
RanchiMall Tron Web Wallet Tasks

Task 1 : Address Lookup

Allow search for any Tron blockchain address and display full transaction history.

Context :

The user enters a valid Tron address (starting with T). The system connects to the TronGrid

(Shasta testnet or Mainnet) and:

1. Fetches the latest transactions made by that address

2. Displays important details like:

 • Transaction type

 • Amount sent or received

 • Sender,receiver and contract addresses

 • Transaction result

 • Date and time

 • Transaction Fee

 • Block number / hash

Code :

const options = { method: "GET", headers: { accept:
"application/json" } };
let nextUrl = null;

async function transactionHistory(url, address) {
 try {
 const response = await fetch(url, options);
 const data = await response.json();

 const historyDiv = document.getElementById("historyOutput");
 historyDiv.innerHTML = "";

 if (data && data.data) {
 console.log(data.data);

 data.data.forEach((tx) => {
 const hash = tx.txID;
 const block = tx.blockNumber;
 const age = new Date(tx.block_timestamp).toLocaleString();
 const type = tx.raw_data.contract[0].type;

 let from = "";
 let to = "";

 let amount = "";
 let extraContractLine = ""; // for TriggerSmartContract

 if (type === "TransferContract") {
 // ------- Native TRX transfer -------
 const v = tx.raw_data.contract[0].parameter.value;
 from = tronWeb.address.fromHex(v.owner_address);
 to = tronWeb.address.fromHex(v.to_address);
 amount = v.amount / 1e6 + " TRX";
 } else if (type === "TriggerSmartContract") {
 // ------- TRC20 token transfer (contract call) -------
 const v = tx.raw_data.contract[0].parameter.value;

 // Sender (owner) in TRON hex already
 from = tronWeb.address.fromHex(v.owner_address);

 // Contract address (TRC20 token contract)
 const contractBase58 =
tronWeb.address.fromHex(v.contract_address);
 extraContractLine = `
 <p>Contract: ${contractBase58}
 <button
onclick="copyToClipboard('${contractBase58}')"><i class="fas fa-
copy"></i></button>
 </p>`;

 // DATA decoding: 0xa9059cbb + 32B addr + 32B amount

 const input = (v.data || "").startsWith("0x") ?
v.data.slice(2) : (v.data || "");
 const method = input.slice(0, 8).toLowerCase();

 if (method === "a9059cbb" && input.length >= 8 + 64 + 64)
{
 const addrSlot = input.slice(8, 8 + 64);
 const amountSlot = input.slice(8 + 64, 8 + 64 + 64);

 // last 40 hex chars of addrSlot = 20-byte EVM address
 const evmAddrHex = addrSlot.slice(24);
 // convert to TRON hex (prefix 0x41)
 const tronHex = "41" + evmAddrHex.toLowerCase();
 to = tronWeb.address.fromHex(tronHex);

 const raw = BigInt("0x" + amountSlot);

 amount = Number(raw) / 1e6 + " USDT";
 } else {

 to = "—";
 amount = "—";
 }
 }

 const result = tx.ret?.[0]?.contractRet || "UNKNOWN";
 const statusColor = result === "SUCCESS" ? "green" : "red";

Output :

Task 2 : FLO Private Key Integration

Enable sending of TRX using a valid FLO blockchain private key or using Tron blockchain

private key of the sender.

Context :

The user can do TRX transfers using a private key from either:

• FLO/BTC (in WIF format)

• A standard Tron private key (64 hex characters)

