RanchiMall Tron Web Wallet Tasks

Task 1 : Address Lookup
Allow search for any Tron blockchain address and display full transaction history.

Context :
The user enters a valid Tron address (starting with T). The system connects to the TronGrid
(Shasta testnet or Mainnet) and:

1. Fetches the latest transactions made by that address
2. Displays important details like:

* Transaction type

* Amount sent or received

« Sender,receiver and contract addresses

¢ Transaction result

¢ Date and time

¢ Transaction Fee

¢ Block number / hash

Code :

const options = { method: "GET", headers: { accept:
"application/json" } };

let nextUrl = null;

async function transactionHistory(url, address) {

{
const response = fetch(url, options);
const data = response.json();

const historyDiv = document.getElementById("historyOutput");

historyDiv.innerHTML = :

(data data.data) {
console.log(data.data);

data.data.forEach((tx) => {
const hash = tx.txID;
const block = tx.blockNumber;
const age = new Date(tx.block_timestamp).toLocaleString();
const type = tx.raw_data.contract[0].type;

let from =
let to =

let amount = ;
let extraContractlLine = "";

(type === "TransferContract") {
const v = tx.raw_data.contract[0].parameter.value;
from = tronWeb.address.fromHex(v.owner address);
to = tronWeb.address.fromHex(v.to_address);
amount = v.amount / 1e6 + " TRX";

(type === "TriggerSmartContract") {

const v = tx.raw_data.contract[0].parameter.value;

from = tronWeb.address.fromHex(v.owner_ address);

const contractBase58 =
tronWeb.address.fromHex(v.contract_address);
extraContractLine =
<p>Contract: ${contractBase58}
<button
onclick="copyToClipboard('${contractBase58}')"><i class="fas fa-

copy"></i></button>
</p>7;

const input = (v.data "").startswith("ox") ?
v.data.slice(2) : (v.data SR
const method = input.slice(®, 8).toLowerCase();
=== "a9059chbb" input.length >= 8 + 64 + 64)
const addrSlot = input.slice(8, 8 + 64);
const amountSlot = input.slice(8 + 64, 8 + 64 + 64);
const evmAddrHex = addrSlot.slice(24);
const tronHex = "41" + evmAddrHex.tolLowerCase();

to = tronWeb.address.fromHex(tronHex);

const raw = BigInt("0x" + amountSlot);

amount = Number(raw) / le6 + " USDT";

{

to = ll_
amount

const result = tx.ret?.[0]?.contractRet "UNKNOWN" ;
const statusColor = result === "SUCCESS" ? "green" : "red";

Output :

Transaction History

TRON Address:

TKwHTWDXH 1w3cMtHrkPzZBipMmmEKT 3Lww

e

Hash: 1a79¢5...92e146 L]

Block: 57261508

Age: 8/20/2025, 9:42:18 PM

Type: TransferContract

From: TLA90SuJNDS4mpwgBhRvjviweucrdqgipy [IL]
To: TKwHTWDXH1w3cMtHrkPzZBjpMmmEKT 3Lww
Amount: 17.73341 TRX

Status:

Hash: 1e7b85...391b03

Block: 57261380

Age: 8/20/2025, 9:35-48 PM

Type: TriggerSmartContract

From: TKwHTWDXH 1w3cMtHrkPzZBjpMmmEK73Lww L]

To: TLASoSuJNDS4mpwqBhRvjviWeucrJqgipy ﬂ
3XyExBkPp9InzdajDZsozEudBkaSJozs L)

Task 2 : FLO Private Key Integration

Enable sending of TRX using a valid FLO blockchain private key or using Tron blockchain
private key of the sender.

Context :

The user can do TRX transfers using a private key from either:
¢ FLO/BTC (in WIF format)
¢ A standard Tron private key (64 hex characters)

Code :
const fullNode = "https://api.shasta.trongrid.io";

const solidityNode = "https://api.shasta.trongrid.io";
const eventServer = "https://api.shasta.trongrid.io";

const tronWeb = new TronWeb(fullNode, solidityNode, eventServer);

async function sendTrx() {
const fromAddress =
document.getElementById("fromAddr").value.trim();
let privateKey = document.getElementById("privKey").value.trim();
const toAddress = document.getElementById("toAddr").value.trim();
const amount = parseFloat(document.getElementById("amount").value)
1e6;

const outputDiv = document.getElementById("sendOutput");
outputDiv.innerHTML = "Bl Sending transaction...";

{
(/" [5KLc9RQ][1-9A-HI-NP-Za-km-z]1{50,}$/.test(privateKey)) {
const decoded = coinjs.wif2privkey(privateKey);

(!'decoded decoded.privkey) {
new Error("Invalid WIF private key");

}

privateKey = decoded.privkey;
} (1/"[0-9a-fA-F1{64}$/.test(privateKey)) {

new Error("Private key must be Tron hex or valid WIF");

const tradeobj = tronWeb.transactionBuilder.sendTrx(
toAddress,
amount,
fromAddress

);

signedtxn = tronWeb.trx.sign(tradeobj, privateKey);

receipt = tronWeb.trx.sendRawTransaction(signedtxn);

status = receipt.result ? "</ Success" : "X Failed";
statusColor = receipt.result ? "green" : "red";
txid = receipt.txid ? truncate(receipt.txid) : "N/A";

Output :

Send TRX
From Address:

TG307TH7HTezylUMGpB9eed4NXo39uKjvrKmu

Private Key (TRON/FLO/BTC) -

Kyz2izwdZQQSDcM3CFEBSYEUSpwUH5K0JQ4Xp31WFhgjmdoriQryY
To Address:

TYYStaoqteNXpd6PiSg72al94SihsAYwNz
Amount (TRX):

05

Status: &

Transaction Hash: a7341f_a610c5 i}

From: TG307H7H7ezyUMGpB9eedNXo039uKjvrKmu
To: TYYItaoqteNXpd6PiSgr2al94SihsAYwNz

Amount: 0.5 TRX

Task 3 : Multi-Chain Address Generation

On creating a new Tron address, automatically generate and display:
a) Equivalent FLO address

b) Equivalent Bitcoin address

c) Associated private keys for all three

Context :
It helps to generate a Tron wallet and simultaneously create equivalent addresses for FLO
and Bitcoin along with their respective private keys.

Code :
function getRandomPrivateKey() {
const array = new Uint8Array(32);
window.crypto.getRandomvValues(array);
Array.from(array)
.map((b) => b.toString(16).padStart(2, "0"))
.join("");
}

function generateFLOFromPrivateKey(privateKey) {

{

let flowif = privateKey;

(/"[0-9a-fA-F1{64}$/.test(privatekey)) {
flowif = coinjs.privkey2wif(privateKey);

let floprivateKey = btcOperator.convert.wif(flowif, bitjs.priv);
let floAddress = floCrypto.getFloID(floprivateKey);

(!floAddress) {
new Error("No working FLO address generation method

found");
}

{

address: floAddress,
privateKey: floprivateKey,

fi g
} (error) {
console.warn("FLO generation not available:", error.message);
null;
}
}
function generateBTCFromPrivateKey(privateKey) {
{
(typeof btcOperator === "undefined") f{
new Error("btcOperator library not available");

let wifKey = privateKey;
(/"[0-9a-fA-F]{64}$/.test(privateKey)) {
wifKey = coinjs.privkey2wif(privateKey);
}
let btcPrivateKey = btcOperator.convert.wif(wifKey);
let btcAddress;
btcAddress = btcOperator.bech32Address(wifKey);

{

address: btcAddress,
privateKey: btcPrivateKey,
Ii§

} (error) {

console.warn("BTC generation error:", error.message);
null;

}

}

async function generateTronWallet() {
const fullNode = "https://api.shasta.trongrid.io";

const solidityNode = "https://api.shasta.trongrid.io";
const eventServer = "https://api.shasta.trongrid.io";

const tronWeb = new TronWeb(
fullNode,
solidityNode,
eventServer,
getRandomPrivateKey()

);

const wallet = tronWeb.createAccount();
{
address: wallet.address.base58,
privateKey: wallet.privateKey,

b

async function runWalletTest() {
const out = document.getElementById("walletOutput");
{

const tronWallet = generateTronWallet();

const floWallet =
generateFLOFromPrivateKey(tronWallet.privateKey);

const btcWallet =
generateBTCFromPrivateKey(tronWallet.privateKey);

out.textContent = JSON.stringify(
{ tron: tronWallet, flo: flowallet, btc: btcwallet
null,
2

);

(err) {

out.textContent = "Error:

+ err.message;

Output :

Generate TRON Address

Task 4 : Private Key-Based Address Recovery

Derive the original Tron address from a valid FLO, Bitcoin, or Tron private key.

