integer between 2 and 2^bits-1 (" +
config.max +
"), inclusive. To use a threshold of " +
threshold +
", use at least " +
neededBits +
" bits."
);
}
if (typeof padLength !== "number" || padLength % 1 !== 0) {
throw new Error(
"Zero-pad length must be an integer greater than 1."
);
}
if (config.unsafePRNG) {
warn();
}
secret = "1" + hex2bin(secret); // append a 1 so that we can preserve the correct number of leading zeros in our secret
secret = split(secret, padLength);
var x = new Array(numShares),
y = new Array(numShares);
for (var i = 0, len = secret.length; i < len; i++) {
var subShares = this._getShares(secret[i], numShares, threshold);
for (var j = 0; j < numShares; j++) {
x[j] = x[j] || subShares[j].x.toString(config.radix);
y[j] = padLeft(subShares[j].y.toString(2)) + (y[j] ? y[j] : "");
}
}
var padding = config.max.toString(config.radix).length;
if (withoutPrefix) {
for (var i = 0; i < numShares; i++) {
x[i] = bin2hex(y[i]);
}
} else {
for (var i = 0; i < numShares; i++) {
x[i] =
config.bits.toString(36).toUpperCase() +
padLeft(x[i], padding) +
bin2hex(y[i]);
}
}
return x;
};
// This is the basic polynomial generation and evaluation function
// for a `config.bits`-length secret (NOT an arbitrary length)
// Note: no error-checking at this stage! If `secrets` is NOT
// a NUMBER less than 2^bits-1, the output will be incorrect!
/** @expose **/
exports._getShares = function (secret, numShares, threshold) {
var shares = [];
var coeffs = [secret];
for (var i = 1; i < threshold; i++) {
coeffs[i] = parseInt(config.rng(config.bits), 2);
}
for (var i = 1, len = numShares + 1; i < len; i++) {
shares[i - 1] = {
x: i,
y: horner(i, coeffs)
};
}
return shares;
};
// Polynomial evaluation at `x` using Horner's Method
// TODO: this can possibly be sped up using other methods
// NOTE: fx=fx * x + coeff[i] -> exp(log(fx) + log(x)) + coeff[i],
// so if fx===0, just set fx to coeff[i] because
// using the exp/log form will result in incorrect value
function horner(x, coeffs) {
var logx = config.logs[x];
var fx = 0;
for (var i = coeffs.length - 1; i >= 0; i--) {
if (fx === 0) {
fx = coeffs[i];
continue;
}
fx = config.exps[(logx + config.logs[fx]) % config.max] ^ coeffs[i];
}
return fx;
}
function inArray(arr, val) {
for (var i = 0, len = arr.length; i < len; i++) {
if (arr[i] === val) {
return true;
}
}
return false;
}
function processShare(share) {
var bits = parseInt(share[0], 36);
if (
bits &&
(typeof bits !== "number" ||
bits % 1 !== 0 ||
bits < defaults.minBits ||
bits > defaults.maxBits)
) {
throw new Error(
"Number of bits must be an integer between " +
defaults.minBits +
" and " +
defaults.maxBits +
", inclusive."
);
}
var max = Math.pow(2, bits) - 1;
var idLength = max.toString(config.radix).length;
var id = parseInt(share.substr(1, idLength), config.radix);
if (typeof id !== "number" || id % 1 !== 0 || id < 1 || id > max) {
throw new Error(
"Share id must be an integer between 1 and " +
config.max +
", inclusive."
);
}
share = share.substr(idLength + 1);
if (!share.length) {
throw new Error("Invalid share: zero-length share.");
}
return {
bits: bits,
id: id,
value: share
};
}
/** @expose **/
exports._processShare = processShare;
// Protected method that evaluates the Lagrange interpolation
// polynomial at x=`at` for individual config.bits-length
// segments of each share in the `shares` Array.
// Each share is expressed in base `inputRadix`. The output
// is expressed in base `outputRadix'
function combine(at, shares) {
var setBits,
share,
x = [],
y = [],
result = "",
idx;
for (var i = 0, len = shares.length; i < len; i++) {
share = processShare(shares[i]);
if (typeof setBits === "undefined") {
setBits = share["bits"];
} else if (share["bits"] !== setBits) {
throw new Error("Mismatched shares: Different bit settings.");
}
if (config.bits !== setBits) {
init(setBits);
}
if (inArray(x, share["id"])) {
// repeated x value?
continue;
}
idx = x.push(share["id"]) - 1;
share = split(hex2bin(share["value"]));
for (var j = 0, len2 = share.length; j < len2; j++) {
y[j] = y[j] || [];
y[j][idx] = share[j];
}
}
for (var i = 0, len = y.length; i < len; i++) {
result = padLeft(lagrange(at, x, y[i]).toString(2)) + result;
}
if (at === 0) {
// reconstructing the secret
var idx = result.indexOf("1"); //find the first 1
return bin2hex(result.slice(idx + 1));
} else {
// generating a new share
return bin2hex(result);
}
}
// Combine `shares` Array into the original secret
/** @expose **/
exports.combine = function (shares) {
return combine(0, shares);
};
// Generate a new share with id `id` (a number between 1 and 2^bits-1)
// `id` can be a Number or a String in the default radix (16)
/** @expose **/
exports.newShare = function (id, shares) {
if (typeof id === "string") {
id = parseInt(id, config.radix);
}
var share = processShare(shares[0]);
var max = Math.pow(2, share["bits"]) - 1;
if (typeof id !== "number" || id % 1 !== 0 || id < 1 || id > max) {
throw new Error(
"Share id must be an integer between 1 and " +
config.max +
", inclusive."
);
}
var padding = max.toString(config.radix).length;
return (
config.bits.toString(36).toUpperCase() +
padLeft(id.toString(config.radix), padding) +
combine(id, shares)
);
};
// Evaluate the Lagrange interpolation polynomial at x = `at`
// using x and y Arrays that are of the same length, with
// corresponding elements constituting points on the polynomial.
function lagrange(at, x, y) {
var sum = 0,
product,
i,
j;
for (var i = 0, len = x.length; i < len; i++) {
if (!y[i]) {
continue;
}
product = config.logs[y[i]];
for (var j = 0; j < len; j++) {
if (i === j) {
continue;
}
if (at === x[j]) {
// happens when computing a share that is in the list of shares used to compute it
product = -1; // fix for a zero product term, after which the sum should be sum^0 = sum, not sum^1
break;
}
product =
(product +
config.logs[at ^ x[j]] -
config.logs[x[i] ^ x[j]] +
config.max) /* to make sure it's not negative */ %
config.max;
}
sum = product === -1 ? sum : sum ^ config.exps[product]; // though exps[-1]= undefined and undefined ^ anything = anything in chrome, this behavior may not hold everywhere, so do the check
}
return sum;
}
/** @expose **/
exports._lagrange = lagrange;
// Splits a number string `bits`-length segments, after first
// optionally zero-padding it to a length that is a multiple of `padLength.
// Returns array of integers (each less than 2^bits-1), with each element
// representing a `bits`-length segment of the input string from right to left,
// i.e. parts[0] represents the right-most `bits`-length segment of the input string.
function split(str, padLength) {
if (padLength) {
str = padLeft(str, padLength);
}
var parts = [];
for (var i = str.length; i > config.bits; i -= config.bits) {
parts.push(parseInt(str.slice(i - config.bits, i), 2));
}
parts.push(parseInt(str.slice(0, i), 2));
return parts;
}
// Pads a string `str` with zeros on the left so that its length is a multiple of `bits`
function padLeft(str, bits) {
bits = bits || config.bits;
var missing = str.length % bits;
return (missing ? new Array(bits - missing + 1).join("0") : "") + str;
}
function hex2bin(str) {
var bin = "",
num;
for (var i = str.length - 1; i >= 0; i--) {
num = parseInt(str[i], 16);
if (isNaN(num)) {
throw new Error("Invalid hex character.");
}
bin = padLeft(num.toString(2), 4) + bin;
}
return bin;
}
function bin2hex(str) {
var hex = "",
num;
str = padLeft(str, 4);
for (var i = str.length; i >= 4; i -= 4) {
num = parseInt(str.slice(i - 4, i), 2);
if (isNaN(num)) {
throw new Error("Invalid binary character.");
}
hex = num.toString(16) + hex;
}
return hex;
}
// Converts a given UTF16 character string to the HEX representation.
// Each character of the input string is represented by
// `bytesPerChar` bytes in the output string.
/** @expose **/
exports.str2hex = function (str, bytesPerChar) {
if (typeof str !== "string") {
throw new Error("Input must be a character string.");
}
bytesPerChar = bytesPerChar || defaults.bytesPerChar;
if (
typeof bytesPerChar !== "number" ||
bytesPerChar % 1 !== 0 ||
bytesPerChar < 1 ||
bytesPerChar > defaults.maxBytesPerChar
) {
throw new Error(
"Bytes per character must be an integer between 1 and " +
defaults.maxBytesPerChar +
", inclusive."
);
}
var hexChars = 2 * bytesPerChar;
var max = Math.pow(16, hexChars) - 1;
var out = "",
num;
for (var i = 0, len = str.length; i < len; i++) {
num = str[i].charCodeAt();
if (isNaN(num)) {
throw new Error("Invalid character: " + str[i]);
} else if (num > max) {
var neededBytes = Math.ceil(Math.log(num + 1) / Math.log(256));
throw new Error(
"Invalid character code (" +
num +
"). Maximum allowable is 256^bytes-1 (" +
max +
"). To convert this character, use at least " +
neededBytes +
" bytes."
);
} else {
out = padLeft(num.toString(16), hexChars) + out;
}
}
return out;
};
// Converts a given HEX number string to a UTF16 character string.
/** @expose **/
exports.hex2str = function (str, bytesPerChar) {
if (typeof str !== "string") {
throw new Error("Input must be a hexadecimal string.");
}
bytesPerChar = bytesPerChar || defaults.bytesPerChar;
if (
typeof bytesPerChar !== "number" ||
bytesPerChar % 1 !== 0 ||
bytesPerChar < 1 ||
bytesPerChar > defaults.maxBytesPerChar
) {
throw new Error(
"Bytes per character must be an integer between 1 and " +
defaults.maxBytesPerChar +
", inclusive."
);
}
var hexChars = 2 * bytesPerChar;
var out = "";
str = padLeft(str, hexChars);
for (var i = 0, len = str.length; i < len; i += hexChars) {
out =
String.fromCharCode(parseInt(str.slice(i, i + hexChars), 16)) +
out;
}
return out;
};
// by default, initialize without an RNG
exports.init();
})(
typeof module !== "undefined" && module["exports"]
? module["exports"]
: (window["shamirSecretShare"] = {}),
typeof global !== "undefined" ? global : window
);
</script>
<script language="JavaScript">
(function (ellipticCurveType) {
//Defining Elliptic Encryption Object
var ellipticEncryption = (window.ellipticCurveEncryption = function () { });
ellipticEncryption.rng = new SecureRandom();
ellipticEncryption.getCurveParameters = function (curveName) {
//Default is secp256k1
curveName =
typeof curveName !== "undefined" ? curveName : "secp256k1";
var c = EllipticCurve.getSECCurveByName(curveName);
var curveDetails = {
Q: "",
A: "",
B: "",
GX: "",
GY: "",
N: ""
};
curveDetails.Q = c
.getCurve()
.getQ()
.toString();
curveDetails.A = c
.getCurve()
.getA()
.toBigInteger()
.toString();
curveDetails.B = c
.getCurve()
.getB()
.toBigInteger()
.toString();
curveDetails.GX = c
.getG()
.getX()
.toBigInteger()
.toString();
curveDetails.GY = c
.getG()
.getY()
.toBigInteger()
.toString();
curveDetails.N = c.getN().toString();
return curveDetails;
};
ellipticEncryption.selectedCurve = ellipticEncryption.getCurveParameters(
ellipticCurveType
);
ellipticEncryption.get_curve = function () {
return new EllipticCurve.CurveFp(
new BigInteger(this.selectedCurve.Q),
new BigInteger(this.selectedCurve.A),
new BigInteger(this.selectedCurve.B)
);
};
ellipticEncryption.get_G = function (curve) {
return new EllipticCurve.PointFp(
curve,
curve.fromBigInteger(new BigInteger(this.selectedCurve.GX)),
curve.fromBigInteger(new BigInteger(this.selectedCurve.GY))
);
};
ellipticEncryption.pick_rand = function () {
var n = new BigInteger(this.selectedCurve.N);
var n1 = n.subtract(BigInteger.ONE);
var r = new BigInteger(n.bitLength(), this.rng);
return r.mod(n1).add(BigInteger.ONE);
};
ellipticEncryption.senderRandom = function () {
var r = this.pick_rand();
return r.toString();
};
ellipticEncryption.receiverRandom = function () {
//This is receivers private key. For now we will use random. CHANGE IT LATER
var r = this.pick_rand();
return r.toString();
};
ellipticEncryption.senderPublicString = function (senderPrivateKey) {
var senderKeyECData = {};
var curve = this.get_curve();
var G = this.get_G(curve);
var a = new BigInteger(senderPrivateKey);
var P = G.multiply(a);
senderKeyECData.XValuePublicString = P.getX()
.toBigInteger()
.toString();
senderKeyECData.YValuePublicString = P.getY()
.toBigInteger()
.toString();
return senderKeyECData;
};
//In real life ellipticEncryption.receiverPublicString is the public key of the receiver.
//you don't have to run receiverRandom and the bottom function
ellipticEncryption.receiverPublicString = function (receiverPublicKey) {
var receiverKeyECData = {};
var curve = this.get_curve();
var G = this.get_G(curve);
var a = new BigInteger(receiverPublicKey);
var P = G.multiply(a);
receiverKeyECData.XValuePublicString = P.getX()
.toBigInteger()
.toString();
receiverKeyECData.YValuePublicString = P.getY()
.toBigInteger()
.toString();
return receiverKeyECData;
};
ellipticEncryption.senderSharedKeyDerivation = function (
receiverPublicStringXValue,
receiverPublicStringYValue,
senderPrivateKey
) {
var senderDerivedKey = {};
var curve = this.get_curve();
var P = new EllipticCurve.PointFp(
curve,
curve.fromBigInteger(new BigInteger(receiverPublicStringXValue)),
curve.fromBigInteger(new BigInteger(receiverPublicStringYValue))
);
var a = new BigInteger(senderPrivateKey);
var S = P.multiply(a);
senderDerivedKey.XValue = S.getX()
.toBigInteger()
.toString();
senderDerivedKey.YValue = S.getY()
.toBigInteger()
.toString();
return senderDerivedKey;
};
ellipticEncryption.receiverSharedKeyDerivation = function (
senderPublicStringXValue,
senderPublicStringYValue,
receiverPrivateKey
) {
var receiverDerivedKey = {};
var curve = this.get_curve();
var P = new EllipticCurve.PointFp(
curve,
curve.fromBigInteger(new BigInteger(senderPublicStringXValue)),
curve.fromBigInteger(new BigInteger(senderPublicStringYValue))
);
var a = new BigInteger(receiverPrivateKey);
var S = P.multiply(a);
receiverDerivedKey.XValue = S.getX()
.toBigInteger()
.toString();
receiverDerivedKey.YValue = S.getY()
.toBigInteger()
.toString();
return receiverDerivedKey;
};
})("secp256k1"); // End of EllipticCurveEncryption Object
</script>
<!-- Kademelia -->
<script>
/*Kademlia DHT K-bucket implementation as a binary tree.*/
if (typeof reactor == "undefined" || !reactor) {
(function () {
function Event(name) {
this.name = name;
this.callbacks = [];
}
Event.prototype.registerCallback = function (callback) {
this.callbacks.push(callback);
};
function Reactor() {
this.events = {};
}
Reactor.prototype.registerEvent = function (eventName) {
var event = new Event(eventName);
this.events[eventName] = event;
};
Reactor.prototype.dispatchEvent = function (eventName, eventArgs) {
this.events[eventName].callbacks.forEach(function (callback) {
callback(eventArgs);
});
};
Reactor.prototype.addEventListener = function (eventName, callback) {
this.events[eventName].registerCallback(callback);
};
window.reactor = new Reactor();
})();
}
reactor.registerEvent("added");
reactor.addEventListener("added", function (someObject) {
console.log("Added fired with data " + someObject);
});
reactor.registerEvent("removed");
reactor.addEventListener("removed", function (someObject) {
console.log("Removed fired with data " + someObject);
});
reactor.registerEvent("updated");
reactor.addEventListener("updated", function (someObject) {
console.log("Updated fired with data " + someObject);
});
reactor.registerEvent("bucket_full");
reactor.addEventListener("bucket_full", function (someObject) {
console.log("Bucket full " + someObject);
});
/*
//Sample Usage
//Creating and defining the event
reactor.registerEvent('big bang');
reactor.addEventListener('big bang', function(someObject){
console.log('This is big bang listener yo!'+ someObject.a);
});
//Firing the event
reactor.dispatchEvent('big bang');
reactor.dispatchEvent('big bang',{a:1});
reactor.dispatchEvent('big bang',{a:55});
*/
//Checking if existing NodeID can be used
//This first block of if will initialize the configuration of KBucket
//Add Events, Messaging between different K-Buckets, and attach relevant distributed data
/**
* @param {Uint8Array} array1
* @param {Uint8Array} array2
* @return {Boolean}
*/
function arrayEquals(array1, array2) {
if (array1 === array2) {
return true;
}
if (array1.length !== array2.length) {
return false;
}
for (let i = 0, length = array1.length; i < length; ++i) {
if (array1[i] !== array2[i]) {
return false;
}
}
return true;
}
function createNode() {
return {
contacts: [],
dontSplit: false,
left: null,
right: null
};
}
function ensureInt8(name, val) {
if (!(val instanceof Uint8Array)) {
throw new TypeError(name + " is not a Uint8Array");
}
}
/**
* Implementation of a Kademlia DHT k-bucket used for storing
* contact (peer node) information.
*
* @extends EventEmitter
*/
function BuildKBucket(options = {}) {
/**
* `options`:
* `distance`: Function
* `function (firstId, secondId) { return distance }` An optional
* `distance` function that gets two `id` Uint8Arrays
* and return distance (as number) between them.
* `arbiter`: Function (Default: vectorClock arbiter)
* `function (incumbent, candidate) { return contact; }` An optional
* `arbiter` function that givent two `contact` objects with the same `id`
* returns the desired object to be used for updating the k-bucket. For
* more details, see [arbiter function](#arbiter-function).
* `localNodeId`: Uint8Array An optional Uint8Array representing the local node id.
* If not provided, a local node id will be created via `randomBytes(20)`.
* `metadata`: Object (Default: {}) Optional satellite data to include
* with the k-bucket. `metadata` property is guaranteed not be altered by,
* it is provided as an explicit container for users of k-bucket to store
* implementation-specific data.
* `numberOfNodesPerKBucket`: Integer (Default: 20) The number of nodes
* that a k-bucket can contain before being full or split.
* `numberOfNodesToPing`: Integer (Default: 3) The number of nodes to
* ping when a bucket that should not be split becomes full. KBucket will
* emit a `ping` event that contains `numberOfNodesToPing` nodes that have
* not been contacted the longest.
*
* @param {Object=} options optional
*/
this.localNodeId =
options.localNodeId ||
window.crypto.getRandomValues(new Uint8Array(20));
this.numberOfNodesPerKBucket = options.numberOfNodesPerKBucket || 20;
this.numberOfNodesToPing = options.numberOfNodesToPing || 3;
this.distance = options.distance || this.distance;
// use an arbiter from options or vectorClock arbiter by default
this.arbiter = options.arbiter || this.arbiter;
this.metadata = Object.assign({}, options.metadata);
ensureInt8("option.localNodeId as parameter 1", this.localNodeId);
this.root = createNode();
/**
* Default arbiter function for contacts with the same id. Uses
* contact.vectorClock to select which contact to update the k-bucket with.
* Contact with larger vectorClock field will be selected. If vectorClock is
* the same, candidat will be selected.
*
* @param {Object} incumbent Contact currently stored in the k-bucket.
* @param {Object} candidate Contact being added to the k-bucket.
* @return {Object} Contact to updated the k-bucket with.
*/
this.arbiter = function (incumbent, candidate) {
return incumbent.vectorClock > candidate.vectorClock
? incumbent
: candidate;
};
/**
* Default distance function. Finds the XOR
* distance between firstId and secondId.
*
* @param {Uint8Array} firstId Uint8Array containing first id.
* @param {Uint8Array} secondId Uint8Array containing second id.
* @return {Number} Integer The XOR distance between firstId
* and secondId.
*/
this.distance = function (firstId, secondId) {
let distance = 0;
let i = 0;
const min = Math.min(firstId.length, secondId.length);
const max = Math.max(firstId.length, secondId.length);
for (; i < min; ++i) {
distance = distance * 256 + (firstId[i] ^ secondId[i]);
}
for (; i < max; ++i) distance = distance * 256 + 255;
return distance;
};
/**
* Adds a contact to the k-bucket.
*
* @param {Object} contact the contact object to add
*/
this.add = function (contact) {
ensureInt8("contact.id", (contact || {}).id);
let bitIndex = 0;
let node = this.root;
while (node.contacts === null) {
// this is not a leaf node but an inner node with 'low' and 'high'
// branches; we will check the appropriate bit of the identifier and
// delegate to the appropriate node for further processing
node = this._determineNode(node, contact.id, bitIndex++);
}
// check if the contact already exists
const index = this._indexOf(node, contact.id);
if (index >= 0) {
this._update(node, index, contact);
return this;
}
if (node.contacts.length < this.numberOfNodesPerKBucket) {
node.contacts.push(contact);
reactor.dispatchEvent("added", contact);
return this;
}
// the bucket is full
if (node.dontSplit) {
// we are not allowed to split the bucket
// we need to ping the first this.numberOfNodesToPing
// in order to determine if they are alive
// only if one of the pinged nodes does not respond, can the new contact
// be added (this prevents DoS flodding with new invalid contacts)
reactor.dispatchEvent("bucket_full", {
1: node.contacts.slice(0, this.numberOfNodesToPing),
2: contact
});
return this;
}
this._split(node, bitIndex);
return this.add(contact);
};
/**
* Get the n closest contacts to the provided node id. "Closest" here means:
* closest according to the XOR metric of the contact node id.
*
* @param {Uint8Array} id Contact node id
* @param {Number=} n Integer (Default: Infinity) The maximum number of
* closest contacts to return
* @return {Array} Array Maximum of n closest contacts to the node id
*/
this.closest = function (id, n = Infinity) {
ensureInt8("id", id);
if ((!Number.isInteger(n) && n !== Infinity) || n <= 0) {
throw new TypeError("n is not positive number");
}
let contacts = [];
for (
let nodes = [this.root], bitIndex = 0;
nodes.length > 0 && contacts.length < n;
) {
const node = nodes.pop();
if (node.contacts === null) {
const detNode = this._determineNode(node, id, bitIndex++);
nodes.push(node.left === detNode ? node.right : node.left);
nodes.push(detNode);
} else {
contacts = contacts.concat(node.contacts);
}
}
return contacts
.map(a => [this.distance(a.id, id), a])
.sort((a, b) => a[0] - b[0])
.slice(0, n)
.map(a => a[1]);
};
/**
* Counts the total number of contacts in the tree.
*
* @return {Number} The number of contacts held in the tree
*/
this.count = function () {
// return this.toArray().length
let count = 0;
for (const nodes = [this.root]; nodes.length > 0;) {
const node = nodes.pop();
if (node.contacts === null) nodes.push(node.right, node.left);
else count += node.contacts.length;
}
return count;
};
/**
* Determines whether the id at the bitIndex is 0 or 1.
* Return left leaf if `id` at `bitIndex` is 0, right leaf otherwise
*
* @param {Object} node internal object that has 2 leafs: left and right
* @param {Uint8Array} id Id to compare localNodeId with.
* @param {Number} bitIndex Integer (Default: 0) The bit index to which bit
* to check in the id Uint8Array.
* @return {Object} left leaf if id at bitIndex is 0, right leaf otherwise.
*/
this._determineNode = function (node, id, bitIndex) {
// *NOTE* remember that id is a Uint8Array and has granularity of
// bytes (8 bits), whereas the bitIndex is the bit index (not byte)
// id's that are too short are put in low bucket (1 byte = 8 bits)
// (bitIndex >> 3) finds how many bytes the bitIndex describes
// bitIndex % 8 checks if we have extra bits beyond byte multiples
// if number of bytes is <= no. of bytes described by bitIndex and there
// are extra bits to consider, this means id has less bits than what
// bitIndex describes, id therefore is too short, and will be put in low
// bucket
const bytesDescribedByBitIndex = bitIndex >> 3;
const bitIndexWithinByte = bitIndex % 8;
if (
id.length <= bytesDescribedByBitIndex &&
bitIndexWithinByte !== 0
) {
return node.left;
}
const byteUnderConsideration = id[bytesDescribedByBitIndex];
// byteUnderConsideration is an integer from 0 to 255 represented by 8 bits
// where 255 is 11111111 and 0 is 00000000
// in order to find out whether the bit at bitIndexWithinByte is set
// we construct (1 << (7 - bitIndexWithinByte)) which will consist
// of all bits being 0, with only one bit set to 1
// for example, if bitIndexWithinByte is 3, we will construct 00010000 by
// (1 << (7 - 3)) -> (1 << 4) -> 16
if (byteUnderConsideration & (1 << (7 - bitIndexWithinByte))) {
return node.right;
}
return node.left;
};
/**
* Get a contact by its exact ID.
* If this is a leaf, loop through the bucket contents and return the correct
* contact if we have it or null if not. If this is an inner node, determine
* which branch of the tree to traverse and repeat.
*
* @param {Uint8Array} id The ID of the contact to fetch.
* @return {Object|Null} The contact if available, otherwise null
*/
this.get = function (id) {
ensureInt8("id", id);
let bitIndex = 0;
let node = this.root;
while (node.contacts === null) {
node = this._determineNode(node, id, bitIndex++);
}
// index of uses contact id for matching
const index = this._indexOf(node, id);
return index >= 0 ? node.contacts[index] : null;
};
/**
* Returns the index of the contact with provided
* id if it exists, returns -1 otherwise.
*
* @param {Object} node internal object that has 2 leafs: left and right
* @param {Uint8Array} id Contact node id.
* @return {Number} Integer Index of contact with provided id if it
* exists, -1 otherwise.
*/
this._indexOf = function (node, id) {
for (let i = 0; i < node.contacts.length; ++i) {
if (arrayEquals(node.contacts[i].id, id)) return i;
}
return -1;
};
/**
* Removes contact with the provided id.
*
* @param {Uint8Array} id The ID of the contact to remove.
* @return {Object} The k-bucket itself.
*/
this.remove = function (id) {
ensureInt8("the id as parameter 1", id);
let bitIndex = 0;
let node = this.root;
while (node.contacts === null) {
node = this._determineNode(node, id, bitIndex++);
}
const index = this._indexOf(node, id);
if (index >= 0) {
const contact = node.contacts.splice(index, 1)[0];
reactor.dispatchEvent("removed", contact);
}
return this;
};
/**
* Splits the node, redistributes contacts to the new nodes, and marks the
* node that was split as an inner node of the binary tree of nodes by
* setting this.root.contacts = null
*
* @param {Object} node node for splitting
* @param {Number} bitIndex the bitIndex to which byte to check in the
* Uint8Array for navigating the binary tree
*/
this._split = function (node, bitIndex) {
node.left = createNode();
node.right = createNode();
// redistribute existing contacts amongst the two newly created nodes
for (const contact of node.contacts) {
this._determineNode(node, contact.id, bitIndex).contacts.push(
contact
);
}
node.contacts = null; // mark as inner tree node
// don't split the "far away" node
// we check where the local node would end up and mark the other one as
// "dontSplit" (i.e. "far away")
const detNode = this._determineNode(node, this.localNodeId, bitIndex);
const otherNode = node.left === detNode ? node.right : node.left;
otherNode.dontSplit = true;
};
/**
* Returns all the contacts contained in the tree as an array.
* If this is a leaf, return a copy of the bucket. `slice` is used so that we
* don't accidentally leak an internal reference out that might be
* accidentally misused. If this is not a leaf, return the union of the low
* and high branches (themselves also as arrays).
*
* @return {Array} All of the contacts in the tree, as an array
*/
this.toArray = function () {
let result = [];
for (const nodes = [this.root]; nodes.length > 0;) {
const node = nodes.pop();
if (node.contacts === null) nodes.push(node.right, node.left);
else result = result.concat(node.contacts);
}
return result;
};
/**
* Updates the contact selected by the arbiter.
* If the selection is our old contact and the candidate is some new contact
* then the new contact is abandoned (not added).
* If the selection is our old contact and the candidate is our old contact
* then we are refreshing the contact and it is marked as most recently
* contacted (by being moved to the right/end of the bucket array).
* If the selection is our new contact, the old contact is removed and the new
* contact is marked as most recently contacted.
*
* @param {Object} node internal object that has 2 leafs: left and right
* @param {Number} index the index in the bucket where contact exists
* (index has already been computed in a previous
* calculation)
* @param {Object} contact The contact object to update.
*/
this._update = function (node, index, contact) {
// sanity check
if (!arrayEquals(node.contacts[index].id, contact.id)) {
throw new Error("wrong index for _update");
}
const incumbent = node.contacts[index];
/***************Change made by Abhishek*************/
const selection = this.arbiter(incumbent, contact);
// if the selection is our old contact and the candidate is some new
// contact, then there is nothing to do
if (selection === incumbent && incumbent !== contact) return;
node.contacts.splice(index, 1); // remove old contact
node.contacts.push(selection); // add more recent contact version
/***************Change made by Abhishek*************/
reactor.dispatchEvent("updated", {
...incumbent,
...selection
});
//reactor.dispatchEvent('updated', incumbent.concat(selection))
};
}
</script>
<!----------------------------------------------------------------------------------
System status code starts
----------------------------------------------------------------------------------->
<script>
// SECTION: JSON RPC Library Starts (https://github.com/oliver-moran/json-rpc)
var JSON_RPC = {};
var id = 0,
callbacks = {};
/**
* Constructs a new JSON-RPC Request
* @param method A String containing the name of the method to be invoked.
* @param params (optional) A Structured value that holds the parameter values to be used during the invocation of the method.
*/
JSON_RPC.Request = function (method, params, globalParams = {}) {
this.jsonrpc = "2.0";
this.method = method;
if (typeof params !== "undefined") {
this.params = params;
}
this.globalParams = globalParams;
this.id = id++;
};
// Implements getters and setters for the result of a JSON-RPC Request.
// The result may be an any Object or primitive
Object.defineProperty(JSON_RPC.Request.prototype, "result", {
get: function () {
return this._result;
},
set: function (result) {
delete this.method; // remove the method name
delete this.params; // remove the params
delete this.error; // remove error state if it exists
delete this.globalParams; // remove globalParams
this._result = result;
}
});
// Implements getters and setters for the error state of a JSON-RPC Request.
// Error should be a JSON_RPC.Error object
Object.defineProperty(JSON_RPC.Request.prototype, "error", {
get: function () {
return this._error;
},
set: function (error) {
delete this.method; // remove the method name
delete this.params; // remove the params
delete this.result; // remove result state if it exists
delete this.globalParams; // remove globalParams if it exists
this._error = error;
}
});
/**
* Returns a String representation of a JSON-RPC Request
* @returns A JSON String
*/
JSON_RPC.Request.prototype.toString = function () {
var rpc = {
jsonrpc: this.jsonrpc,
id: this.id
};
if (this.method !== undefined) rpc.method = this.method;
if (this.params !== undefined) rpc.params = this.params;
if (this.result !== undefined) rpc.result = this.result;
if (this.error !== undefined) rpc.error = this.error;
if (this.globalParams !== undefined)
rpc.globalParams = this.globalParams;
return JSON.stringify(rpc);
};
/**
* Constructs a new JSON-RPC Notification
* @param method A String containing the name of the method to be invoked.
* @param params (optional) A Structured value that holds the parameter values to be used during the invocation of the method.
*/
JSON_RPC.Notification = function (method, params, globalParams) {
this.jsonrpc = "2.0";
this.method = method;
if (typeof params !== "undefined") {
this.params = params;
}
if (typeof globalParams !== "undefined") {
this.globalParams = globalParams;
}
};
/**
* Returns a String representation of a JSON-RPC Notification
* @returns A JSON String
*/
JSON_RPC.Notification.prototype.toString = function () {
var rpc = {
jsonrpc: this.jsonrpc,
method: this.method,
params: this.params,
globalParams: this.globalParams
};
return JSON.stringify(rpc);
};
/**
* Constructs a new JSON-RPC Error object
* @params code A Number that indicates the error type that occurred. -32768 to -32000 are reserved.
* @param message (optional) A String providing a short description of the error.
* @param data (optional) A Primitive or Structured value that contains additional information about the error.
*/
JSON_RPC.Error = function (code, message, data) {
this.code = code;
if (typeof message == "string") this.message = message;
if (data !== undefined) this.data = data;
};
// stock errors
JSON_RPC.PARSE_ERROR = new JSON_RPC.Error(
-32700,
"An error occurred on the server while parsing the JSON text."
);
JSON_RPC.INVALID_REQUEST = new JSON_RPC.Error(
-32600,
"The JSON sent is not a valid Request object."
);
JSON_RPC.METHOD_NOT_FOUND = new JSON_RPC.Error(
-32601,
"The method does not exist / is not available."
);
JSON_RPC.INVALID_PARAMS = new JSON_RPC.Error(
-32602,
"Invalid method parameter(s)."