Code :

const fullNode = "https://api.shasta.trongrid.io";
const solidityNode = "https://api.shasta.trongrid.io";
const eventServer = "https://api.shasta.trongrid.io";

const tronWeb = new TronWeb(fullNode, solidityNode, eventServer);

async function sendTrx() {
 const fromAddress =
document.getElementById("fromAddr").value.trim();
 let privateKey = document.getElementById("privKey").value.trim();
 const toAddress = document.getElementById("toAddr").value.trim();
 const amount = parseFloat(document.getElementById("amount").value)
* 1e6;

 const outputDiv = document.getElementById("sendOutput");
 outputDiv.innerHTML = "⏳ Sending transaction...";

 try {
 // (WIF → hex if needed)
 if (/^[5KLc9RQ][1-9A-HJ-NP-Za-km-z]{50,}$/.test(privateKey)) {
 // Looks like WIF (BTC / FLO style)
 const decoded = coinjs.wif2privkey(privateKey);
 if (!decoded || !decoded.privkey) {
 throw new Error("Invalid WIF private key");
 }
 privateKey = decoded.privkey; // hex format now
 } else if (!/^[0-9a-fA-F]{64}$/.test(privateKey)) {
 throw new Error("Private key must be Tron hex or valid WIF");
 }

 // Build transaction
 const tradeobj = await tronWeb.transactionBuilder.sendTrx(
 toAddress,
 amount,
 fromAddress
);

 // Sign transaction
 const signedtxn = await tronWeb.trx.sign(tradeobj, privateKey);

 // Broadcast transaction
 const receipt = await tronWeb.trx.sendRawTransaction(signedtxn);

 // Format result
 const status = receipt.result ? "✅ Success" : "❌ Failed";
 const statusColor = receipt.result ? "green" : "red";
 const txid = receipt.txid ? truncate(receipt.txid) : "N/A";

Output :

Task 3 : Multi-Chain Address Generation

On creating a new Tron address, automatically generate and display:

a) Equivalent FLO address

b) Equivalent Bitcoin address

c) Associated private keys for all three

Context :

It helps to generate a Tron wallet and simultaneously create equivalent addresses for FLO

and Bitcoin along with their respective private keys.

Code :

function getRandomPrivateKey() {
 const array = new Uint8Array(32);
 window.crypto.getRandomValues(array);
 return Array.from(array)
 .map((b) => b.toString(16).padStart(2, "0"))
 .join("");
}
function generateFLOFromPrivateKey(privateKey) {
 try {
 let flowif = privateKey;

 if (/^[0-9a-fA-F]{64}$/.test(privateKey)) {
 flowif = coinjs.privkey2wif(privateKey);
 }

 let floprivateKey = btcOperator.convert.wif(flowif, bitjs.priv);
 let floAddress = floCrypto.getFloID(floprivateKey);

 if (!floAddress) {
 throw new Error("No working FLO address generation method
found");
 }

 return {
 address: floAddress,
 privateKey: floprivateKey, // Returns the format that actually
works
 };
 } catch (error) {
 console.warn("FLO generation not available:", error.message);
 return null;
 }
}
function generateBTCFromPrivateKey(privateKey) {
 try {
 if (typeof btcOperator === "undefined") {
 throw new Error("btcOperator library not available");
 }

 // Convert private key to WIF format if it's hex
 let wifKey = privateKey;
 if (/^[0-9a-fA-F]{64}$/.test(privateKey)) {
 wifKey = coinjs.privkey2wif(privateKey);
 }
 let btcPrivateKey = btcOperator.convert.wif(wifKey);
 let btcAddress;
 btcAddress = btcOperator.bech32Address(wifKey);

 return {
 address: btcAddress,
 privateKey: btcPrivateKey,
 };
 } catch (error) {
 console.warn("BTC generation error:", error.message);
 return null;
 }
}

async function generateTronWallet() {
 const fullNode = "https://api.shasta.trongrid.io";

 const solidityNode = "https://api.shasta.trongrid.io";
 const eventServer = "https://api.shasta.trongrid.io";

 const tronWeb = new TronWeb(
 fullNode,
 solidityNode,
 eventServer,
 getRandomPrivateKey()
);

 const wallet = await tronWeb.createAccount();
 return {
 address: wallet.address.base58,
 privateKey: wallet.privateKey,
 };
}

// Wallet generation
 async function runWalletTest() {
 const out = document.getElementById("walletOutput");
 try {
 const tronWallet = await generateTronWallet();
 const floWallet =
generateFLOFromPrivateKey(tronWallet.privateKey);
 const btcWallet =
generateBTCFromPrivateKey(tronWallet.privateKey);

 out.textContent = JSON.stringify(
 { tron: tronWallet, flo: floWallet, btc: btcWallet },
 null,
 2
);
 } catch (err) {
 out.textContent = "Error: " + err.message;
 }
 }

Output :

Task 4 : Private Key-Based Address Recovery

Derive the original Tron address from a valid FLO, Bitcoin, or Tron private key.

Context :

Helps a user to recover their original Tron address using any of the following types of

private keys:

• A Tron private key (64 hex)

• A FLO private key (WIF)

• A BTC private key (WIF)

Code :

function isHex64(str) {
 return /^[0-9a-fA-F]{64}$/.test(str);
}
function isWif(str) {
 return /^[5KL][1-9A-HJ-NP-Za-km-z]{50,51}$/.test(str); // Bitcoin
WIF regex
}

async function recoverTronAddressFromPrivKey(privKey) {
 const tronWeb = new TronWeb(
 "https://api.shasta.trongrid.io",
 "https://api.shasta.trongrid.io",
 "https://api.shasta.trongrid.io"
);

 try {
 // Case 1: Tron raw hex priv key (64 chars)
 if (isHex64(privKey)) {
 const tronAddress = tronWeb.address.fromPrivateKey(privKey);
 return { source: "Tron Hex Private Key", tronAddress };

 }else{

 // Case 2: Bitcoin/FLO WIF

 const decoded = coinjs.wif2privkey(privKey);
 console.log(decoded);

 if (!decoded || !decoded['privkey']) {
 return { error: "Invalid WIF private key" };
 }
 rawHexKey = decoded['privkey'];
 const tronAddress = tronWeb.address.fromPrivateKey(rawHexKey);
 return { source: "BTC/FLO WIF Private Key", tronAddress };
 }

 throw new Error("Unsupported private key format");
 } catch (err) {
 return { error: err.message };
 }
}

Output :

Task 5 : Balance Retrieval

Show TRX balance for any address, using:

a) Tron blockchain address, or

b) Corresponding FLO / Bitcoin private keys

Context :

Helps the user to check the TRX balance of a wallet using any of the following:

• A Tron address (starting with T)

• A Tron private key (64 hex)

• A FLO or Bitcoin private key in WIF format

Code :

async function getBalanceByAddress(address) {
 try {
 const balance = await tronWeb.trx.getBalance(address);
 return balance / 1e6; // convert SUN → TRX
 } catch (err) {
 throw new Error("Failed to fetch balance: " + err.message);
 }
}

async function getBalanceByPrivKey(privKey) {
 try {
 let rawHexKey;

 // Detect WIF (BTC/FLO style)
 if (/^[5KLc9RQ][1-9A-HJ-NP-Za-km-z]{50,}$/.test(privKey)) {
 const decoded = coinjs.wif2privkey(privKey);
 if (!decoded || !decoded.privkey) {
 throw new Error("Invalid WIF private key");
 }
 rawHexKey = decoded.privkey;

 // Detect 64-char raw hex private key
 } else if (/^[0-9a-fA-F]{64}$/.test(privKey)) {
 rawHexKey = privKey;

 } else {
 throw new Error("Unsupported private key format");
 }

 // Derive Tron address from private key
 const tronAddress = tronWeb.address.fromPrivateKey(rawHexKey);
 const balance = await getBalanceByAddress(tronAddress);

 return { tronAddress, balance };

 } catch (err) {
 throw new Error("Invalid private key: " + err.message);
 }
}

Output :

Task 6 : Token Transfer

Enable sending of TRX using:

a) Tron private key, or

b) Its corresponding/equivalent FLO and Bitcoin private keys

Context :

It helps a user to send TRX tokens using either:

• A Tron private key (64 hex)

• Or a corresponding private key from the FLO or Bitcoin blockchains (in WIF format)

Code :

Same as Task 2