Context :

Helps a user to recover their original Tron address using any of the following types of
private keys:

¢ A Tron private key (64 hex)

¢ A FLO private key (WIF)

¢ A BTC private key (WIF)

Code :
function isHex64(str) {

/" [0-9a-fA-F]{64}$/.test(str);
}
function isWif(str) {

/" [5KL][1-9A-HJ-NP-Za-km-z]1{50,51}%$/.test(str);

}

async function recoverTronAddressFromPrivKey(privKey) {
const tronWeb = new TronWeb(
"https://api.shasta.trongrid.io",
"https://api.shasta.trongrid.io",
"https://api.shasta.trongrid.io"
)

(isHex64(privKey)) {
const tronAddress = tronWeb.address.fromPrivateKey(privKey);
{ source: "Tron Hex Private Key", tronAddress };

const decoded = coinjs.wif2privkey(privKey);
console.log(decoded);

(!'decoded decoded['privkey']) {
{ error: "Invalid WIF private key" };

}

rawHexKey = decoded['privkey'];
const tronAddress = tronWeb.address.fromPrivateKey(rawHexKey);
{ source: "BTC/FLO WIF Private Key", tronAddress };

new Error("Unsupported private key format");

(err) {

{ error: err.message };

Recover Tron Address

Private Key

Task 5 : Balance Retrieval

Show TRX balance for any address, using:

a) Tron blockchain address, or

b) Corresponding FLO / Bitcoin private keys

Context :
Helps the user to check the TRX balance of a wallet using any of the following:
¢ A Tron address (starting with T)

¢ A Tron private key (64 hex)
¢ A FLO or Bitcoin private key in WIF format

Code:

async function getBalanceByAddress(address) {
{
const balance = tronWeb.trx.getBalance(address);
balance / 1e6;
(err) {

new Error("Failed to fetch balance: " + err.message);

async function getBalanceByPrivKey(privKey) {
{

let rawHexKey;

(/" [5KLc9RQ][1-9A-HI-NP-Za-km-z]{50,}$/.test(privKey)) {
const decoded = coinjs.wif2privkey(privKey);
(!'decoded decoded.privkey) {
new Error("Invalid WIF private key");

}

rawHexKey = decoded.privkey;

(/"[0-9a-fA-F]{64}$/.test(privKey)) {
rawHexKey = privKey;

{

new Error("Unsupported private key format");

const tronAddress = tronWeb.address.fromPrivateKey(rawHexKey);
const balance = getBalanceByAddress(tronAddress);

{ tronAddress, balance };

(err) {

new Error("Invalid private key:

+ err.message);

Output :

Check TRX Balance

Check TRX Balance
Tron Address / Private Key (FLO/BTC).

Tron Address / Private Key (FLO/BTG)

TYY9taoqteNXpd6PISg72aJ94ShsAYwiz
Check Balance
Check Balance

Derived Tron Address: TG3o7H/H7ezyUMGpBSeedNXo33uKjvrKmu

RAH6jeZTgnUFKiov Yu3MqKnBYSWTHyHK6XLNCUdZtSTgVPnfhGn

Address: TYY9taoqieNXpd6PiSg72aJ94SihsAYwNz

Balance: 0.199 TRX
Balance: 1983 533 TRX

Check TRX Balance

Tron Address / Private Key (FLO/BTC).

RG3SmxADQSgVm8dTvUBFBNPFA22HSj7wXejs 17y 7TDnFH5PmBFXY

Check Balance

Derived Tron Address: TWgfzMtKT 8jywScuMFMv7y 1xnAYpFDZ{GF

Balance: 0 TRX

Task 6 : Token Transfer

Enable sending of TRX using:

a) Tron private key, or

b) Its corresponding/equivalent FLO and Bitcoin private keys

Context :

It helps a user to send TRX tokens using either:

¢ A Tron private key (64 hex)

¢ Or a corresponding private key from the FLO or Bitcoin blockchains (in WIF format)

Code:
Same as Task 2

