var readline = require('readline'); var bignum = require('bignum'); /* Typically coins give us nBits (diff1) in the inconvenient form of: CBigNum bnProofOfWorkLimit(~uint256(0) >> 24); nBits = bnProofOfWorkLimit.GetCompact(); The reason they had to do that was because in the compact nBit form there wasn't enough precision for the harder to mine algos (speculation). So far this script can get the hex representation of the diff1 using either the bitwise-rightShift integer, or using the 8 character hex representation of nBits. However, I'm not able to convert that to the compact format (nbits) yet. Values from coin sources: fuguecoin [fugue] (~uint256(0) >> 24) https://github.com/fuguecoin/fuguecoin/blob/master/src/main.cpp#L40 heavycoin [hefty1] (~uint256(0) >> 16) https://github.com/heavycoin/heavycoin/blob/master/src/main.cpp#L40 maxcoin [keccak] (~uint256(0) >> 24) https://github.com/Max-Coin/maxcoin/blob/master/src/main.cpp#L42 galleon [keccak] (~uint256(0) >> 20) https://github.com/GalleonBank/galleon/blob/master/src/main.cpp#L51 cryptometh [keccak] (~uint256(0) >> 24) https://github.com/cryptometh/cryptometh/blob/master/src/main.cpp#L43 365coin [keccak] (~uint256(0) >> 24) https://github.com/365-Coin/365coin/blob/master/src/main.cpp#L42 slothcoin [keccak] (~uint256(0) >> 24) https://github.com/thimod/Slothcoin/blob/master/src/main.cpp#L40 blakecoin [blake] (~uint256(0) >> 24) https://github.com/BlueDragon747/Blakecoin/blob/master/src/main.cpp#L38 quarkcoin [quark] (~uint256(0) >> 20) https://github.com/MaxGuevara/quark/blob/master/src/main.cpp#L39 taojingcoin [bcrypt] (~uint256(0) >> 11) https://github.com/TaojingCoin-pd/Taojingcoin/blob/master/src/main.cpp#L35 darkcoin [x11] (~uint256(0) >> 20) https://github.com/evan82/darkcoin/blob/master/src/main.cpp#L36 hirocoin [x11] 0x1e0ffff0 https://github.com/HiroSatou/Hirocoin/blob/ea99705ba60ea9b69c738c1853d41ce75d05eb25/src/main.cpp#L2873 inkcoin [shavite] (~uint256(0) >> 20) https://github.com/inkcoin/inkcoin-project/blob/master/src/main.cpp#L38 litecoin [scrypt] (~uint256(0) >> 20) https://github.com/litecoin-project/litecoin/blob/master-0.8/src/main.cpp#L35 yacoin [scrypt-jane] (~uint256(0) >> 20) https://github.com/yacoin/yacoin/blob/master/src/main.cpp#L36 ultracoin [scrypt-jane] (~uint256(0) >> 20) https://github.com/ziggy909/ultracoin/blob/master/src/main.cpp#L39 vertcoin [scrypt-n] (~uint256(0) >> 20) https://github.com/vertcoin/vertcoin/blob/master-0.8/src/main.cpp#L35 skiencoin [skein] (~uint256(0) >> 20) https://github.com/skeincoin/skeincoin/blob/master/src/chainparams.cpp#L33 nigeriacoin [skein] (~uint256(0) >> 20) https://github.com/nigeriacoin/nigeriacoin/blob/master/src/chainparams.cpp#L35 bitcoin [sha256d] 0x1d00ffff https://github.com/bitcoin/bitcoin/blob/b8d9058a4d1ce28eefa65aa3339bcc52b3c014e9/src/chainparams.cpp#L136 btc just gave use the value in compact format of 0x1d00ffff, but its bitshift is (~uint256(0) >> 32) */ console.log('\n\n===== Diff1 Calculator ===== \n'); console.log('Get the diff1 value from either nBits such as 0x1d00ffff or from bitwise-right-shift value such ' + 'as "20" from "uint256(0) >> 20" in source codes for various daemons.\n\n'); console.log('To get the most accurate diff1 to use for your pool, use the bitwise shift value (option 1). The value ' + 'is found in the coin source, typically in main.cpp and looks like "static CBigNum bnProofOfWorkLimit(~uint256(0) >> 20);"\n\n'); var args = process.argv.slice(2); var testing = args[0] == 'test'; var rl = readline.createInterface({ input: process.stdin, output: process.stdout }); var methods = { bitshift: 'Bitshift', nbits: 'nBits' }; function startAsking() { rl.question('\nWhat are you converting from:' + '\n\t[1] Bitshift Value (example: 20)' + '\n\t[2] nBits Hex (example: 0x1d00ffff)' + '\n1 or 2?: ', function (answer) { switch (answer) { case '1': askBitshift(); break; case '2': askBitsConvert(); break; default: console.log("Answer 1 or 2..."); startAsking(); break; } }); } function askBitshift(){ console.log('\nEnter the right bitshift integer, for example with "uint256(0) >> 24", enter in the number 24'); rl.question('Number: ', function (answer) { var shiftRight; try { shiftRight = parseInt(answer); } catch(e) { console.error('Must enter an integer...'); console.error(e); startAsking(); } if (shiftRight) { DisplayResult(methods.bitshift, ShiftMax256Right(shiftRight), answer); startAsking(); } }); } function askBitsConvert(){ console.log('\n(Note that this will always give truncated results as diff1 precision is ' + 'lost when compacting to nBits. Enter the 8 character nBit hex code, for example ' + 'with BTC its 0x1d00ffff so enter 1d00ffff\n'); rl.question('Hex code: ', function (answer) { if (answer.length !