pywallet-tools/pywallet.py
2011-07-24 21:04:36 +02:00

866 lines
23 KiB
Python
Executable File

#!/usr/bin/env python
# pywallet.py 1.1
# based on http://github.com/gavinandresen/bitcointools
#
# Usage: pywallet.py [options]
#
# Options:
# --version show program's version number and exit
# -h, --help show this help message and exit
# --dumpwallet dump wallet in json format
# --importprivkey=KEY import private key from vanitygen
# --datadir=DATADIR wallet directory (defaults to bitcoin default)
# --testnet use testnet subdirectory and address type
from bsddb.db import *
import os, sys, time
import json
import logging
import struct
import StringIO
import traceback
import socket
import types
import string
import exceptions
import hashlib
import random
max_version = 32500
addrtype = 0
json_db = {}
private_keys = []
def determine_db_dir():
import os
import os.path
import platform
if platform.system() == "Darwin":
return os.path.expanduser("~/Library/Application Support/Bitcoin/")
elif platform.system() == "Windows":
return os.path.join(os.environ['APPDATA'], "Bitcoin")
return os.path.expanduser("~/.bitcoin")
# secp256k1
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
_b = 0x0000000000000000000000000000000000000000000000000000000000000007L
_a = 0x0000000000000000000000000000000000000000000000000000000000000000L
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
class CurveFp( object ):
def __init__( self, p, a, b ):
self.__p = p
self.__a = a
self.__b = b
def p( self ):
return self.__p
def a( self ):
return self.__a
def b( self ):
return self.__b
def contains_point( self, x, y ):
return ( y * y - ( x * x * x + self.__a * x + self.__b ) ) % self.__p == 0
class Point( object ):
def __init__( self, curve, x, y, order = None ):
self.__curve = curve
self.__x = x
self.__y = y
self.__order = order
if self.__curve: assert self.__curve.contains_point( x, y )
if order: assert self * order == INFINITY
def __add__( self, other ):
if other == INFINITY: return self
if self == INFINITY: return other
assert self.__curve == other.__curve
if self.__x == other.__x:
if ( self.__y + other.__y ) % self.__curve.p() == 0:
return INFINITY
else:
return self.double()
p = self.__curve.p()
l = ( ( other.__y - self.__y ) * \
inverse_mod( other.__x - self.__x, p ) ) % p
x3 = ( l * l - self.__x - other.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def __mul__( self, other ):
def leftmost_bit( x ):
assert x > 0
result = 1L
while result <= x: result = 2 * result
return result / 2
e = other
if self.__order: e = e % self.__order
if e == 0: return INFINITY
if self == INFINITY: return INFINITY
assert e > 0
e3 = 3 * e
negative_self = Point( self.__curve, self.__x, -self.__y, self.__order )
i = leftmost_bit( e3 ) / 2
result = self
while i > 1:
result = result.double()
if ( e3 & i ) != 0 and ( e & i ) == 0: result = result + self
if ( e3 & i ) == 0 and ( e & i ) != 0: result = result + negative_self
i = i / 2
return result
def __rmul__( self, other ):
return self * other
def __str__( self ):
if self == INFINITY: return "infinity"
return "(%d,%d)" % ( self.__x, self.__y )
def double( self ):
if self == INFINITY:
return INFINITY
p = self.__curve.p()
a = self.__curve.a()
l = ( ( 3 * self.__x * self.__x + a ) * \
inverse_mod( 2 * self.__y, p ) ) % p
x3 = ( l * l - 2 * self.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def x( self ):
return self.__x
def y( self ):
return self.__y
def curve( self ):
return self.__curve
def order( self ):
return self.__order
INFINITY = Point( None, None, None )
def inverse_mod( a, m ):
if a < 0 or m <= a: a = a % m
c, d = a, m
uc, vc, ud, vd = 1, 0, 0, 1
while c != 0:
q, c, d = divmod( d, c ) + ( c, )
uc, vc, ud, vd = ud - q*uc, vd - q*vc, uc, vc
assert d == 1
if ud > 0: return ud
else: return ud + m
class Signature( object ):
def __init__( self, r, s ):
self.r = r
self.s = s
class Public_key( object ):
def __init__( self, generator, point ):
self.curve = generator.curve()
self.generator = generator
self.point = point
n = generator.order()
if not n:
raise RuntimeError, "Generator point must have order."
if not n * point == INFINITY:
raise RuntimeError, "Generator point order is bad."
if point.x() < 0 or n <= point.x() or point.y() < 0 or n <= point.y():
raise RuntimeError, "Generator point has x or y out of range."
def verifies( self, hash, signature ):
G = self.generator
n = G.order()
r = signature.r
s = signature.s
if r < 1 or r > n-1: return False
if s < 1 or s > n-1: return False
c = inverse_mod( s, n )
u1 = ( hash * c ) % n
u2 = ( r * c ) % n
xy = u1 * G + u2 * self.point
v = xy.x() % n
return v == r
class Private_key( object ):
def __init__( self, public_key, secret_multiplier ):
self.public_key = public_key
self.secret_multiplier = secret_multiplier
def der( self ):
hex_der_key = '06052b8104000a30740201010420' + \
'%064x' % self.secret_multiplier + \
'a00706052b8104000aa14403420004' + \
'%064x' % self.public_key.point.x() + \
'%064x' % self.public_key.point.y()
return hex_der_key.decode('hex')
def sign( self, hash, random_k ):
G = self.public_key.generator
n = G.order()
k = random_k % n
p1 = k * G
r = p1.x()
if r == 0: raise RuntimeError, "amazingly unlucky random number r"
s = ( inverse_mod( k, n ) * \
( hash + ( self.secret_multiplier * r ) % n ) ) % n
if s == 0: raise RuntimeError, "amazingly unlucky random number s"
return Signature( r, s )
class EC_KEY(object):
def __init__( self, secret ):
curve = CurveFp( _p, _a, _b )
generator = Point( curve, _Gx, _Gy, _r )
self.pubkey = Public_key( generator, generator * secret )
self.privkey = Private_key( self.pubkey, secret )
self.secret = secret
def i2d_ECPrivateKey(pkey):
# private keys are 279 bytes long (see crypto/ec/cec_asn1.c)
# ASN1_SIMPLE(EC_PRIVATEKEY, version, LONG),
# ASN1_SIMPLE(EC_PRIVATEKEY, privateKey, ASN1_OCTET_STRING),
# ASN1_EXP_OPT(EC_PRIVATEKEY, parameters, ECPKPARAMETERS, 0),
# ASN1_EXP_OPT(EC_PRIVATEKEY, publicKey, ASN1_BIT_STRING, 1)
hex_i2d_key = '308201130201010420' + \
'%064x' % pkey.secret + \
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
'%064x' % _p + \
'3006040100040107044104' + \
'%064x' % _Gx + \
'%064x' % _Gy + \
'022100' + \
'%064x' % _r + \
'020101a14403420004' + \
'%064x' % pkey.pubkey.point.x() + \
'%064x' % pkey.pubkey.point.y()
return hex_i2d_key.decode('hex')
def i2o_ECPublicKey(pkey):
# public keys are 65 bytes long (520 bits)
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
hex_i2o_key = '04' + \
'%064x' % pkey.pubkey.point.x() + \
'%064x' % pkey.pubkey.point.y()
return hex_i2o_key.decode('hex')
# hashes
def hash_160(public_key):
md = hashlib.new('ripemd160')
md.update(hashlib.sha256(public_key).digest())
return md.digest()
def public_key_to_bc_address(public_key):
h160 = hash_160(public_key)
return hash_160_to_bc_address(h160)
def hash_160_to_bc_address(h160):
vh160 = chr(addrtype) + h160
h = Hash(vh160)
addr = vh160 + h[0:4]
return b58encode(addr)
def bc_address_to_hash_160(addr):
bytes = b58decode(addr, 25)
return bytes[1:21]
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
__b58base = len(__b58chars)
def b58encode(v):
""" encode v, which is a string of bytes, to base58.
"""
long_value = 0L
for (i, c) in enumerate(v[::-1]):
long_value += (256**i) * ord(c)
result = ''
while long_value >= __b58base:
div, mod = divmod(long_value, __b58base)
result = __b58chars[mod] + result
long_value = div
result = __b58chars[long_value] + result
# Bitcoin does a little leading-zero-compression:
# leading 0-bytes in the input become leading-1s
nPad = 0
for c in v:
if c == '\0': nPad += 1
else: break
return (__b58chars[0]*nPad) + result
def b58decode(v, length):
""" decode v into a string of len bytes
"""
long_value = 0L
for (i, c) in enumerate(v[::-1]):
long_value += __b58chars.find(c) * (__b58base**i)
result = ''
while long_value >= 256:
div, mod = divmod(long_value, 256)
result = chr(mod) + result
long_value = div
result = chr(long_value) + result
nPad = 0
for c in v:
if c == __b58chars[0]: nPad += 1
else: break
result = chr(0)*nPad + result
if length is not None and len(result) != length:
return None
return result
def long_hex(bytes):
return bytes.encode('hex_codec')
def Hash(data):
return hashlib.sha256(hashlib.sha256(data).digest()).digest()
def EncodeBase58Check(vchIn):
hash = Hash(vchIn)
return b58encode(vchIn + hash[0:4])
def DecodeBase58Check(psz):
vchRet = b58decode(psz, None)
key = vchRet[0:-4]
csum = vchRet[-4:]
hash = Hash(key)
cs32 = hash[0:4]
if cs32 != csum:
return None
else:
return key
def str_to_long(b):
res = 0
pos = 1
for a in reversed(b):
res += ord(a) * pos
pos *= 256
return res
def PrivKeyToSecret(privkey):
return privkey[9:9+32]
def SecretToASecret(secret):
vchIn = chr(addrtype+128) + secret
return EncodeBase58Check(vchIn)
def ASecretToSecret(key):
vch = DecodeBase58Check(key)
if vch and vch[0] == chr(addrtype+128):
return vch[1:]
else:
return False
def regenerate_key(sec):
b = ASecretToSecret(sec)
if not b:
return False
secret = str_to_long(b)
return EC_KEY(secret)
def GetPubKey(pkey):
return i2o_ECPublicKey(pkey)
def GetPrivKey(pkey):
return i2d_ECPrivateKey(pkey)
def GetSecret(pkey):
return ('%064x' % pkey.secret).decode('hex')
# parser
def create_env(db_dir):
db_env = DBEnv(0)
r = db_env.open(db_dir, (DB_CREATE|DB_INIT_LOCK|DB_INIT_LOG|DB_INIT_MPOOL|DB_INIT_TXN|DB_THREAD|DB_RECOVER))
return db_env
def parse_CAddress(vds):
d = {'ip':'0.0.0.0','port':0,'nTime': 0}
try:
d['nVersion'] = vds.read_int32()
d['nTime'] = vds.read_uint32()
d['nServices'] = vds.read_uint64()
d['pchReserved'] = vds.read_bytes(12)
d['ip'] = socket.inet_ntoa(vds.read_bytes(4))
d['port'] = vds.read_uint16()
except:
pass
return d
def deserialize_CAddress(d):
return d['ip']+":"+str(d['port'])
def parse_BlockLocator(vds):
d = { 'hashes' : [] }
nHashes = vds.read_compact_size()
for i in xrange(nHashes):
d['hashes'].append(vds.read_bytes(32))
return d
def deserialize_BlockLocator(d):
result = "Block Locator top: "+d['hashes'][0][::-1].encode('hex_codec')
return result
def parse_setting(setting, vds):
if setting[0] == "f": # flag (boolean) settings
return str(vds.read_boolean())
elif setting[0:4] == "addr": # CAddress
d = parse_CAddress(vds)
return deserialize_CAddress(d)
elif setting == "nTransactionFee":
return vds.read_int64()
elif setting == "nLimitProcessors":
return vds.read_int32()
return 'unknown setting'
class SerializationError(Exception):
""" Thrown when there's a problem deserializing or serializing """
class BCDataStream(object):
def __init__(self):
self.input = None
self.read_cursor = 0
def clear(self):
self.input = None
self.read_cursor = 0
def write(self, bytes): # Initialize with string of bytes
if self.input is None:
self.input = bytes
else:
self.input += bytes
def map_file(self, file, start): # Initialize with bytes from file
self.input = mmap.mmap(file.fileno(), 0, access=mmap.ACCESS_READ)
self.read_cursor = start
def seek_file(self, position):
self.read_cursor = position
def close_file(self):
self.input.close()
def read_string(self):
# Strings are encoded depending on length:
# 0 to 252 : 1-byte-length followed by bytes (if any)
# 253 to 65,535 : byte'253' 2-byte-length followed by bytes
# 65,536 to 4,294,967,295 : byte '254' 4-byte-length followed by bytes
# ... and the Bitcoin client is coded to understand:
# greater than 4,294,967,295 : byte '255' 8-byte-length followed by bytes of string
# ... but I don't think it actually handles any strings that big.
if self.input is None:
raise SerializationError("call write(bytes) before trying to deserialize")
try:
length = self.read_compact_size()
except IndexError:
raise SerializationError("attempt to read past end of buffer")
return self.read_bytes(length)
def write_string(self, string):
# Length-encoded as with read-string
self.write_compact_size(len(string))
self.write(string)
def read_bytes(self, length):
try:
result = self.input[self.read_cursor:self.read_cursor+length]
self.read_cursor += length
return result
except IndexError:
raise SerializationError("attempt to read past end of buffer")
return ''
def read_boolean(self): return self.read_bytes(1)[0] != chr(0)
def read_int16(self): return self._read_num('<h')
def read_uint16(self): return self._read_num('<H')
def read_int32(self): return self._read_num('<i')
def read_uint32(self): return self._read_num('<I')
def read_int64(self): return self._read_num('<q')
def read_uint64(self): return self._read_num('<Q')
def write_boolean(self, val): return self.write(chr(1) if val else chr(0))
def write_int16(self, val): return self._write_num('<h', val)
def write_uint16(self, val): return self._write_num('<H', val)
def write_int32(self, val): return self._write_num('<i', val)
def write_uint32(self, val): return self._write_num('<I', val)
def write_int64(self, val): return self._write_num('<q', val)
def write_uint64(self, val): return self._write_num('<Q', val)
def read_compact_size(self):
size = ord(self.input[self.read_cursor])
self.read_cursor += 1
if size == 253:
size = self._read_num('<H')
elif size == 254:
size = self._read_num('<I')
elif size == 255:
size = self._read_num('<Q')
return size
def write_compact_size(self, size):
if size < 0:
raise SerializationError("attempt to write size < 0")
elif size < 253:
self.write(chr(size))
elif size < 2**16:
self.write('\xfd')
self._write_num('<H', size)
elif size < 2**32:
self.write('\xfe')
self._write_num('<I', size)
elif size < 2**64:
self.write('\xff')
self._write_num('<Q', size)
def _read_num(self, format):
(i,) = struct.unpack_from(format, self.input, self.read_cursor)
self.read_cursor += struct.calcsize(format)
return i
def _write_num(self, format, num):
s = struct.pack(format, num)
self.write(s)
def open_wallet(db_env, walletfile, writable=False):
db = DB(db_env)
flags = DB_THREAD | (DB_CREATE if writable else DB_RDONLY)
try:
r = db.open(walletfile, "main", DB_BTREE, flags)
except DBError:
r = True
if r is not None:
logging.error("Couldn't open wallet.dat/main. Try quitting Bitcoin and running this again.")
sys.exit(1)
return db
def parse_wallet(db, item_callback):
kds = BCDataStream()
vds = BCDataStream()
for (key, value) in db.items():
d = { }
kds.clear(); kds.write(key)
vds.clear(); vds.write(value)
type = kds.read_string()
d["__key__"] = key
d["__value__"] = value
d["__type__"] = type
try:
if type == "tx":
d["tx_id"] = kds.read_bytes(32)
elif type == "name":
d['hash'] = kds.read_string()
d['name'] = vds.read_string()
elif type == "version":
d['version'] = vds.read_uint32()
elif type == "setting":
d['setting'] = kds.read_string()
d['value'] = parse_setting(d['setting'], vds)
elif type == "key":
d['public_key'] = kds.read_bytes(kds.read_compact_size())
d['private_key'] = vds.read_bytes(vds.read_compact_size())
elif type == "wkey":
d['public_key'] = kds.read_bytes(kds.read_compact_size())
d['private_key'] = vds.read_bytes(vds.read_compact_size())
d['created'] = vds.read_int64()
d['expires'] = vds.read_int64()
d['comment'] = vds.read_string()
elif type == "defaultkey":
d['key'] = vds.read_bytes(vds.read_compact_size())
elif type == "pool":
d['n'] = kds.read_int64()
d['nVersion'] = vds.read_int32()
d['nTime'] = vds.read_int64()
d['public_key'] = vds.read_bytes(vds.read_compact_size())
elif type == "acc":
d['account'] = kds.read_string()
d['nVersion'] = vds.read_int32()
d['public_key'] = vds.read_bytes(vds.read_compact_size())
elif type == "acentry":
d['account'] = kds.read_string()
d['n'] = kds.read_uint64()
d['nVersion'] = vds.read_int32()
d['nCreditDebit'] = vds.read_int64()
d['nTime'] = vds.read_int64()
d['otherAccount'] = vds.read_string()
d['comment'] = vds.read_string()
elif type == "bestblock":
d['nVersion'] = vds.read_int32()
d.update(parse_BlockLocator(vds))
item_callback(type, d)
except Exception, e:
traceback.print_exc()
print("ERROR parsing wallet.dat, type %s" % type)
print("key data in hex: %s"%key.encode('hex_codec'))
print("value data in hex: %s"%value.encode('hex_codec'))
sys.exit(1)
def update_wallet(db, type, data):
"""Write a single item to the wallet.
db must be open with writable=True.
type and data are the type code and data dictionary as parse_wallet would
give to item_callback.
data's __key__, __value__ and __type__ are ignored; only the primary data
fields are used.
"""
d = data
kds = BCDataStream()
vds = BCDataStream()
# Write the type code to the key
kds.write_string(type)
vds.write("") # Ensure there is something
try:
if type == "tx":
raise NotImplementedError("Writing items of type 'tx'")
kds.write(d['tx_id'])
elif type == "name":
kds.write_string(d['hash'])
vds.write_string(d['name'])
elif type == "version":
vds.write_uint32(d['version'])
elif type == "setting":
raise NotImplementedError("Writing items of type 'setting'")
kds.write_string(d['setting'])
#d['value'] = parse_setting(d['setting'], vds)
elif type == "key":
kds.write_string(d['public_key'])
vds.write_string(d['private_key'])
elif type == "wkey":
kds.write_string(d['public_key'])
vds.write_string(d['private_key'])
vds.write_int64(d['created'])
vds.write_int64(d['expires'])
vds.write_string(d['comment'])
elif type == "defaultkey":
vds.write_string(d['key'])
elif type == "pool":
kds.write_int64(d['n'])
vds.write_int32(d['nVersion'])
vds.write_int64(d['nTime'])
vds.write_string(d['public_key'])
elif type == "acc":
kds.write_string(d['account'])
vds.write_int32(d['nVersion'])
vds.write_string(d['public_key'])
elif type == "acentry":
kds.write_string(d['account'])
kds.write_uint64(d['n'])
vds.write_int32(d['nVersion'])
vds.write_int64(d['nCreditDebit'])
vds.write_int64(d['nTime'])
vds.write_string(d['otherAccount'])
vds.write_string(d['comment'])
elif type == "bestblock":
vds.write_int32(d['nVersion'])
vds.write_compact_size(len(d['hashes']))
for h in d['hashes']:
vds.write(h)
else:
print "Unknown key type: "+type
# Write the key/value pair to the database
db.put(kds.input, vds.input)
except Exception, e:
print("ERROR writing to wallet.dat, type %s"%type)
print("data dictionary: %r"%data)
traceback.print_exc()
def rewrite_wallet(db_env, walletfile, destFileName, pre_put_callback=None):
db = open_wallet(db_env, walletfile)
db_out = DB(db_env)
try:
r = db_out.open(destFileName, "main", DB_BTREE, DB_CREATE)
except DBError:
r = True
if r is not None:
logging.error("Couldn't open %s."%destFileName)
sys.exit(1)
def item_callback(type, d):
if (pre_put_callback is None or pre_put_callback(type, d)):
db_out.put(d["__key__"], d["__value__"])
parse_wallet(db, item_callback)
db_out.close()
db.close()
def read_wallet(json_db, db_env, walletfile, print_wallet, print_wallet_transactions, transaction_filter):
db = open_wallet(db_env, walletfile)
json_db['keys'] = []
json_db['pool'] = []
json_db['names'] = {}
def item_callback(type, d):
if type == "name":
json_db['names'][d['hash']] = d['name']
elif type == "version":
json_db['version'] = d['version']
elif type == "setting":
if not json_db.has_key('settings'): json_db['settings'] = {}
json_db["settings"][d['setting']] = d['value']
elif type == "defaultkey":
json_db['defaultkey'] = public_key_to_bc_address(d['key'])
elif type == "key":
addr = public_key_to_bc_address(d['public_key'])
sec = SecretToASecret(PrivKeyToSecret(d['private_key']))
private_keys.append(sec)
json_db['keys'].append({'addr' : addr, 'sec' : sec})
elif type == "wkey":
if not json_db.has_key('wkey'): json_db['wkey'] = []
json_db['wkey']['created'] = d['created']
elif type == "pool":
json_db['pool'].append( {'n': d['n'], 'addr': public_key_to_bc_address(d['public_key']), 'nTime' : d['nTime'] } )
elif type == "acc":
json_db['acc'] = d['account']
print("Account %s (current key: %s)"%(d['account'], public_key_to_bc_address(d['public_key'])))
elif type == "acentry":
json_db['acentry'] = (d['account'], d['nCreditDebit'], d['otherAccount'], time.ctime(d['nTime']), d['n'], d['comment'])
elif type == "bestblock":
json_db['bestblock'] = d['hashes'][0][::-1].encode('hex_codec')
else:
json_db[type] = 'unsupported'
parse_wallet(db, item_callback)
db.close()
for k in json_db['keys']:
addr = k['addr']
if addr in json_db['names'].keys():
k["label"] = json_db['names'][addr]
else:
k["reserve"] = 1
del(json_db['pool'])
del(json_db['names'])
def importprivkey(db, sec):
pkey = regenerate_key(sec)
if not pkey:
return False
secret = GetSecret(pkey)
private_key = GetPrivKey(pkey)
public_key = GetPubKey(pkey)
addr = public_key_to_bc_address(public_key)
print "Address: %s" % addr
print "Privkey: %s" % SecretToASecret(secret)
update_wallet(db, 'key', { 'public_key' : public_key, 'private_key' : private_key })
update_wallet(db, 'name', { 'hash' : addr, 'name' : '' })
return True
from optparse import OptionParser
def main():
global max_version, addrtype
parser = OptionParser(usage="%prog [options]", version="%prog 1.1")
parser.add_option("--dumpwallet", dest="dump", action="store_true",
help="dump wallet in json format")
parser.add_option("--importprivkey", dest="key",
help="import private key from vanitygen")
parser.add_option("--datadir", dest="datadir",
help="wallet directory (defaults to bitcoin default)")
parser.add_option("--wallet", dest="walletfile",
help="wallet filename (defaults to wallet.dat)",
default="wallet.dat")
parser.add_option("--testnet", dest="testnet", action="store_true",
help="use testnet subdirectory and address type")
(options, args) = parser.parse_args()
if options.dump is None and options.key is None:
print "A mandatory option is missing\n"
parser.print_help()
exit(0)
if options.datadir is None:
db_dir = determine_db_dir()
else:
db_dir = options.datadir
if options.testnet:
db_dir += "/testnet"
addrtype = 111
db_env = create_env(db_dir)
read_wallet(json_db, db_env, options.walletfile, True, True, "")
if options.dump:
print json.dumps(json_db, sort_keys=True, indent=4)
elif options.key:
if json_db['version'] > max_version:
print "Version mismatch (must be <= %d)" % max_version
elif options.key in private_keys:
print "Already exists"
else:
db = open_wallet(db_env, options.walletfile, writable=True)
if importprivkey(db, options.key):
print "Imported successfully"
else:
print "Bad private key"
db.close()
if __name__ == '__main__':
main()