);
JSON_RPC.INTERNAL_ERROR = new JSON_RPC.Error(
-32603,
"Internal JSON-RPC error."
);
/**
* Parses a JSON-RPC string and converts to a JSON-RPC object or an Array of such strings.
* @params rpc A String or Array to parse to a JSON-RPC object.
*/
JSON_RPC.parse = function (rpc) {
// batch?
if (rpc.constructor === Array) {
var arr = [];
rpc.forEach(function (el) {
arr.push(JSON_RPC.parse(el));
});
return arr;
}
// parsable?
var rpc;
try {
rpc = JSON.parse(rpc);
} catch (err) {
var obj = new JSON_RPC.Request();
obj.result = JSON_RPC.PARSE_ERROR;
obj.id = null;
return obj;
}
// 2.0?
if (rpc.jsonrpc !== "2.0") {
var obj = new JSON_RPC.Request();
obj.result = JSON_RPC.INVALID_REQUEST;
obj.id = null;
return obj;
}
// request or notification?
var obj =
rpc.id === undefined
? new JSON_RPC.Notification(rpc.method, rpc.params)
: new JSON_RPC.Request(rpc.method, rpc.params);
// have an ID?
if (rpc.id !== undefined) obj.id = rpc.id;
// is it a result?
if (rpc.result !== undefined) obj.result = rpc.result;
// is it a error?
if (rpc.error !== undefined) {
obj.error = new JSON_RPC.Error(
rpc.error.code,
rpc.error.message,
rpc.error.data
);
}
// parsed :-)
return obj;
};
/* JSON RPC Library Ends */
</script>
<script>
// SECTION: RPC Object
var Rpc = function () {
this.rpc_req_id;
};
Rpc.prototype = {
send_rpc(method, ...params) {
return new Promise((resolve, reject) => {
var request = new JSON_RPC.Request(method, params);
var id = request.id;
this.rpc_req_id = id;
(async function (request) {
request.globalParams.senderFloId = MY_FLO_ADDRESS;
request.globalParams.receiverFloId = params[0].receiver_flo_address;
return resolve(request.toString());
})(request);
});
},
async receive_rpc_response(request) {
try {
var request = JSON.parse(request);
var params = request.params[0];
var method = request.method;
console.log(params);
switch (method) {
}
} catch (e) {
console.error(e);
}
},
}
</script>
<script>
var wallets = function (wallets) { };
wallets.prototype = {
ecparams: EllipticCurve.getSECCurveByName("secp256k1"),
privateKey: {
isPrivateKey: function (key) {
return (
Bitcoin.ECKey.isWalletImportFormat(key) ||
Bitcoin.ECKey.isCompressedWalletImportFormat(key) ||
Bitcoin.ECKey.isHexFormat(key) ||
Bitcoin.ECKey.isBase64Format(key) ||
Bitcoin.ECKey.isMiniFormat(key)
);
},
getECKeyFromAdding: function (privKey1, privKey2) {
var n = EllipticCurve.getSECCurveByName("secp256k1").getN();
var ecKey1 = new Bitcoin.ECKey(privKey1);
var ecKey2 = new Bitcoin.ECKey(privKey2);
// if both keys are the same return null
if (ecKey1.getBitcoinHexFormat() == ecKey2.getBitcoinHexFormat())
return null;
if (ecKey1 == null || ecKey2 == null) return null;
var combinedPrivateKey = new Bitcoin.ECKey(
ecKey1.priv.add(ecKey2.priv).mod(n)
);
// compressed when both keys are compressed
if (ecKey1.compressed && ecKey2.compressed)
combinedPrivateKey.setCompressed(true);
return combinedPrivateKey;
},
getECKeyFromMultiplying: function (privKey1, privKey2) {
var n = EllipticCurve.getSECCurveByName("secp256k1").getN();
var ecKey1 = new Bitcoin.ECKey(privKey1);
var ecKey2 = new Bitcoin.ECKey(privKey2);
// if both keys are the same return null
if (ecKey1.getBitcoinHexFormat() == ecKey2.getBitcoinHexFormat())
return null;
if (ecKey1 == null || ecKey2 == null) return null;
var combinedPrivateKey = new Bitcoin.ECKey(
ecKey1.priv.multiply(ecKey2.priv).mod(n)
);
// compressed when both keys are compressed
if (ecKey1.compressed && ecKey2.compressed)
combinedPrivateKey.setCompressed(true);
return combinedPrivateKey;
},
// 58 base58 characters starting with 6P
isBIP38Format: function (key) {
key = key.toString();
return /^6P[123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{56}$/.test(
key
);
},
BIP38EncryptedKeyToByteArrayAsync: function (
base58Encrypted,
passphrase,
callback
) {
var hex;
try {
hex = Bitcoin.Base58.decode(base58Encrypted);
} catch (e) {
callback(
new Error(
localbitcoinplusplus.translator.get(
"detailalertnotvalidprivatekey"
)
)
);
return;
}
// 43 bytes: 2 bytes prefix, 37 bytes payload, 4 bytes checksum
if (hex.length != 43) {
callback(
new Error(
localbitcoinplusplus.translator.get(
"detailalertnotvalidprivatekey"
)
)
);
return;
}
// first byte is always 0x01
else if (hex[0] != 0x01) {
callback(
new Error(
localbitcoinplusplus.translator.get(
"detailalertnotvalidprivatekey"
)
)
);
return;
}
var expChecksum = hex.slice(-4);
hex = hex.slice(0, -4);
var checksum = Bitcoin.Util.dsha256(hex);
if (
checksum[0] != expChecksum[0] ||
checksum[1] != expChecksum[1] ||
checksum[2] != expChecksum[2] ||
checksum[3] != expChecksum[3]
) {
callback(
new Error(
localbitcoinplusplus.translator.get(
"detailalertnotvalidprivatekey"
)
)
);
return;
}
var isCompPoint = false;
var isECMult = false;
var hasLotSeq = false;
// second byte for non-EC-multiplied key
if (hex[1] == 0x42) {
// key should use compression
if (hex[2] == 0xe0) {
isCompPoint = true;
}
// key should NOT use compression
else if (hex[2] != 0xc0) {
callback(
new Error(
localbitcoinplusplus.translator.get(
"detailalertnotvalidprivatekey"
)
)
);
return;
}
}
// second byte for EC-multiplied key
else if (hex[1] == 0x43) {
isECMult = true;
isCompPoint = (hex[2] & 0x20) != 0;
hasLotSeq = (hex[2] & 0x04) != 0;
if ((hex[2] & 0x24) != hex[2]) {
callback(
new Error(
localbitcoinplusplus.translator.get(
"detailalertnotvalidprivatekey"
)
)
);
return;
}
} else {
callback(
new Error(
localbitcoinplusplus.translator.get(
"detailalertnotvalidprivatekey"
)
)
);
return;
}
var decrypted;
var AES_opts = {
mode: new Crypto.mode.ECB(Crypto.pad.NoPadding),
asBytes: true
};
var verifyHashAndReturn = function () {
var tmpkey = new Bitcoin.ECKey(decrypted); // decrypted using closure
var base58AddrText = tmpkey
.setCompressed(isCompPoint)
.getBitcoinAddress(); // isCompPoint using closure
checksum = Bitcoin.Util.dsha256(base58AddrText); // checksum using closure
if (
checksum[0] != hex[3] ||
checksum[1] != hex[4] ||
checksum[2] != hex[5] ||
checksum[3] != hex[6]
) {
callback(
new Error(
localbitcoinplusplus.translator.get(
"bip38alertincorrectpassphrase"
)
)
); // callback using closure
return;
}
callback(tmpkey.getBitcoinPrivateKeyByteArray()); // callback using closure
};
if (!isECMult) {
var addresshash = hex.slice(3, 7);
Crypto_scrypt(passphrase, addresshash, 16384, 8, 8, 64, function (
derivedBytes
) {
var k = derivedBytes.slice(32, 32 + 32);
decrypted = Crypto.AES.decrypt(hex.slice(7, 7 + 32), k, AES_opts);
for (var x = 0; x < 32; x++) decrypted[x] ^= derivedBytes[x];
verifyHashAndReturn(); //TODO: pass in 'decrypted' as a param
});
} else {
var ownerentropy = hex.slice(7, 7 + 8);
var ownersalt = !hasLotSeq
? ownerentropy
: ownerentropy.slice(0, 4);
Crypto_scrypt(passphrase, ownersalt, 16384, 8, 8, 32, function (
prefactorA
) {
var passfactor;
if (!hasLotSeq) {
// hasLotSeq using closure
passfactor = prefactorA;
} else {
var prefactorB = prefactorA.concat(ownerentropy); // ownerentropy using closure
passfactor = Bitcoin.Util.dsha256(prefactorB);
}
// remove this ECKey from the pool (because user does not see it)
var userKeyPool = Bitcoin.KeyPool.getArray();
var kp = new Bitcoin.ECKey(passfactor);
var passpoint = kp.setCompressed(true).getPub();
Bitcoin.KeyPool.setArray(userKeyPool);
var encryptedpart2 = hex.slice(23, 23 + 16);
var addresshashplusownerentropy = hex.slice(3, 3 + 12);
Crypto_scrypt(
passpoint,
addresshashplusownerentropy,
1024,
1,
1,
64,
function (derived) {
var k = derived.slice(32);
var unencryptedpart2 = Crypto.AES.decrypt(
encryptedpart2,
k,
AES_opts
);
for (var i = 0; i < 16; i++) {
unencryptedpart2[i] ^= derived[i + 16];
}
var encryptedpart1 = hex
.slice(15, 15 + 8)
.concat(unencryptedpart2.slice(0, 0 + 8));
var unencryptedpart1 = Crypto.AES.decrypt(
encryptedpart1,
k,
AES_opts
);
for (var i = 0; i < 16; i++) {
unencryptedpart1[i] ^= derived[i];
}
var seedb = unencryptedpart1
.slice(0, 0 + 16)
.concat(unencryptedpart2.slice(8, 8 + 8));
var factorb = Bitcoin.Util.dsha256(seedb);
var ps = EllipticCurve.getSECCurveByName("secp256k1");
var privateKey = BigInteger.fromByteArrayUnsigned(passfactor)
.multiply(BigInteger.fromByteArrayUnsigned(factorb))
.remainder(ps.getN());
decrypted = privateKey.toByteArrayUnsigned();
verifyHashAndReturn();
}
);
});
}
},
BIP38PrivateKeyToEncryptedKeyAsync: function (
base58Key,
passphrase,
compressed,
callback
) {
var privKey = new Bitcoin.ECKey(base58Key);
var privKeyBytes = privKey.getBitcoinPrivateKeyByteArray();
var address = privKey.setCompressed(compressed).getBitcoinAddress();
// compute sha256(sha256(address)) and take first 4 bytes
var salt = Bitcoin.Util.dsha256(address).slice(0, 4);
// derive key using scrypt
var AES_opts = {
mode: new Crypto.mode.ECB(Crypto.pad.NoPadding),
asBytes: true
};
Crypto_scrypt(passphrase, salt, 16384, 8, 8, 64, function (
derivedBytes
) {
for (var i = 0; i < 32; ++i) {
privKeyBytes[i] ^= derivedBytes[i];
}
// 0x01 0x42 + flagbyte + salt + encryptedhalf1 + encryptedhalf2
var flagByte = compressed ? 0xe0 : 0xc0;
var encryptedKey = [0x01, 0x42, flagByte].concat(salt);
encryptedKey = encryptedKey.concat(
Crypto.AES.encrypt(privKeyBytes, derivedBytes.slice(32), AES_opts)
);
encryptedKey = encryptedKey.concat(
Bitcoin.Util.dsha256(encryptedKey).slice(0, 4)
);
callback(Bitcoin.Base58.encode(encryptedKey));
});
},
BIP38GenerateIntermediatePointAsync: function (
passphrase,
lotNum,
sequenceNum,
callback
) {
var noNumbers = lotNum === null || sequenceNum === null;
var rng = new SecureRandom();
var ownerEntropy, ownerSalt;
if (noNumbers) {
ownerSalt = ownerEntropy = new Array(8);
rng.nextBytes(ownerEntropy);
} else {
// 1) generate 4 random bytes
ownerSalt = new Array(4);
rng.nextBytes(ownerSalt);
// 2) Encode the lot and sequence numbers as a 4 byte quantity (big-endian):
// lotnumber * 4096 + sequencenumber. Call these four bytes lotsequence.
var lotSequence = BigInteger(
4096 * lotNum + sequenceNum
).toByteArrayUnsigned();
// 3) Concatenate ownersalt + lotsequence and call this ownerentropy.
var ownerEntropy = ownerSalt.concat(lotSequence);
}
// 4) Derive a key from the passphrase using scrypt
Crypto_scrypt(passphrase, ownerSalt, 16384, 8, 8, 32, function (
prefactor
) {
// Take SHA256(SHA256(prefactor + ownerentropy)) and call this passfactor
var passfactorBytes = noNumbers
? prefactor
: Bitcoin.Util.dsha256(prefactor.concat(ownerEntropy));
var passfactor = BigInteger.fromByteArrayUnsigned(passfactorBytes);
// 5) Compute the elliptic curve point G * passfactor, and convert the result to compressed notation (33 bytes)
var ellipticCurve = EllipticCurve.getSECCurveByName("secp256k1");
var passpoint = ellipticCurve
.getG()
.multiply(passfactor)
.getEncoded(1);
// 6) Convey ownersalt and passpoint to the party generating the keys, along with a checksum to ensure integrity.
// magic bytes "2C E9 B3 E1 FF 39 E2 51" followed by ownerentropy, and then passpoint
var magicBytes = [0x2c, 0xe9, 0xb3, 0xe1, 0xff, 0x39, 0xe2, 0x51];
if (noNumbers) magicBytes[7] = 0x53;
var intermediate = magicBytes
.concat(ownerEntropy)
.concat(passpoint);
// base58check encode
intermediate = intermediate.concat(
Bitcoin.Util.dsha256(intermediate).slice(0, 4)
);
callback(Bitcoin.Base58.encode(intermediate));
});
},
BIP38GenerateECAddressAsync: function (
intermediate,
compressed,
callback
) {
// decode IPS
var x = Bitcoin.Base58.decode(intermediate);
//if(x.slice(49, 4) !== Bitcoin.Util.dsha256(x.slice(0,49)).slice(0,4)) {
// callback({error: 'Invalid intermediate passphrase string'});
//}
var noNumbers = x[7] === 0x53;
var ownerEntropy = x.slice(8, 8 + 8);
var passpoint = x.slice(16, 16 + 33);
// 1) Set flagbyte.
// set bit 0x20 for compressed key
// set bit 0x04 if ownerentropy contains a value for lotsequence
var flagByte = (compressed ? 0x20 : 0x00) | (noNumbers ? 0x00 : 0x04);
// 2) Generate 24 random bytes, call this seedb.
var seedB = new Array(24);
var rng = new SecureRandom();
rng.nextBytes(seedB);
// Take SHA256(SHA256(seedb)) to yield 32 bytes, call this factorb.
var factorB = Bitcoin.Util.dsha256(seedB);
// 3) ECMultiply passpoint by factorb. Use the resulting EC point as a public key and hash it into a Bitcoin
// address using either compressed or uncompressed public key methodology (specify which methodology is used
// inside flagbyte). This is the generated Bitcoin address, call it generatedaddress.
var ec = EllipticCurve.getSECCurveByName("secp256k1").getCurve();
var generatedPoint = ec.decodePointHex(
localbitcoinplusplus.publicKey.getHexFromByteArray(passpoint)
);
var generatedBytes = generatedPoint
.multiply(BigInteger.fromByteArrayUnsigned(factorB))
.getEncoded(compressed);
var generatedAddress = new Bitcoin.Address(
Bitcoin.Util.sha256ripe160(generatedBytes)
).toString();
// 4) Take the first four bytes of SHA256(SHA256(generatedaddress)) and call it addresshash.
var addressHash = Bitcoin.Util.dsha256(generatedAddress).slice(0, 4);
// 5) Now we will encrypt seedb. Derive a second key from passpoint using scrypt
Crypto_scrypt(
passpoint,
addressHash.concat(ownerEntropy),
1024,
1,
1,
64,
function (derivedBytes) {
// 6) Do AES256Encrypt(seedb[0...15]] xor derivedhalf1[0...15], derivedhalf2), call the 16-byte result encryptedpart1
for (var i = 0; i < 16; ++i) {
seedB[i] ^= derivedBytes[i];
}
var AES_opts = {
mode: new Crypto.mode.ECB(Crypto.pad.NoPadding),
asBytes: true
};
var encryptedPart1 = Crypto.AES.encrypt(
seedB.slice(0, 16),
derivedBytes.slice(32),
AES_opts
);
// 7) Do AES256Encrypt((encryptedpart1[8...15] + seedb[16...23]) xor derivedhalf1[16...31], derivedhalf2), call the 16-byte result encryptedseedb.
var message2 = encryptedPart1
.slice(8, 8 + 8)
.concat(seedB.slice(16, 16 + 8));
for (var i = 0; i < 16; ++i) {
message2[i] ^= derivedBytes[i + 16];
}
var encryptedSeedB = Crypto.AES.encrypt(
message2,
derivedBytes.slice(32),
AES_opts
);
// 0x01 0x43 + flagbyte + addresshash + ownerentropy + encryptedpart1[0...7] + encryptedpart2
var encryptedKey = [0x01, 0x43, flagByte]
.concat(addressHash)
.concat(ownerEntropy)
.concat(encryptedPart1.slice(0, 8))
.concat(encryptedSeedB);
// base58check encode
encryptedKey = encryptedKey.concat(
Bitcoin.Util.dsha256(encryptedKey).slice(0, 4)
);
callback(generatedAddress, Bitcoin.Base58.encode(encryptedKey));
}
);
}
},
publicKey: {
isPublicKeyHexFormat: function (key) {
key = key.toString();
return (
localbitcoinplusplus.publicKey.isUncompressedPublicKeyHexFormat(
key
) ||
localbitcoinplusplus.publicKey.isCompressedPublicKeyHexFormat(key)
);
},
// 130 characters [0-9A-F] starts with 04
isUncompressedPublicKeyHexFormat: function (key) {
key = key.toString();
return /^04[A-Fa-f0-9]{128}$/.test(key);
},
// 66 characters [0-9A-F] starts with 02 or 03
isCompressedPublicKeyHexFormat: function (key) {
key = key.toString();
return /^0[2-3][A-Fa-f0-9]{64}$/.test(key);
},
getBitcoinAddressFromByteArray: function (pubKeyByteArray) {
var pubKeyHash = Bitcoin.Util.sha256ripe160(pubKeyByteArray);
var addr = new Bitcoin.Address(pubKeyHash);
return addr.toString();
},
getHexFromByteArray: function (pubKeyByteArray) {
return Crypto.util
.bytesToHex(pubKeyByteArray)
.toString()
.toUpperCase();
},
getByteArrayFromAdding: function (pubKeyHex1, pubKeyHex2) {
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
var curve = ecparams.getCurve();
var ecPoint1 = curve.decodePointHex(pubKeyHex1);
var ecPoint2 = curve.decodePointHex(pubKeyHex2);
// if both points are the same return null
if (ecPoint1.equals(ecPoint2)) return null;
var compressed = ecPoint1.compressed && ecPoint2.compressed;
var pubKey = ecPoint1.add(ecPoint2).getEncoded(compressed);
return pubKey;
},
getByteArrayFromMultiplying: function (pubKeyHex, ecKey) {
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
var ecPoint = ecparams.getCurve().decodePointHex(pubKeyHex);
var compressed = ecPoint.compressed && ecKey.compressed;
// if both points are the same return null
ecKey.setCompressed(false);
if (ecPoint.equals(ecKey.getPubPoint())) {
return null;
}
var bigInt = ecKey.priv;
var pubKey = ecPoint.multiply(bigInt).getEncoded(compressed);
return pubKey;
},
// used by unit test
getDecompressedPubKeyHex: function (pubKeyHexComp) {
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
var ecPoint = ecparams.getCurve().decodePointHex(pubKeyHexComp);
var pubByteArray = ecPoint.getEncoded(0);
var pubHexUncompressed = localbitcoinplusplus.publicKey.getHexFromByteArray(
pubByteArray
);
return pubHexUncompressed;
}
},
generateFloKeys: function (pk, crypto = "FLO") {
if (crypto == "BTC") {
privKeyPrefix = 0x80; //mainnet 0x80, testnet: 0xEF
networkVersion = 0x00; //mainnet 0x23, testnet: 0x6F
} else if (crypto == "BTC_TEST") {
privKeyPrefix = 0xef;
networkVersion = 0x6f;
} else if (crypto == "FLO") {
privKeyPrefix = 0xa3; //mainnet 0xa3, testnet: 0xef
networkVersion = 0x23; //mainnet 0x23, testnet: 0x73
} else if (crypto == "FLO_TEST") {
privKeyPrefix = 0xef;
networkVersion = 0x73;
} else {
privKeyPrefix = 0xef;
networkVersion = 0x73;
}
var privateKey =
pk ||
Bitcoin.ECDSA.getBigRandom(
EllipticCurve.getSECCurveByName("secp256k1").getN()
);
// changesMadeByAbhishek: Change private key prefix before initing key
Bitcoin.ECKey.privateKeyPrefix = privKeyPrefix;
Bitcoin.ECKey.currentBlockchain = crypto;
var key = new Bitcoin.ECKey(privateKey);
if (key.compressed !== true) key.setCompressed(true);
var privateKeyHex = key.getBitcoinHexFormat();
var privateKeyWIF = key.getBitcoinWalletImportFormat();
var publicKeyHex = this.publicKey
.getHexFromByteArray(key.getPubPoint().getEncoded(1))
.toString()
.toUpperCase();
var pubKeyHash = key.getPubKeyHash();
var pubKeyHex = key.getPubKeyHex();
var address = key.getBitcoinAddress(networkVersion);
return {
privateKeyWIF,
pubKeyHex,
address
};
},
sign: function (msg, privateKeyHex, crypto = BASE_BLOCKCHAIN) {
if (crypto == "BTC") {
privKeyPrefix = 0x80; //mainnet 0x80, testnet: 0xEF
networkVersion = 0x00; //mainnet 0x23, testnet: 0x6F
} else if (crypto == "BTC_TEST") {
privKeyPrefix = 0xef;
networkVersion = 0x6f;
} else if (crypto == "FLO") {
privKeyPrefix = 0xa3; //mainnet 0xa3, testnet: 0xef
networkVersion = 0x23; //mainnet 0x23, testnet: 0x73
} else if (crypto == "FLO_TEST") {
privKeyPrefix = 0xef;
networkVersion = 0x73;
} else {
privKeyPrefix = 0xa3;
networkVersion = 0x23;
}
Bitcoin.ECKey.privateKeyPrefix = privKeyPrefix;
var key = new Bitcoin.ECKey(privateKeyHex);
if (key.compressed !== true) key.setCompressed(true);
var privateKeyArr = key.getBitcoinPrivateKeyByteArray(privateKeyHex);
privateKey = BigInteger.fromByteArrayUnsigned(privateKeyArr);
var messageHash = Crypto.SHA256(msg);
var messageHashBigInteger = new BigInteger(messageHash);
var messageSign = Bitcoin.ECDSA.sign(
messageHashBigInteger,
privateKey
);
var sighex = Crypto.util.bytesToHex(messageSign);
return sighex;
},
verify: function (msg, signatureHex, publicKeyHex) {
var msgHash = Crypto.SHA256(msg);
var messageHashBigInteger = new BigInteger(msgHash);
var sigBytes = Crypto.util.hexToBytes(signatureHex);
var signature = Bitcoin.ECDSA.parseSig(sigBytes);
var publicKeyPoint = this.ecparams
.getCurve()
.decodePointHex(publicKeyHex);
var verify = Bitcoin.ECDSA.verifyRaw(
messageHashBigInteger,
signature.r,
signature.s,
publicKeyPoint
);
return verify;
},
}
</script>
<script>
const ENVR = "TEST";
let request_sent_for_cashier_status = false;
let BASE_BLOCKCHAIN, WS, MY_FLO_PRIVATE_KEY, MY_FLO_PUBLIC_KEY, MY_FLO_ADDRESS, RM_FLO_SENDING_ADDR;
if(ENVR=='LIVE') {
BASE_BLOCKCHAIN = "FLO";
WS = "wss";
MY_FLO_PRIVATE_KEY = "RCqWT3dcD79uUxGmDnefUit6xZMQ59UgrvhMWSoWDQojDysTEY5m";
MY_FLO_PUBLIC_KEY = "036E295D6D56B70DB51B0DFA9176B996A0FFC65A1B49466610081B1CDA4484ED62";
MY_FLO_ADDRESS = "FEqq6gohwnvkpGm8tbDDmM7AY8w3qLphsY";
RM_FLO_SENDING_ADDR = "FGcDVp9f3eqDcXXqXwxhpEoCReihzGFQCo";
} else {
BASE_BLOCKCHAIN = "FLO_TEST";
WS = "ws";
MY_FLO_PRIVATE_KEY = "cN4AzSTcN6GSLb3o6M5Wr2dN1ytS8yFK7PGv9MYeBRbaWyJ8PDav";
MY_FLO_PUBLIC_KEY = "03AF9EF639A996C6420B25537D9483BC1564CE49CF018A296C44D2A82284C5B8B8";
MY_FLO_ADDRESS = "oQ1V4iikqNDe7HVGV3xrGKZCx5UaYaPR5m";
RM_FLO_SENDING_ADDR = "ocKKEivXC3TA8yf3ZEyh2kRMDgSh99y1a7";
}
let supernode_conns = {};
let master_configurations = {};
const block_explorers = {
btc_mainnet: ["https://insight.bitpay.com"],
btc_testnet: ["https://test-insight.bitpay.com"],
flo_mainnet: ["https://flosight.duckdns.org",
"https://explorer.mediciland.com/",
"https://livenet.flocha.in/",
"http://livenet-explorer.floexperiments.com/"],
flo_testnet: ["https://testnet-flosight.duckdns.org",
"https://testnet.flocha.in/"],
flo_api_mainnet: ["https://ranchimallflo.duckdns.org"],
flo_api_testnet: ["https://ranchimallflo-testnet.duckdns.org"],
}
let helper_functions = {
chainAjaxRequest: async function (requestType = '', domainList = [], params = []) {
try {
if (typeof requestType !== "string"
|| requestType.length < 1
|| domainList.length < 1) {
console.error('All API servers are down for request ' + requestType);
return false;
}
const domain = JSON.parse(JSON.stringify(domainList));
let url = ``;
let domainName = domain.splice(0, 1);
switch (requestType) {
case "TXES_BY_ADDRESS":
url = `${domainName}/api/txs/?address=${params[0]}`;
break;
case "UTXOS_BY_ADDRESS":
url = `${domainName}/api/addr/${params[0]}/utxo`;
break;
case "BALANCE_BY_ADDRESS":
url = `${domainName}/api/addr/${params[0]}/balance`;
break;
case "TX_DETAIL":
url = `${domainName}/api/tx/${params[0]}`;
break;
case "TOKEN_TX_DETAIL":
url = `${domainName}/api/v1.0/getTransactionDetails/${params[0]}`;
break;
case "GET_PRICES":
url = `${domainName}/api/v1.0/getPrices`
break;
default:
console.warn('Unknown request');
break;
}
if (url == '') return false;
let result = await helper_functions.ajaxGet(url);
console.log(result);
if (result !== false) {
return result;
} else {
helper_functions.chainAjaxRequest(requestType, domain, params);
}
} catch (e) {
console.error(e);
helper_functions.chainAjaxRequest(requestType, domain, params);
}
},
// AJAX Get
ajaxGet: async function (url = '') {
try {
let response = await fetch(url);
if (!response.ok) {
return false
}
//proceed once the first promise is resolved.
let data = await response.json();
//proceed only when the second promise is resolved
return data;
} catch (error) {
console.error(error);
return false;
}
},
getFormattedDate: function (timestamp = 0) {
try {
var date = (timestamp > 0) ? new Date(timestamp) : new Date();
var month = date.getMonth() + 1;
var day = date.getDate();
var hour = date.getHours();
var min = date.getMinutes();
var sec = date.getSeconds();
month = (month < 10 ? "0" : "") + month;
day = (day < 10 ? "0" : "") + day;
hour = (hour < 10 ? "0" : "") + hour;
min = (min < 10 ? "0" : "") + min;
sec = (sec < 10 ? "0" : "") + sec;
var str = date.getFullYear() + "-" + month + "-" + day + " " + hour + ":" + min + ":" + sec;
return str;
} catch (e) {
console.error(e);
notify('Timestamp to date conversion failed.', 'error');
}
},
removeWhiteSpaces: (text = '') => {
return text.replace(/\s/g, '');
},
}
async function parse_flo_comments(callback) {
let master_data = '';
if (ENVR === 'LIVE') {
master_data = await helper_functions
.chainAjaxRequest("TXES_BY_ADDRESS", block_explorers.flo_mainnet, [RM_FLO_SENDING_ADDR]);
} else {
master_data = await helper_functions
.chainAjaxRequest("TXES_BY_ADDRESS", block_explorers.flo_testnet, [RM_FLO_SENDING_ADDR]);
}
if (typeof master_data === "object" && typeof master_data.txs === "object") {
let text = '';
let tx_cmnt_arr = [];
for (txt of master_data.txs) {
if (txt.vin[0].addr === RM_FLO_SENDING_ADDR) {
if (txt.floData.length === 0) break;
tx_cmnt_arr.push(txt.floData);
}
}
tx_cmnt_arr.reverse().map(m => text += m.replace('text:', ''));
callback(text);
}
}
function fetch_configs(callback) {
parse_flo_comments(function (floData) {
let RMAssets = helper_functions.removeWhiteSpaces(floData);
let floAssetsArray = RMAssets.split("#!#");
if (
floAssetsArray.length > 0 &&
typeof floAssetsArray[0] !== undefined &&
floAssetsArray[0].trim() !== "" &&
typeof floAssetsArray[1] !== undefined &&
floAssetsArray[1].trim() !== ""
) {
try {
floAssetsArray.map(function (assets_string) {
let k = assets_string.split("=");
if (k[1].indexOf(",") > 0 && k[1].indexOf("{") == -1) {
k[1] = k[1]
.split(",")
.map(val =>
!isNaN(val) ? parseFloat(val) : val.trim()
)
.filter(v => ![null, "", undefined, NaN].includes(v));
} else if (!isNaN(k[1])) {
k[1] = parseFloat(k[1]);
}
if (typeof k[1] == "string" && k[1].indexOf("{") >= 0) {
k[1] = JSON.parse(k[1].replace(/ /g, ""));
}
return Object.defineProperty(
master_configurations,
k[0],
{
value: k[1],
writable: false,
configurable: false,
enumerable: true
}
);
});
return callback(master_configurations);
} catch (error) {
console.error(
"FATAL ERROR: Failed to fetch master configuration: ",
error
);
}
}
return false;
});
}
async function initializeWebSocket(wsUri) {
var websocket = new WebSocket(wsUri);
return websocket;
}
function startWebSocket(websocket_name) {
return new Promise((resolve, reject) => {
websocket_name.onopen = function (evt) {
resolve(onOpen(evt));
};
websocket_name.onclose = function (evt) {
reject(onClose(evt));
};
websocket_name.onmessage = function (evt) {
resolve(onMessage(evt));
};
websocket_name.onerror = function (evt) {
reject(onError(evt));
};
});
}
function onOpen(evt) {
console.info(evt.srcElement.url + 'is live');
}
function onMessage(evt) {
console.log(evt.data);
}
function onClose(evt) {
console.warn(evt.srcElement.url + 'is closed');
}
function onError(evt) {
console.error(evt);
}
function doSend(websocket_name, message = "") {
let finalMessage = message;
const msgObj = JSON.parse(message);
message = JSON.stringify(msgObj);
const message256hash = Crypto.SHA256(message);
if (
typeof MY_FLO_PRIVATE_KEY !== "string"
)
throw new Error(`WARNING: Private key could not be found.`);
const RM_WALLET = new wallets;
const nodeSignedMessage = RM_WALLET.sign(
message256hash,
MY_FLO_PRIVATE_KEY
);
msgObj.nodeMessage256hash = message256hash;
msgObj.nodeSignedMessage = nodeSignedMessage;
msgObj.nodePubKey = MY_FLO_PUBLIC_KEY;
finalMessage = JSON.stringify(msgObj);
// The message is for usernodes and all backup supernodes
try {
websocket_name.send(finalMessage);
} catch (error) {
throw new Error(error);
}
console.log("SENT: " + finalMessage);
}
async function initialize() {
const ws_seeds = master_configurations.supernodeSeeds;
const RM_RPC = new Rpc();
for (const ms in ws_seeds) {
if (ws_seeds.hasOwnProperty(ms)) {
const wsUri = ws_seeds[ms];
supernode_conns[wsUri.kbucketId] = await initializeWebSocket(`${WS}://${wsUri.ip}`);
await startWebSocket(supernode_conns[wsUri.kbucketId]);
if (request_sent_for_cashier_status === false) {
request_sent_for_cashier_status = true;
let req_body = {
trader_flo_address: MY_FLO_ADDRESS,
receiver_flo_address: wsUri.kbucketId
}
const server_con = supernode_conns[wsUri.kbucketId];
RM_RPC.send_rpc
.call(this, 'give_cashier_status', req_body)
.then(resp => doSend(server_con, resp));
}
}
}
}
</script>
<script>
fetch_configs(configs => {
initialize();
});
</script>
</body>
</html>