== 8){ console.log('Must be an 8 character hex string'); startAsking(); return; } var bitsBuffer; try{ bitsBuffer = new Buffer(answer, 'hex'); } catch(e){ console.error('Must be valid hex..'); console.error(e); } if (bitsBuffer){ DisplayResult(methods.nbits, ConvertBitsToHex(answer), answer); startAsking(); } }); } function ShiftMax256Right (shiftRight){ var arr256 = Array.apply(null, new Array(256)).map(Number.prototype.valueOf, 1); var arrLeft = Array.apply(null, new Array(shiftRight)).map(Number.prototype.valueOf, 0); var preShift = arrLeft.concat(arr256); var trimmed = preShift.slice(0, 256); var octets = []; for (var i = 0; i < 32; i++){ octets[i] = 0; var bits = trimmed.slice(i * 8, i * 8 + 8); for (var f = 0; f < bits.length; f++){ var multiplier = Math.pow(2, f); octets[i] += bits[f] * multiplier; } } var buff = new Buffer(octets); var hexString = buff.toString('hex'); return hexString; } function ConvertBitsToHex(hexString){ var bitsBuff = new Buffer(hexString, 'hex'); var numBytes = bitsBuff.readUInt8(0); var bigBits = bignum.fromBuffer(bitsBuff.slice(1)); var target = bigBits.mul( bignum(2).pow( bignum(8).mul( numBytes - 3 ) ) ); var resultBuff = target.toBuffer(); var buff256 = new Buffer(32); buff256.fill(0); resultBuff.copy(buff256, buff256.length - resultBuff.length); var hexResult = buff256.toString('hex'); return hexResult; } function BufferToCompact(hexString){ var startingBuff = new Buffer(hexString, 'hex'); var bigNum = bignum.fromBuffer(startingBuff); var buff = bigNum.toBuffer(); buff = buff.readUInt8(0) > 0x7f ? Buffer.concat([new Buffer([0x00]), buff]) : buff; buff = Buffer.concat([new Buffer([buff.length]), buff]); var compact = buff.slice(0, 4); return compact.toString('hex'); } function DisplayResult(method, hexString, input){ var details = GetResultDetails(hexString); var logMessages = ['\nConversion results for ' + method + ' on ' + input]; for (var detail in details){ logMessages.push(detail + ':\t0x' + details[detail]); } var message = logMessages.join('\n\t\t'); console.log(message); if (method === methods.bitshift) console.log('Use Difficulty 1 for your pool.'); } function GetResultDetails(hex){ var compactHex = BufferToCompact(hex); var lostPrecision = ConvertBitsToHex(compactHex); return details = { 'As Compact': compactHex, 'Difficulty 1': hex, 'Truncated': lostPrecision }; }; //tests to see if an nbit value evaluates to the same truncated diff1 as a bitshift value //also returns the diff1 that should be used for pools function TestEquality(testName, bitshiftValue, nBitsValue){ var t1 = ShiftMax256Right(bitshiftValue); var t2 = ConvertBitsToHex(nBitsValue); var t1Details = GetResultDetails(t1); var t2Details = GetResultDetails(t2); if (bignum(t1Details.Truncated, 16).eq(bignum(t2Details.Truncated, 16))){ //console.log('Test successful for ' + testName + ', truncated values are equal for bitwise ' + bitshiftValue + ' and nBits of ' + nBitsValue); } else{ DisplayResult(methods.bitshift, t1, bitshiftValue); DisplayResult(methods.nbits, t2, nBitsValue); console.log('Test failed for ' + testName + ', truncated values are different for bitwise ' + bitshiftValue + ' and nBits of ' + nBitsValue); } return t1Details['Difficulty 1']; } if (!testing) startAsking(); else { var algos = { sha256d: { shift: 32, nBits: '1d00ffff' }, scrypt: { shift: 20, nBits: '1f00f0ff' }, 'scrypt-jane': { shift: 20, nBits: '1f00f0ff' }, 'scrypt-n': { shift: 20, nBits: '1f00f0ff' }, x11: { shift: 20, nBits: '1f00f0ff' }, quark: { shift: 20, nBits: '1f00f0ff' }, skein: { shift: 20, nBits: '1f00f0ff' }, keccak: { shift: 24, nBits: '1e00ffff' }, hefty1: { shift: 16, nBits: '1f00ffff' }, bcrypt: { shift: 11, nBits: '2000f8ff' }, fugue: { shift: 24, nBits: '1e00ffff' }, blake: { shift: 24, nBits: '1e00ffff' }, shavite: { shift: 20, nBits: '1f00f0ff' } }; var diffLogLines = []; for (var algo in algos){ var whitespace = new Array(15 - algo.length).join(' '); var diff1 = TestEquality(algo, algos[algo].shift, algos[algo].nBits); diffLogLines.push(algo + ':' + whitespace + '0x' + diff1); } console.log('Pools should use these difficulties:\n' + diffLogLines.join('\n')); } /* Test Output: Pools should use these difficulties: sha256d: 0x00000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff scrypt: 0x0000f0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff scrypt-jane: 0x0000f0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff scrypt-n: 0x0000f0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff x11: 0x0000f0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff quark: 0x0000f0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff keccak: 0x000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff hefty1: 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff bcrypt: 0x00f8ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff fugue: 0x000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff blake: 0x000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff shavite: 0x0000f0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */